
Convergent Causal Consistency for Social Media
Posts

Ta-Yuan Hsu
University of Illinois at Chicago

Chicago, IL, USA
thsu4@uic.edu

Ajay D. Kshemkalyani
University of Illinois at Chicago

Chicago, IL, USA
ajay@uic.edu

Abstract
Geo-replicated services play a vital role in cloud storage
management by providing enhanced availability, higher reli-
ability, and lower latency on demand access to shared infras-
tructure and data resources. In such environments, consis-
tency is a critical and essential consideration for distributed
storage systems where it is required to make updates to the
replicated data. Convergent causal consistency has become
a popular consistency model by offering useful semantics for
online human interaction services. Adaptive non-full repli-
cation strategies have potential benefit of lower message
counts in social network systems. However, static replica-
tion is ineffective for time-varying workloads. This paper
presents a causal+ consistency protocol, CaDRoP, to support
adaptive dynamic replication with the convergence property
for all comments following a post and the causal ordering
between posts with explicit causality. We evaluate CaDRoP
protocol with realistic workloads by different PUT rates in
terms of the practical price of Amazon Web Service. The
results show that CaDRoP can yield significantly lower cost
than it is running in a statically replicated data store. We
further evaluate CaDRoP by comparing it with a clairvoy-
ant optimal replication solution. The findings indicate that
with cache, CaDRoP incurs only around 6% ∼ 16% extra cost.
Without cache, CaDRoP brings around 2% ∼ 4.5% extra cost
in steady states.

CCSConcepts: •Networks→Network simulations; •Com-
puting methodologies → Modeling and simulation; •
Information systems→ Remote replication.

Keywords: causal consistency, partial replication, social net-
works, performance, cost optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PaPoC’21, April 26, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8338-7/21/04. . . $15.00
https://doi.org/10.1145/3447865.3457967

ACM Reference Format:
Ta-Yuan Hsu and Ajay D. Kshemkalyani. 2021. Convergent Causal
Consistency for Social Media Posts. In 8th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC’21), April 26,
2021, Online, United Kingdom. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3447865.3457967

1 Introduction
Online cloud storage is one of the most popular data manage-
ment solutions and the fastest growing services in large-scale
cloud computing. It has been widely deployed by businesses
and enterprises to manage their data [8–10, 19, 20], includ-
ing data-driven applications such as LinkedIn and Facebook.
Data geo-replication is a critical part of any storage systems
and a widely adopted approach to improve the availabil-
ity and performance for massive scale. It is the process of
maintaining copies of data at both locally and geographi-
cally dispersed stores closer to the users. Thus, the latency
between end-users and the store servers can be effectively
lowered, in addition to offering improvements in system
scalability.

In geographically distributed environments, partial repli-
cation is an advanced measure, where data objects replicate
to a subset of the system store nodes and their updates are
propagated to fewer replicas. Hence, the system can avoid
propagating unnecessary resources to improve storage uti-
lization and reduce network transmission costs against full
replication.
Replication gives rise to the problem of data consistency

across different replicas. Linearizability is the strongest con-
sistency model, requiring global synchronization to access
data sequentially. Several well known cloud store platforms
are satisfied with weaker consistency models to provide
lower latency [3, 12, 13, 20]. Causal consistency (CC) has
gained significant attention as an attractive consistency for
geo-replicated cloud storage systems [1, 2, 11, 15, 21–24, 26–
28, 30], since it supports the ordering of operations with
respect to program and read-from order across store nodes.
Moreover, it not only avoids the unpredictable execution
status allowed by weaker consistency (e.g., eventual consis-
tency), but provides lower latency than strong consistency
models (e.g., linearizability).
CC preserves intuitive causal ascription, crucial in social

networks (e.g., privacy policies). It improves user experience,
because, with it, events appear to each user in the correct

https://doi.org/10.1145/3447865.3457967
https://doi.org/10.1145/3447865.3457967

PaPoC’21, April 26, 2021, Online, United Kingdom Ta-Yuan Hsu and Ajay D. Kshemkalyani

order. Moreover, CC+, CC with convergent conflict handling,
integrates the CC model and eventual consistency [29]. CC+
not only supports the causality order for write/update op-
erations, but also requires that all replicas converge to the
same state under concurrent conflicting updates.

Contributions:. This paper presents an overview of CaDRoP
(Causal Consistency under Dynamic Replication Protocol),
a new cost-optimized protocol that ensures causal+ con-
sistency (CC+) in a partially geo-replicated platform. CC+
protocol requires that data replicas converge to the same
state under concurrent updates. Current existing approaches
[1, 2, 11, 20–24, 26–28, 30] maintain CC+ in standard key-
value storage configuration. Most of them are based on full
replication, whereas some CC+ protocols [22, 27, 28, 30] sup-
port partial replication. There are some limitations when
applying the current CC+ protocols to social media plat-
forms.
• When users have access to a post (e.g., an image), all
the replying comments return. Each comment corre-
sponds to an update operation to a post. The existing
CC+ protocols treat the post and its following com-
ments as values to a variable. However, none of these
CC+ approaches can achieve the convergence property
for the values corresponding to the same post. Since
they use the last-writer-wins reconciliation, only the
value from the latest writer is kept around.
• Further, the current CC+ protocols rely on static un-
derlying replication, i.e., the data replica placement
is predetermined. However, static replication of data
resources in dynamic environments with time-varying
workloads is ineffective for cost management.

