
Correct Two-Phase and One-Phase Deadlock Detection
Algor it hms for Distributed Systems

Ajay D. Kshemkalyani and Mukesh Singhal
Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210

Abstract 2 A Two-Phase Algorithm

In this paper, we propose a correction to the two-phase
deadlock detection algorithm 121, which was shown to be
incorrect in [3]. We prove the correctness of the modified
algorithm using a stable property detection technique that
observes the system at an absolute time instant. We then
use the notion of consistent cuts [81 and vector time [7] to
give a simple one-phase deadlock detection algorithm that
requires fewer messages and is faster than the one-phase
algorithm in [2].

1 Introduction

Distributed systems are often prone to deadlocks [4, 91.
Therefore, detecting distributed deadlocks is an impor-
tant problem. Several algorithms have been proposed
for distributed deadlock detection, many of which have
been shown to be incorrect because their reasoning is not
based on a consistent wait-for graph (WFG) [4,91. Times-
tamps play a vital role in identifying different events in a
distributed system to achieve reasoning about consistent
global states [l, 73. In this paper, we show how times-
tamps can be used for simple disrributed deadlock detec-
tion algorithms. We propose a correction to the two-phase
deadlock detection algorithm [2], which was shown to be
incorrect in [31. We prove the correctness of the modi-
fied algorithm using a stable property detection technique
that observes the system at an absolute time instant. We
extend the technique using the notion of virtual time [7]
to observe the system along a consistent cut [8] to detect
a stable or an unstable property. The virtual clocks pro-
posed by Mattem [71 are used to give a simple one-phase
deadlock detection algorithm that requires fewer messages
and is faster than the one-phase algorithm in [2].

In Section 2, we give a correct two-phase algorithm. In
Section 3, we present a one-phase algorithm. Section 4
contains the conclusions.

In the distributed system model of [2], a process can initi-
ate several transactions, where a transaction is defined as
a sequence of request, lock and unlock operations. Each
transaction in the system has a unique identification. Each
site maintains a status table for the processes it initiates.
The status table of a process keeps track of the resources
the process has locked and resources the process is wait-
ing for. The two-phase protocol operates as follows: (1)
Periodically, some control site collects the status tables of
each site (by broadcasting a request for the status tables
and waiting until they arrive) and constructs a wait-for
graph (WFG) of the system from the information received
(Phase 1). (2) If there is a cycle in the WFG, the control
site collects the (possibly changed) status tables of each
site again (Phase 2) and forms a WFG using only those
transactions reported in phase 1. If the WFG contains the
same cycle, the control site declares the deadlock.

It was shown in [3] using a counter-example that the
above protocol detects false deadlocks. There may ex-
ist multiple requesvassignment edges involving the same
transaction and resource, each due to a lock request issued
at different times. Any two such edges exist over non-
overlapping intervals of time. The above protocol cannot
distinguish between two such edges. It wrongly declares
deadlock when it detects that for each request (assign-
ment) edge in a cycle in the WFG constructed after phase
1, there exists some request (assignment) edge involving
the same resource and transaction in the WFG constructed
after phase 2. However, a deadlock can be declared only
if the same request (assignment) edges forming a cycle
exist in the WFGs formed after phases 1 and 2.

2.1 Modified Two-Phase Algorithm

In the proposed mdfication to the two-phase algorithm
[21, each edge as reported by a status table is identified
by a triplet (T, R, t) which for a request edge means that
transaction T made a request for resource R at time t and

126
TH0328-5/90/0000/0126/$01 .OO 0 1990 IEEE

1

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:42:53 UTC from IEEE Xplore. Restrictions apply.

common
t

t l
site 1 w

time
I

Figure 1: A timing diagram for the relationship among i , , t :

and tcommon.

for an assignment edge means that transaction T received
a grant reply for resource R at time t . The time t used
above is the local clock value of the transaction and is
operated by Lamport's rules [5] . Observe that each edge
can be constructed and destroyed only once. The deadlock
detection condition in phase 2 of the protocol is changed
as follows: If the WFG constructed after phase 2 contains
a cycle composed of edges that are the same as those in the
cycle detected #er phase I , then the control site detects
a deadlock.

Theorem 1 The modifred two-phase centralized deadlock
detection algorithm does not report false deadlocks.

Proof : In each phase, the control site does not achieve
any coordination among the views of the status tables at
various sites that it receives. Let the control site construct
the WFG for phases 1 and 2 using the statqs tables of site
i at instants t i and t i . respectively. (t i . t i and all other
times referred to in this p m f are absolute global times.
Though these times are not realizable, they are useful in
constructing the proof.) Phase 2 is initiated,after phase 1
ends. Hence, for all sites i and j , t i < t j . Since time
is over a continuous domain, there exists a time tcommon

such that for all processes i, t i < tcOmmOn < t i . The
relationship among t i and ti on each site i, and tcommon

is depicted in Figure 1. When the control site detects
a deadlock, it is guaranteed that exactly the same edges
existing in the cycle detected after phase 1 exist in the
cycle detected after phase 2. For each transaction at site
i , the edges incident on it at ti existed at t i and thus at
tcommon. "%US, a WFG cycle existed at tcommon. Note
that if all the edges in a cycle exist at the same (absolute)
time, then t h m is a deadlock. So no false deadlock is
reported 0

