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Abstract 2 A Two-Phase Algorithm 

In this paper, we propose a correction to the two-phase 
deadlock detection algorithm 121, which was shown to be 
incorrect in [3]. We prove the correctness of the modified 
algorithm using a stable property detection technique that 
observes the system at an absolute time instant. We then 
use the notion of consistent cuts [81 and vector time [7] to 
give a simple one-phase deadlock detection algorithm that 
requires fewer messages and is faster than the one-phase 
algorithm in [2]. 

1 Introduction 

Distributed systems are often prone to deadlocks [4, 91. 
Therefore, detecting distributed deadlocks is an impor- 
tant problem. Several algorithms have been proposed 
for distributed deadlock detection, many of which have 
been shown to be incorrect because their reasoning is not 
based on a consistent wait-for graph (WFG) [4,91. Times- 
tamps play a vital role in identifying different events in a 
distributed system to achieve reasoning about consistent 
global states [l, 73. In this paper, we show how times- 
tamps can be used for simple disrributed deadlock detec- 
tion algorithms. We propose a correction to the two-phase 
deadlock detection algorithm [2], which was shown to be 
incorrect in [31. We prove the correctness of the modi- 
fied algorithm using a stable property detection technique 
that observes the system at an absolute time instant. We 
extend the technique using the notion of virtual time [7] 
to observe the system along a consistent cut [8] to detect 
a stable or an unstable property. The virtual clocks pro- 
posed by Mattem [71 are used to give a simple one-phase 
deadlock detection algorithm that requires fewer messages 
and is faster than the one-phase algorithm in [2]. 

In Section 2, we give a correct two-phase algorithm. In 
Section 3, we present a one-phase algorithm. Section 4 
contains the conclusions. 

In the distributed system model of [2], a process can initi- 
ate several transactions, where a transaction is defined as 
a sequence of request, lock and unlock operations. Each 
transaction in the system has a unique identification. Each 
site maintains a status table for the processes it initiates. 
The status table of a process keeps track of the resources 
the process has locked and resources the process is wait- 
ing for. The two-phase protocol operates as follows: (1) 
Periodically, some control site collects the status tables of 
each site (by broadcasting a request for the status tables 
and waiting until they arrive) and constructs a wait-for 
graph (WFG) of the system from the information received 
(Phase 1). (2) If there is a cycle in the WFG, the control 
site collects the (possibly changed) status tables of each 
site again (Phase 2) and forms a WFG using only those 
transactions reported in phase 1. If the WFG contains the 
same cycle, the control site declares the deadlock. 

It was shown in [3] using a counter-example that the 
above protocol detects false deadlocks. There may ex- 
ist multiple requesvassignment edges involving the same 
transaction and resource, each due to a lock request issued 
at different times. Any two such edges exist over non- 
overlapping intervals of time. The above protocol cannot 
distinguish between two such edges. It wrongly declares 
deadlock when it detects that for each request (assign- 
ment) edge in a cycle in the WFG constructed after phase 
1, there exists some request (assignment) edge involving 
the same resource and transaction in the WFG constructed 
after phase 2. However, a deadlock can be declared only 
if the same request (assignment) edges forming a cycle 
exist in the WFGs formed after phases 1 and 2. 

2.1 Modified Two-Phase Algorithm 

In the proposed mdfication to the two-phase algorithm 
[21, each edge as reported by a status table is identified 
by a triplet (T, R, t )  which for a request edge means that 
transaction T made a request for resource R at time t and 
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Figure 1: A timing diagram for the relationship among i , ,  t :  

and tcommon. 

for an assignment edge means that transaction T received 
a grant reply for resource R at time t .  The time t used 
above is the local clock value of the transaction and is 
operated by Lamport's rules [5] .  Observe that each edge 
can be constructed and destroyed only once. The deadlock 
detection condition in phase 2 of the protocol is changed 
as follows: If the WFG constructed after phase 2 contains 
a cycle composed of edges that are the same as those in the 
cycle detected #er phase I ,  then the control site detects 
a deadlock. 

Theorem 1 The modifred two-phase centralized deadlock 
detection algorithm does not report false deadlocks. 

Proof : In each phase, the control site does not achieve 
any coordination among the views of the status tables at 
various sites that it receives. Let the control site construct 
the WFG for phases 1 and 2 using the statqs tables of site 
i at instants t i  and t i .  respectively. ( t i .  t i  and all other 
times referred to in this p m f  are absolute global times. 
Though these times are not realizable, they are useful in 
constructing the proof.) Phase 2 is initiated,after phase 1 
ends. Hence, for all sites i and j ,  t i  < t j .  Since time 
is over a continuous domain, there exists a time tcommon 

such that for all processes i, t i  < tcOmmOn < t i .  The 
relationship among t i  and ti on each site i, and tcommon 

is depicted in Figure 1. When the control site detects 
a deadlock, it is guaranteed that exactly the same edges 
existing in the cycle detected after phase 1 exist in the 
cycle detected after phase 2. For each transaction at site 
i ,  the edges incident on it at ti existed at t i  and thus at 
tcommon. "%US, a WFG cycle existed at tcommon. Note 
that if all the edges in a cycle exist at the same (absolute) 
time, then t h m  is a deadlock. So no false deadlock is 
reported 0 