In contrast, CaDRoP has the following advantageous fea-
tures.

1. CaDRoP is the first protocol to achieve CC+ for all
replying comments (update operations) corresponding
to an object (a post) with a unique key or for different
objects with explicit happens-before relationships in
social applications by a key-values store system. Users
from different replica store can observe the same global
causal ordering of all the text replies to a post.

2. CaDRoP is adapted to (proactive) dynamic data repli-
cation.

3. CaDRoP also integrates CC+ across storage layer repli-
cas and caches to reduce network transmission costs.

We conduct an evaluation of cost-effectiveness of CaDRoP
algorithm via trace-driven CloudSim simulator toolkit and
realistic workload traces from Twitter in terms of the prices
set on Amazon Web Service (AWS) as of 2019. Results show
that the total system cost can be highly reduced by CaDRoP
in a dynamic replication strategy [16] in comparison to the
same protocol without caches. We further evaluate CaDRoP
by comparing it with a clairvoyant optimal replication solu-
tion. The findings indicate that with cache, CaDRoP incurs

only around 6% ∼ 16% extra cost. Without cache, CaDRoP
brings around 2% ∼ 4.5% extra cost in steady states. Further
details, including pseudocode of the CaDRoP algorithm and
more experimental results, are given in [14].
This paper is organized as follows. Section 2 gives the

design model of CaDRoP. Section 3 describes our proposed
approach. Section 4 reports the simulation experiments along
with the cost effectiveness evaluation of CaDRoP.

Section 5 summarizes our work.

2 Definitions and system model
2.1 Causal consistency (CC)
A CC system requires that clients observe the results re-
turned from the data repository servers, consistent with the
causality order. Causality is the happen-before relationship
between two events. The two events must be visible to all
clients in the same order, when they are causally related. In
other words, when users in client A observe that event M1
happens before M2, other users in client B can perceive that
the effects of M1 occurring are visible to M2. Otherwise, a
(potential) causality violation has occurred. When a series of
access operations occur on a single thread, they are serialized
as a local history h. The set of local histories from all threads
form the global history H . For potential causality , if there
are two operations o1 and o2 in OH , we say that o2 causally
depends on o1, denoted as o1 ≺co o2, if and only if one of the
following conditions holds:

1. o1 precedes another local operationo2 in a single thread
of execution (program order).

2. o1 is awrite operation and o2 is a read operation that
returns a value written by o1, even if o1 and o2 are
performed at distinct threads (read-from order).

3. there is some other operation o3 in OH such that o1
≺co o3 and o3 ≺co o2 (transitive closure).

Especially, the causality order defines a strict partial order
on the set of operations OH . For a CC system, all the write
operations that can be related by the potential causality have
to be observed by each thread in the order defined by the
causality order. Note that if there are multiple operations, o1
and o′1, updating the same variable being read by o2 later, o2
is dependent on both o1 and o′1.

2.2 System Design
CaDRoP runs in a distributed key-[values] data store that
manages a set of data objects under an adaptive non-full
replicated store system. Thus, CaDRoP implements a mul-
tiversion data store in social networks. [values] is a list of
values corresponding to an item key. In our system, one post,
such as a picture on Instagram, is viewed as an object item
and is assigned a global unique number as the item key. The
post object is always saved in the head of [values], denoted
as v0. Afterwards, when a comment (e.g., a list of strings) is
posted out under a post, this comment text, denoted asvi (i >

Convergent Causal Consistency for Social Media Posts PaPoC’21, April 26, 2021, Online, United Kingdom

Data
Node
Server

Web Server

DataCenter

DataCenter DataCenter

Client
Program

Data
Node
Server

Web
Server

Data
Node
ServerWeb

Server

Figure 1. The system architecture.

0; i is the index of [values]), will be inserted to [values]. The
value of each update operation is referred to as an immutable
version of the access object. When users request access to
a data object, [values] (i.e., a list of version values) is the
result returned. Each entry in [values] corresponds to one
update operation. In order to track causality, each version
value needs to be associated with some metadata. [values] is
also a causal list. For example, consider two entries vi and
vj in [values] and i < j. Assume that vi and vj are created
by update operations oa and ob , respectively. CaDRoP can
guarantee that ob ⊀co oa .

Note that CaRRoP is aimed at social media networks. Each
write operation corresponds to one text value. When there
are multiple operations writing same value to the same key,
all the duplicate values will be saved (i.e., no overwrite). For
example, there is a landscape image (P1). Under P1, user A
puts a comment - “Beautiful!” (c1) and user B also writes a
comment - “Beautiful!” (c2). When user C reads P1, both c1
and c2 are presented under P1.
Although the potential causality allows to prevent any

causal anomalies, it leads to higher costs to maintain many
dependencies among different posts without any semantic
coherency in social networks. For example, there is a cute dog
photo posted in the morning and a blue sky image uploaded
at noon. Tracking explicit causal order offers a more flexible
solution. Under explicit causality, each application can have
its own happens-before relationships between operations
[4]. Because it tracks only customized relevant dependen-
cies, explicit causality decreases the number of dependencies
per modification and lowers metadata overhead. We have
modeled a hybrid causality based on a column-based model.
Our system maintains two types of columns: 1) key columns:
they are used to store data item keys. 2) value column: each

value column contains a [values] corresponding to a data
item key.

CaDRoP supports the explicit causality in key columns and
implements the potential causality for each value column.
Explicit causality can be captured through application user
interface. For example, user Bob can click @ symbol on
Facebook to post an image content to reply a post done by
user Alice before. Thus the client program can capture the
causal dependency between the two posts, even if they are
realized by different users. Otherwise, the causal relationship
between different object keys will be ignored in CaDRoP.
The whole framework is a hierarchical geo-distributed

cloud store system composed of multiple geographical DCs
(see Fig. 1). All the DCs are fully connected by WANs with
higher network access cost. They are deployed and dispersed
across the world. In each DC , there are multiple web servers,
each of which serves the data access demands from one
geographical region and connects to its own data node server,
which is called the host server of that connected web server.
Data can be replicated asynchronously between different
data servers within the same DC or in different DCs . When a
data server sr stores an object with keyk , sr is called a replica
server of object ok . Otherwise, sr is a non-replica server.
When a DCr includes at least one replica server of object ok ,
DCr is called a replica DC of object ok . Otherwise, DCr is a
non-replica DC . CaDRoP supports partial replication of data.
Each data object is replicated in a subset of DCs .

CaDRoP consists of the client layer and the data store layer.
They communicate with each other through the client library.
The client layer implemented in web servers is responsible
for storing or retrieving information to or from data node
servers and presenting information to the application users.
Note that the client layer has to wait for the correspond-
ing response to the current request before sending the next
access request. The underlying store layer controls the phys-
ical storage in data store servers and the data propagation
between them. CaDRoP provides the following three opera-
tions to the clients: 1) POST(key, object): A POST operation
assigns an object item ok (e.g., a picture or a clip) with an
item key. 2) PUT(key, value): A PUT operation assigns a text
value (string) to an item key. Then, a new version value will
be created. Note that if an object is visible to clients, the
corresponding key always exists, unless the data object of an
item key is removed from the whole system. 3) [values] ←
GET(key): The GET operation returns [values] correspond-
ing to an item key in causality order.

2.3 Convergent conflict handling
CC does not establish a global order for operations in OH .
Therefore, there exist some causally independent operations,
which are characterized as concurrent. Formally, two opera-
tions o1 and o2 in OH are concurrent if o1 ⊀co o2 and o2 ⊀co
o1. Concurrent write operations applied to the same data
object very likely lead to inconsistent data states. Those are

PaPoC’21, April 26, 2021, Online, United Kingdom Ta-Yuan Hsu and Ajay D. Kshemkalyani

Table 1. Definition of symbols and parameters used in the model.
Term Meaning
D The set of datacenters (DCs)
dmc Dependency meta-data depm set at client c
ok An object with a unique key k
cvl ⟨k⟩ A causal version list of data object k (ok)
TS the local Lamport timestamp for update operations
si the data node server i
d An item tuple ⟨ k , v , dm ⟩
Dests A set of replica store servers

said to be in “conf lict”. Essentially, conflicts do not result in
causal violation. However, when different concurrent ver-
sions of a data object are replicated to remote stores, this
potentially leads to divergent undesired results to clients.
Multiple concurrent versions of an object could be present
in the system at the same time. In this work, CaDRoP uses
the timestamp and the local data node identification to order
the list of version values. This can achieve a global consis-
tent state for different data replica nodes. Thus, CaDRoP can
provide causal consistency with the convergence property.

3 Design
CaDRoP is adapted from Opt-Track protocol [15, 25], which
adapts the KS algorithm [7, 17, 18] to a partially replicated
causal distributed shared memory system. In Opt-Track, each
data store site holds a collection of the most recent causal
updates, which happened before under the ≺co relation. Each
record in the collection includes a list of destinations, each
of which consists of one replica site of the corresponding up-
date. Whenever an update operation is initiated, a delivered
multicast update message will piggyback the recently stored
collection records. Once an update message is received and
applied, the piggybacked collection of records is associated
with the corresponding variable. If a later read operation
has access to the update variable, the corresponding asso-
ciated collection of records will be merged into the local
collection of records. Opt-Track aims at reducing the depen-
dency metadata size and storage cost for causal ordering.
Though Opt-Track achieves CC with non-full replication
across geo-distributed servers, it does not support DC-level
partial replication and storage cache. CaDRoP is designed to
achieve CC+ within and across DCs .