Our proof illustrates a technique that can be used for 
stable property detection in two-phase protocols. If an 
auxiliary property holds between the times that each site 
participates in phases 1 and 2 of the protocol, then there 
exists an instant in absolute time at which the auxiliary 
property holds. Developing a two-phase protocol involves 
identifying an auxiliary property such that (a) the auxiliary 
property holds at each site between the times that the site 
participates in phases 1 and 2 and therefore holds at an 
absolute instant teOmmOn at all sites, and (b) if the auxiliary 
property holds at some absolute instant, then it implies the 
stable property the protocol seeks to detect (here a cycle). 

An example of the use of this technique is the four- 
counter two-phase termination detection algorithm [61. 

The auxiliary property used in the moddied algorithm 
is that the same requesthignment edges forming a cy- 
cle exist in the WFGs constructed after phases 1 and 2. 
This auxiliary property meets conditions (a) and (b) listed 
above. Hence, detection of the auxiliary property implies 
that a deadlock exists. The algorithm in [2] uses the auxil- 
iary property that for each request (assignment) edge in the 
WFG cycle constructed after phase 1, there exists some re- 
quest (assignment) edge involving the same resource and 
transaction in the WFG constructed after phase 2. This 
auxiliary property does not meet condition (a). Hence, 
detection of the auxiliary property does not imply that a 
true deadlock exists. 

3 One-Phase Algorithm 

The two-phase algorithm above used a technique to iden- 
tify a stable property in the system by reasoning about the 
system at an absolute time instant tcommon. In general, 
observing a distributed system at an absolute time instant 
is not realizable; rather a global snapshot along a consis- 
tent cut provides a notion of virtual time that is intrinsic to 
a distributed system [l, 7, 81. We give a one-phase algo- 
rithm for deadlock detection that views the system along 
the latest observable consistent cut; the technique used to 
view the system is useful for detecting stable and unstable 
properties. 

In the system model, a process can make requests for 
exclusive access to resources and blocks when it makes 
the requests (the AND request model [4]). Each resource 
is managed by a resource manager. We will use the term 
node to refer to a process as well as a resource manager. 
In a system with n processes, the algorithm requires n 
messages to detect deadlocks. The algorithm has the fol- 
lowing advantages over the one-phase algorithm presented 
in [2]. 

1. Message complexity is halved from 2n to n (although 
the size of the messages increases) because only pro- 
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cesses (not resources) are required to report to the 
control site. 

A deadlock can be detected faster because the control 
site does not have to wait until a dependency between 
a process and a resource is reported by both the pro- 
ces and the resource, as is required by the algorithm 
in [2]. Rather, a deadlock can be detected as soon 
as all involved proceses have reported their incident 
dependencies. 

The algorithm uses an important property of vector 
clocks which are explained next [7]. 

3.1 Vectored Timestamps 
Each node in the system maintains a vector clock whose 
time is the best approximation to the latest state in the 
system [7]. The logical time is defined to be a vector of 
length n, the number of processes. Note that a resource 
manager also has a clock but does not have an entry for 
its resource in the clock vector. The logical time at node 
i is 7;. and the timestamp of a message msg is msg.T. 
(Z[ j]  and msg.Tb], respectively denote j t h  component 
of these time vectors.) The logical time at a node evolves 
as follows: 
(a) When an internal event or a message senureceive oc- 
curs on process i ,  Z[i]  := z[i] + 1. 
(b) When node i receives a message msg, then V j  do 

Thus, j t h  component of time vector at a node reflects 
the highest value of the j t h  component of all timestamped 
messages it has received. Note that only Z[i]  reflects 
the local activities at process i and Ti[j] reflects what 
node i knows about the local timestamp (i.e., activities) of 
process j .  Thus, time vector Z reflects what node i knows 
of the latest state (local time) of all other processes. We 
identify events by referring to their (unique) timestamps. 

An ordering relation ” <I’ between timestamps is de- 

T, < Tj iff the event at Ti happened before [51 the event 
a t ? .  I f %  K T j  and? #T , , t henT ,andT ,ase  
concurrent. 

It is shown in [71 that events T I ,  Tz ,  . . . , Tn lie on a 
consistent cut iff 

z b ]  := m Q z ( Z b ]  ,msg.T[j]). 

fined as fOllOWS: Ti < ? iff ( V k ) ,  Ti[IC] < T j [ k ] .  

where sup(Tl,T2,. . . ,Tn) = T such that (V i ) ,  (T[i] = 
m ~ z ( T l [ i ] ,  . . . , Tn[i])). 

Remark 1 Given events TIPTZ,. . .vTnp 
T = sup(T1 , Tz ,  . . . , Tn) denotes the latest observable 
consistent cut on nodes 1 to n even if T I ,  Tz,  . . . , Tn do 
not lie on a consistent cut. 