3.1 The client layer
The client library maintains for its session a dependency
metadata, denoted asdmc .dmc consists of a set of ⟨rid ,TS ,Dests⟩
tuples, each of which indicates an update operation (POST
or PUT) initiated by data node server rid at clock timeTS in
the causal past. Dests includes replica data node servers for
that update operation. Only necessary replica node informa-
tion is stored. When PUT() or POST() is invoked, the client

POST(img.jpg) PUT(img.c = “ Cute !”)

PUT(img.c = “Great~”)

[rid=1,TS=1] [rid=1,TS=2]

[rid=2,TS=1]

s1

s2

GET(img) <-
cvl:{img.jpg, “Great~”, “Cute !”}

GET(img) <-
cvl:{img.jpg, “Great~”, “Cute !”}

Figure 2. An example with the convergence property.

library retrieves the local dmc and assigns POSTREQ or PU-
TREQ attribute to propagate a new object or a new value
with dmc to its host data node server. The host server is in
charge of distributing requests to other replica node servers,
handling responses from others, and returning feedback to
the client. Although PUT and POST operations are very sim-
ilar in the client layer, their corresponding functions in the
storage layer are different. POST needs to implement CC for
different objects, whereas PUT needs to enforce CC+ for the
comments to an object. When GET() is invoked, the client
library assigns GETREQ attribute to propagate an access
request to its host data node.

3.2 The storage layer
The data storage layer is composed of multiple data node
servers. Each data object can be replicated to one or more
data node servers. As mentioned before, the CaDRoP data
store layer exposes three main functions to the client library:

• ⟨POSTREPLY dmr ⟩ ← ⟨POSTREQ k,ok , dmc ⟩.
• ⟨PUTREPLY dmr ⟩ ← ⟨PUTREQ k , v , dmc ⟩

• ⟨GETREPLY cvl ⟨k⟩⟩ ← ⟨GETREQ k⟩

Note that dm denotes a dependency meatadata set and
dmr indicates a returned dm. For a POSTREQ operation in a
host data node server, it needs to update the local Lamport
timestampTS . When a host node server invokes a POSTREQ,
it will realize two different packages, d and f . d is composed
of four elements – dms , the set of replicas, TS , and ok . f
is a tuple of four elements – dms , the set of replicas, TS ,
and the key id k . d will be propagated to each other replica
server, whereas f will be propagated to each non-replica
server. In CaDRoP, we assume that the host server for the
client initiating a post ok is always a replica of object ok .
d may be inserted to the head of cvl ⟨k⟩. However, some
entries in cvl ⟨k⟩ are concurrent with d . CaDRoP can sort
those concurrent entries by their TS and rid , in ascending
order. Thus, the text values of cvl ⟨k⟩ saved in different data
servers can be present in the same convergent order. As
shown in Figure 2, when two users retrieve the “img.jpg”
from s1 and s2, respectively, they can obtain a consistent cvl
result, {img.jpg, “Great∼”, “Cute!”},in causality order.

Convergent Causal Consistency for Social Media Posts PaPoC’21, April 26, 2021, Online, United Kingdom

3.3 Dynamic Replication Model
Most of the existing CC protocols are based on static repli-
cation models in geo-replicated data stores. In other words,
the numbers of replicas (RF) for a variety of data objects
are predetermined. All replication decisions are made before
the system is operational and replica configuration is in-
variant during operation. However, static replication of data
resources in dynamic environments hosting time-varying
workloads is obviously ineffective for optimizing system
utilization, especially in social network systems. Dynamic
replication strategies have been widely used as means of
increasing the data availability of large-scale cloud store
systems. CORP model, a proactive dynamic data replication
strategy, has been proposed in [16] to effectively improve the
total system cost in a social network system. According to
the current data resource allocation and historical changes in
workload patterns, CORP employs the autoregressive inte-
grated moving average (ARIMA) model to predict data object
access frequency in the near future. In order to optimize sys-
tem cost, we incorporate CORP model as the underlying
replication mechanism into CaDRoP protocol. Based on the
requirement of CORP, a time slot system is required to real-
ize the data migration process in CaDRoP.
CORP strategy runs at the end of each time slot and out-

puts a set of replicas for each data object. Then, the home
server for that object triggers the migration process, based
on the replica placement at the current time slot and that
at the next time slot. It is noted that the regular CORP runs
the ARIMA prediction model by an equal time interval. At
runtime, the prediction is constantly updated. When new
access requests arrive in the current time slot, they are get-
ting involved into the time series and the information in the
oldest time slot is removed from the time series. However,
when a data object is created, there is not sufficient data
in the time series initially (i.e., the training data set is not
enough). Therefore, CaDRoP adopts cache mechanism, based
on a PUSH model, to reduce the network transmission cost,
especially in the initial time slot(s). When a non-replica si
receives a requesting data package with key k by fetching
cvl from another replica server sr , cvl ⟨k⟩ may be cached
in si with a sequence number seq assigned by sr . For object
ok , si becomes a slave server of sr . Afterwards, whenever
sr receives an update value, sr relays the update value to si
with a seq (increasing by one per PUT). Based on the seq,
si can maintain a visible cvl ⟨k⟩ in causality order. When
the migration process initiates, CORP outputs a new set of
replicas of a key k (denoted as k .replicas ′) for the next time
slot th to the home server si . Based on different replica dis-
tributions, si will send the replicas ′ or replicate cvl ⟨k⟩ +
replicas ′ to the other servers within the same DC . Similar
to POST or PUT operations, the migration process utilizes
the relay mechanism to reduce the network transmission
cost across DCs . The home si may just send k .replicas ′ to

DCj in the following three cases: 1) DCj is not a replica DC
in th . 2) DCj was a replica DC or included a cache server
in th−1, and is a replica DC in th (lines 13-18). 3) DCj was
not a replica DC in th−1, but will be a replica DC in th . After
receiving k .replicas ′ or k .replicas + cvl ⟨k⟩ from other DCs ,
it needs to update the replica placement and store cvl ⟨k⟩ (if
received), and then to relay them to other servers within the
same DC .

4 Performance Evaluation
4.1 Experimental Setting
We evaluate the proposed CaDRoP protocol by real traces
of requests to the web servers from Twitter workload and
the CloudSim discrete event simulator[6]. These realistic
traces contain a mixture of temporal and spatial information
for each http request. The number of http requests received
for each of the target data objects (e.g., photo images) is
aggregated in 1000-secs intervals based on the dataset used
in [16]. By implementing our approaches on the Amazon
cloud provider, it allows us to evaluate the cost-effectiveness
of request transaction, data store, and network transmission,
and to explore the impact of workload characteristics. We
also evaluate CaDRoP by a clairvoyant Optimal Placement
(OPT) Solution, proposed in [16], based on the time slot
system and object access patterns known in advance.

4.2 Data Object Workload
Our work focuses on the data store framework on image-
based sharing in social media networks, where applications
have geographically dispersed users who PUT and GET data,
and fit straightforwardly into a key-[values] model. We use
actual Twitter traces as a representation of the real world.
PUT or POST, denoted as Put , to a timeline occurs when
users post a tweet, retweet, or reply messages. We crawl
the real Twitter traces as the evaluation input data. Since
the Twitter traces do not contain information of reading the
tweets (i.e., the records of Gets), we set five different ratios
of Put/Get (Prate : Put rate), where the patterns of Gets on
the workloads follow Longtail distribution model [5]. The
simulation workload contains several Tweet objects. The
volume V of each target tweet in the workload is 2 MB. The
simulation is performed for a period of 20 days. The results
for each object show that they have similar tendency.

The experiment has been performed via simulation using
the CloudSim toolkit [6] to evaluate the proposed system.
CloudSim is a JAVA-based toolkit that contains a discrete
event simulator and classes that allow users to model dis-
tributed cloud environments, from providers and their sys-
tem resources (e.g., physical machines and networking) to
customers and access requests. CloudSim can be easily de-
veloped by extending the classes, with customized changes
to the CloudSim core. We figure out our own classes for
simulation of the proposed framework and model 9 DCs

PaPoC’21, April 26, 2021, Online, United Kingdom Ta-Yuan Hsu and Ajay D. Kshemkalyani

Table 2. Cost improvement rates in different Put rates and RF
values.

Prate 0.05 0.1 0.2 0.5 0.8
RF=9 3.46% 2.87% 5.24% 4.41% 4.16%
RF=5 72.62% 58.88% 55.05% 21.35% 6.74%
RF=2 79.46% 69.49% 56.33% 29.08% 11.95%

in CloudSim simulator. Each DC is composed of 4 pairs of
web servers and data servers. Each data server incorporates
a 50GB storage space and each web server is in charge of
user’s query processing from one (or a few) states in US or
one country in Asia and in Europe. The price of the storage
classes and network services are set in terms of AmazonWeb
Service (AWS) as of 2019.

4.3 Results and Discussion
The performance criteria we use are based on the monetary
cost and the cost improvement rates under varying Prate . RF
is the number of replicaDC , where it is randomly pre-decided
and each replica DC includes one replica data node server.
We vary RF to evaluate the cost effectiveness of our proposed
approach. Furthermore, when RF and the replica placement
for each key are predetermined, CaDRoP is simplified to
‘CaS’ (i.e., the underlying replication strategy is static). Cost
is represented by the total system cost, which is composed of
transaction cost (TC), network transmission cost (NTC), and
storage cost (SC). We use the term ‘transaction’ to denote
data query operations, such as Put or Get . NTC depends
on the size of the packet (e.g., a d packet) transmitted. SC
includes the costs of storing data items (including the dm
data) and the bookkeeping management of data replication
information.