3.2 The Algorithm 
Each process maintains a process table which has entries 
(R,  s) where R is the resource it is waiting for/holds, and 
s is its blocked status. s can be either w if the process 
is waiting for the resource or a if the process has been 
assigned the resource. A process i also maintains a local 
variable T-block;. which at any time is defined to have the 
value of the timestamp when i blocked on a request, if i 
is currently blocked. 

The system operations are as follows: 

1. When a process i wants to request resource R: i 
updates its component of its clock, sends a times- 
tamped request to the resource manager of R, and 
enters (R, U ) )  in its process table. T-blocki is as- 
signed the current clock value. 

2. When the resource manager for R receives a request 
from process i: it updates its clock. 
(a) If R is free, it is assigned to i through a times- 
tamped message and a lock is set on R. 
(b) If R is not free, the request is placed in a queue. 

3. When a process i receives a reply assigning it re- 
source R: it updates its clock. The entry (R, w) in 
the process table is changed to (R, Q) and Thlocki 
is assigned the value 0 if i is no longer blocked. 

4. When a process i releases R: it updates its compo- 
nent of its clock, deletes the entry ( R , Q )  from the 
process table, and sends a timestamped message to 
the resource manager of R to unlock the resource. 

5. When the resource manager of R receives a message 
releasing the lock on R: it updates its clock and un- 
locks the resource. (It can now assign the resource to 
some process whose request is pending in the queue.) 

The deadlock detection algorithm run periodically by a 

1. The control site broadcasts a message to all processes 
i to send their timestamps, and if they are blocked, 
the variable T-block, and the process table. The con- 
trol site waits until all replies are received. 

control site operates as follows: 

2. The control site constructs a wait-for-graph (WFG) 
as follows: For each process i that reports itself as 
blocked, it checks if T4lock,[i] 2 Tj[i] for all val- 
ues of j # i. If the above condition is true, then for 
entries (R, w) in i’s proces table, the edge i - R 
is added to the WFG and for entries (R, Q) in i’s pro- 
cess table, the edge R - i is added to the WFG. 

3. The control site declares a deadlock if there is a di- 
rected cycle in the WFG. 
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Remark 2 A blocked process i does not send out any 
message until it unblocks. Therefore, ifprocess i reports 
itselfas blocked and Tblock,[i] < q[i] for some j # i, 
then i’s information that it is blocked is out-dated and in- 
valid with respect to the latest consistent cut T observable 
by the control site. 

The control site constructs a snapshot of the system along 
the latest observable consistent cut T using the timestamps 
of uncoordinated events, one on each process. It checks 
whether the blocked status reported by a process is re- 
flected in T.  If so, the dependency information reported 
by the process is consistent with T and is used in the 
WFG; if not, the information is out-dated and therefore 
discarded. This is the key idea in this algorithm. 

Theorem 2 A system is in a deadlock iff  there is a di- 
rected cycle in the WFG constructed by the above algo- 
rithm. 

ROOF: 
1) The necessary condition: I f  there is a deadlock, there 
is a directed cycle in the WFG constructed. If there is a 
deadlock, no deadlocked process has sent out a message 
in which its component of the timestamp is greater than 
the local clock value at which it deadlocked. Therefore, 
in a WFG constructed, for no process i that deadlocked 
at T-blockj will there exist another process j such that 
q[i] > T-blockj[i]. If the system is deadlocked, all pro- 
cesses i in the deadlock must have reached T-blockj[i] 
in some WFG that observes the system along the latest 
observable consistent cut T. When the WFG constructed 
uses information reported by each process i after T-blocki, 
it will contain a cycle because none of the (R, w) and 
(R, a )  edges of processes in the deadlock are out-dated. 
2) The sacient  condition: I f  the WFG contains a di- 
rected cycle, there is a deadlock. The central site ob- 
serves the system along the latest observable consistent cut 
T. If process i reports itself as blocked at TAlock, and 
T-blocki [i] < Ti [i], j # i ,  then by Remark 2, the infor- 
mation reported by i is out-dated. The WFG is constructed 
using information reported by only those processes that are 
blocked along the latest observable consistent cut. Thus, 
no invalid edges are considered in the WFG. The result 
follows. 0 

4 Conclusions 

we gave a one-phase algorithm to detect deadlocks. The 
algorithm uses half the number of messages uskd by the 
algorithm in [2] and can detect deadlocks faster. The al- 
gorithm can easily be extended to more complex request 
models such as the P-out-of-Q request model [4] and can 
also factor in deadlock resolution because of which dead- 
lock is not a stable property in the system [9]. 
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We have given a correction to the two-phase deadlock de- 
tection algorithm [2] by using timestamps. We prove the 
algorithm correct by reasoning about the system state at an 
absolute time instant. Absolute time is overly restrictive; 
we can instead use virtual time [7] to observe the global 
state of the system along a consistent cut [81. Using this, 
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