CaS’ Vs. CaS: To evaluate the cost effectiveness of the
cache component, we examine the system performance with
the comparisons between CaS′ (w/o cache) and CaS on cost
improvement rate with respect to different RF, which is de-
fined as:

cost(CaS ′) − cost(CaS)

cost(CaS ′)
(1)

Table 2 shows the cache effectiveness of different RFmodes
for different Put rates increases as RF decreases. As Put rate
decreases, the cost improvement of CaS becomes higher ex-
cept for full DC replication (RF=9).

CaS Vs. CaDRoP: We now evaluate the cost effective-
ness of CaDRoP by comparing it with CaS. By running the
same workloads as before, [TC] in Table 3 presents the TCs
of various RF models in different Put rates. Lowering the
number of transactions to fetch objects from remote data
servers increases throughput in cloud environments, while
an increased number of transactions would lead to an over-
utilization of the underlying systems. Thus, the total TC is
completely subject to the number of transactions. The results

show that CaDRoP can achieve the best performance for TC
under the same cache capacity, although it needs to bring
additional transactions for the migration process. [NTC] in
Table 3 presents the NTC of CaDRoP in comparison with
various RF models in different Put rates. The smaller the
NTC, the lower the network bandwidth consumption. Al-
though NTC of CaDRoP is slightly higher than that of the
full DC replication, it is much lower than others’ NTCs. [SC]
in Table 3 shows the results of SC of CaDRoP in compari-
son with other alternatives. It is noteworthy that the SC of
CaDRoP falls in between the SCs of the replication models
with RF=9 and RF=2. This implies that the proper number of
replicas for CaDRoP is able to decrease TC and NTC. [TSC]
in Table 3 presents the total system costs for CaDRoP and
CaS in different RF values. It illustrates that CaDRoP can
reduce TC and NTC at the slight cost of SC.

Table 3. The price cost comparisons between CaS and CaDRoP
in different Put rates and RF models. ‘SC’ includes two costs: (i)
storing data objects + (ii) storing dm data. Similarly, ‘NTC’ includes
two costs: (i) transmitting data objects + (ii) transmitting dm data.

Price Cost Comparison
[SC] [TC] [NTC] [TSC]

Prate=0.05

CaS + RF=9 0.182 35.29 1.363 36.84
CaS + RF=5 0.106 31.62 23.43 55.16
CaS + RF=2 0.048 18.85 37.63 56.53
CaDRoP 0.102 13.97 2.333 16.4

Prate=0.1

CaS + RF=9 0.180 33.50 1.367 35.05
CaS + RF=5 0.103 29.29 16.61 46.00
CaS + RF=2 0.045 18.04 26.55 44.63
CaDRoP 0.096 13.36 2.163 15.62

Prate=0.2

CaS + RF=9 0.181 28.39 1.387 29.95
CaS + RF=5 0.102 26.84 16.60 43.54
CaS + RF=2 0.044 17.09 22.60 39.73
CaDRoP 0.041 10.93 2.693 13.66

Prate=0.5

CaS + RF=9 0.179 27.71 1.381 29.27
CaS + RF=5 0.102 26.19 12.31 38.59
CaS + RF=2 0.043 16.98 17.53 34.55
CaDRoP 0.062 10.87 2.183 13.11

Prate=0.8

CaS + RF=9 0.181 27.81 1.40 29.39
CaS + RF=5 0.1.02 25.99 11.13 37.22
CaS + RF=2 0.043 16.93 15.57 32.54
CaDRoP 0.057 10.33 2.191 12.58

CaDRoP VS. CaDRoP’ (w/o cache) CaDRoP integrates
cache functionality to improve the system costs. Thus, in
this section we present experiments aimed at evaluating how
the total costs are improved by CaDRoP against CaDRoP′.
Table 4 presents the results of the cost saving ratio (∆savinд)
for different Put rates. ∆savinд is defined as

cost(CaDRoP ′) − cost(CaDRoP)

cost(CaDRoP ′)
(2)

Convergent Causal Consistency for Social Media Posts PaPoC’21, April 26, 2021, Online, United Kingdom

Table 4. ∆savinд : The cost improvement results for different Put
rates show that caching has taken an important step to improve the
total system costs. ∆inc : The performance evaluation of CaDRoP
compared to CaDRoP+OPT. ∆inc ′ : The performance evaluation of
CaDRoP’ compared to CaDRoP’+OPT’ in steady states.

Prate 0.05 0.1 0.2 0.5 0.8
∆savinд 91.95% 85.01% 75.14% 57.84% 49.02%
∆inc 16.08% 13.17% 10.21% 9.02% 6.17%
∆inc ′ 1.72% 2.62% 1.6% 4.51% 3.31%

Since the evaluation data come from the social network, each
individual data object brings a lot of requests in the initial
time slots. It can be observed that the results indicate that
the lower the Prate (Get-intensive), the better the ∆savinд is.

CaDRoP evaluation: In order to evaluate the effective-
ness of CaDRoP, we also implemented the Optimal Place-
ment Solution (OPT) proposed in [16] as the clairvoyant
replication strategy. CORP runs on the underlying replica-
tion layer of CaDRoP. Compared to CORP, OPT knows the
exact temporal and spatial data object access patterns. OPT
can figure out the optimal object placement for each time slot.
CaDRoP+OPT means that the underlying layer of CaDRoP
implements OPT rather than CORP. OPT uses the real object
access (Put andGet) numbers as the inputs in different time
slots. ∆inc is defined as

cost(CaDRoP) − cost(CaDRoP +OPT)

cost(CaDRoP)
(3)

∆inc in Table 4 illustrates the comparisons between CaDRoP
and CaDRoP+OPT. CaDRoP only increases 6% ∼ 16% of total
system cost compared to CaDRoP+OPT.
In order to measure the cost effectiveness of CaDRoP

in steady states (including enough training time slots), we
also compare the cost of CaDRoP′ (w/o cache) to that of
CaDRoP′+OPT′ (w/o cache) in steady states. ∆inc ′ in Table 4
gives the cost increase ratios (∆inc ′) of CORP compared to
OPT for different Put rates. We notice that ∆inc ′ rates are
around 2% ∼ 4.5%. ∆inc ′ is defined as

cost(CaDRoP ′) − cost(CaDRoP ′ +OPT ′)

cost(CaDRoP ′)
(4)

5 Conclusion
We proposed CaDRoP to ensure CC+ between posts and for
the comments under each post in social network systems.
CaDRoP is adapted to a proposed dynamic replication algo-
rithm CORP, which proactively deploys required data repli-
cas in geo-replicated datastores. We presented an evaluation
of the effect of the CaDRoP in terms of cost improvement via
trace-driven CloudSim toolkit and realistic workload traces
from Twitter. Simulations show that, with caching, as the RF
increases, the TSC decreases. CaDRoP is around 55 ∼ 70%

lower than CaS in different predetermined RF models, as
shown in Table 3. In order to further evaluate CaDRoP, we
compared it to an OPT replication solution based on known
temporal and spatial access patterns. CaDRoP increases only
6 ∼ 16% of TSC of CaDRoP+OPT. Without cache, the TSC
of CaDRoP′ is slighly higher than that of CaDRoP′+OPT′ in
a steady state. The simulation results also showed that the
TSC of CaDRoP is usually improved better in lower Prate
(i.e., CaDRoP is cost-effective for most social applications
with Get-intensive workloads).

References
[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro. 2016. Cure: Strong Semantics Meets High Availability and Low
Latency. In 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS). 405–414.

[2] SérgioAlmeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: ACausal+
Consistent Datastore Based on Chain Replication. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). ACM, New York, NY, USA, 85–98.

[3] H. Attiya, F. Ellen, and A. Morrison. 2017. Limitations of Highly-Available
Eventually-Consistent Data Stores. IEEE Transactions on Parallel and Distributed
Systems 28, 1 (2017), 141–155.

[4] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on
Causal Consistency. In Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data (New York, New York, USA) (SIGMOD ’13). ACM,
New York, NY, USA, 761–772.

[5] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. 2010.
Finding aNeedle inHaystack: Facebook’s Photo Storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (Vancouver,
BC, Canada) (OSDI’10). 47–60.

[6] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: A Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource Provisioning Al-
gorithms. Softw. Pract. Exper. 41, 1 (Jan. 2011), 23–50. https://doi.org/10.1002/
spe.995

[7] P. Chandra, P. Gambhire, and A. D. Kshemkalyani. 2004. Performance of the
Optimal Causal Multicast Algorithm: A Statistical Analysis. IEEE Transactions
on Parallel and Distributed Systems 15, 1 (2004), 40–52.

[8] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. 2008. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc. VLDB
Endow. 1, 2 (Aug. 2008), 1277–1288.

[9] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
value Store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205–220.

[11] Diego Didona, Rachid Guerraoui, Jingjing Wang, and Willy Zwaenepoel. 2018.
Causal Consistency and Latency Optimality: Friend or Foe? Proc. VLDB Endow.
11, 11 (July 2018), 1618–1632.

[12] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. 2013. Orbe:
Scalable Causal Consistency Using Dependency Matrices and Physical Clocks.
In Proceedings of the 4th Annual Symposium on Cloud Computing (Santa Clara,
California) (SOCC ’13). ACM, New York, NY, USA, Article 11, 14 pages. https:
//doi.org/10.1145/2523616.2523628

[13] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. Gen-
tleRain: Cheap and Scalable Causal Consistency with Physical Clocks. In Pro-
ceedings of the ACM Symposium on Cloud Computing, Seattle, WA, USA, Novem-
ber 03 - 05, 2014. 4:1–4:13. https://doi.org/10.1145/2670979.2670983

[14] T.Y Hsu and A. D. Kshemkalyani. 2021. CaDRoP: Cost Optimized Convergent
Causal Consistency in Social Network System. In 2021 21th IEEE/ACM Interna-
tional Symposium onCluster, Cloud and Internet Computing (CCGRID). IEEECom-
puter Society, Los Alamitos, CA, USA, 1–10.

https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.995
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2670979.2670983

PaPoC’21, April 26, 2021, Online, United Kingdom Ta-Yuan Hsu and Ajay D. Kshemkalyani

[15] Ta-Yuan Hsu, Ajay D. Kshemkalyani, andMin Shen. 2018. Causal consistency al-
gorithms for partially replicated and fully replicated systems. Future Generation
Computer Systems 86 (2018), 1118 – 1133.

[16] Ta-Yuan Hsu and Ajay D. Kshemkalyani. 2019. A Proactive, Cost-Aware, Op-
timized Data Replication Strategy in Geo-Distributed Cloud Datastores. In Pro-
ceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Com-
puting (Auckland, New Zealand) (UCC’19). Association for Computing Machin-
ery, New York, NY, USA, 143–153.

[17] A. Kshemkalyani and M. Singhal. 1998. Necessary and Sufficient Conditions on
Information for Causal Message Ordering and Their Optimal Implementation.
Distributed Computing 11, 2 (April 1998), 91–111.

[18] Ajay D. Kshemkalyani and Mukesh Singhal. 1996. An Optimal Algorithm for
Generalized Causal Message Ordering. In Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing (Philadelphia, Pennsyl-
vania, USA) (PODC ’96). ACM, New York, NY, USA, 87–.

[19] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40.

[20] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
2011. Don’T Settle for Eventual: Scalable Causal Consistency for Wide-area
Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles (Cascais, Portugal) (SOSP ’11). ACM, New York, NY,
USA, 401–416. https://doi.org/10.1145/2043556.2043593

[21] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
2013. Stronger Semantics for Low-latency Geo-replicated Storage. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation
(Lombard, IL) (nsdi’13). USENIX Association, Berkeley, CA, USA, 313–328.

[22] Tariq Mahmood, Shankaranarayanan PN, Sanjay Rao, T. Vijaykumar, and
Mithuna Thottethodi. 2018. Karma: Cost-effective Geo-replicated Cloud Stor-
age with Dynamic Enforcement of Causal Consistency. IEEE Transactions on

Cloud Computing (06 2018), 1–1.
[23] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bron-

son, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not Causal! Scalable Causal
Consistency with No Slowdown Cascades. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). 453–468.

[24] M. Roohitavaf, M. Demirbas, and S. Kulkarni. 2017. CausalSpartan: Causal Con-
sistency for Distributed Data Stores Using Hybrid Logical Clocks. In 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS). 184–193.

[25] Min Shen, Ajay D. Kshemkalyani, and Ta Yuan Hsu. 2015. Causal Consistency
for Geo-Replicated Cloud Storage under Partial Replication.. In IPDPSWorkshops.
IEEE, 509–518.

[26] K. Spirovska, D. Didona, and W. Zwaenepoel. 2017. Optimistic Causal Consis-
tency for Geo-Replicated Key-Value Stores. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS). 2626–2629.

[27] K. Spirovska, D. Didona, and W. Zwaenepoel. 2019. PaRiS: Causally Consistent
Transactions with Non-blocking Reads and Partial Replication. In IEEE 39th In-
ternational Conference on Distributed Computing Systems (ICDCS). 304–316.

[28] Yu Tang, Hailong Sun, Xu Wang, and Xudong Liu. 2017. Achieving convergent
causal consistency and high availability for cloud storage. Future Generation
Computer Systems 74 (2017), 20 – 31.

[29] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (Jan. 2009),
40–44. https://doi.org/10.1145/1435417.1435432

[30] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Bale-
gas, and Marc Shapiro. 2015. Write Fast, Read in the Past: Causal Consistency
for Client-Side Applications. In Proceedings of the 16th Annual Middleware Con-
ference (BC, Canada) (Middleware ’15). ACM, New York, NY, USA, 75–87.

https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/1435417.1435432

	Abstract
	1 Introduction
	2 Definitions and system model
	2.1 Causal consistency (CC)
	2.2 System Design
	2.3 Convergent conflict handling

	3 Design
	3.1 The client layer
	3.2 The storage layer
	3.3 Dynamic Replication Model

	4 Performance Evaluation
	4.1 Experimental Setting
	4.2 Data Object Workload
	4.3 Results and Discussion

	5 Conclusion
	References