Our proof illustrates a technique that can be used for
stable property detection in two-phase protocols. If an
auxiliary property holds between the times that each site
participates in phases 1 and 2 of the protocol, then there
exists an instant in absolute time at which the auxiliary
property holds. Developing a two-phase protocol involves
identifying an auxiliary property such that (a) the auxiliary
property holds at each site between the times that the site
participates in phases 1 and 2 and therefore holds at an
absolute instant teOmmOn at all sites, and (b) if the auxiliary
property holds at some absolute instant, then it implies the
stable property the protocol seeks to detect (here a cycle).

An example of the use of this technique is the four-
counter two-phase termination detection algorithm [61.

The auxiliary property used in the moddied algorithm
is that the same requesthignment edges forming a cy-
cle exist in the WFGs constructed after phases 1 and 2.
This auxiliary property meets conditions (a) and (b) listed
above. Hence, detection of the auxiliary property implies
that a deadlock exists. The algorithm in [2] uses the auxil-
iary property that for each request (assignment) edge in the
WFG cycle constructed after phase 1, there exists some re-
quest (assignment) edge involving the same resource and
transaction in the WFG constructed after phase 2. This
auxiliary property does not meet condition (a). Hence,
detection of the auxiliary property does not imply that a
true deadlock exists.

3 One-Phase Algorithm

The two-phase algorithm above used a technique to iden-
tify a stable property in the system by reasoning about the
system at an absolute time instant tcommon. In general,
observing a distributed system at an absolute time instant
is not realizable; rather a global snapshot along a consis-
tent cut provides a notion of virtual time that is intrinsic to
a distributed system [l, 7, 81. We give a one-phase algo-
rithm for deadlock detection that views the system along
the latest observable consistent cut; the technique used to
view the system is useful for detecting stable and unstable
properties.

In the system model, a process can make requests for
exclusive access to resources and blocks when it makes
the requests (the AND request model [4]). Each resource
is managed by a resource manager. We will use the term
node to refer to a process as well as a resource manager.
In a system with n processes, the algorithm requires n
messages to detect deadlocks. The algorithm has the fol-
lowing advantages over the one-phase algorithm presented
in [2].

1. Message complexity is halved from 2n to n (although
the size of the messages increases) because only pro-

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:42:53 UTC from IEEE Xplore. Restrictions apply.

2.

cesses (not resources) are required to report to the
control site.

A deadlock can be detected faster because the control
site does not have to wait until a dependency between
a process and a resource is reported by both the pro-
ces and the resource, as is required by the algorithm
in [2]. Rather, a deadlock can be detected as soon
as all involved proceses have reported their incident
dependencies.

The algorithm uses an important property of vector
clocks which are explained next [7].

3.1 Vectored Timestamps
Each node in the system maintains a vector clock whose
time is the best approximation to the latest state in the
system [7]. The logical time is defined to be a vector of
length n, the number of processes. Note that a resource
manager also has a clock but does not have an entry for
its resource in the clock vector. The logical time at node
i is 7;. and the timestamp of a message msg is msg.T.
(Z[j] and msg.Tb], respectively denote j t h component
of these time vectors.) The logical time at a node evolves
as follows:
(a) When an internal event or a message senureceive oc-
curs on process i , Z[i] := z[i] + 1.
(b) When node i receives a message msg, then V j do

Thus, j t h component of time vector at a node reflects
the highest value of the j t h component of all timestamped
messages it has received. Note that only Z[i] reflects
the local activities at process i and Ti[j] reflects what
node i knows about the local timestamp (i.e., activities) of
process j . Thus, time vector Z reflects what node i knows
of the latest state (local time) of all other processes. We
identify events by referring to their (unique) timestamps.

An ordering relation ” <I’ between timestamps is de-

T, < Tj iff the event at Ti happened before [51 the event
a t ? . I f % K T j and? #T , , t henT ,andT ,ase
concurrent.

It is shown in [71 that events T I , Tz , . . . , Tn lie on a
consistent cut iff

z b] := m Q z (Z b] ,msg.T[j]).

fined as fOllOWS: Ti < ? iff (V k) , Ti[IC] < T j [k] .

where sup(Tl,T2,. . . ,Tn) = T such that (V i) , (T[i] =
m ~ z (T l [i] , . . . , Tn[i])).

Remark 1 Given events TIPTZ,. . .vTnp
T = sup(T1 , Tz , . . . , Tn) denotes the latest observable
consistent cut on nodes 1 to n even if T I , Tz, . . . , Tn do
not lie on a consistent cut.

3.2 The Algorithm
Each process maintains a process table which has entries
(R, s) where R is the resource it is waiting for/holds, and
s is its blocked status. s can be either w if the process
is waiting for the resource or a if the process has been
assigned the resource. A process i also maintains a local
variable T-block;. which at any time is defined to have the
value of the timestamp when i blocked on a request, if i
is currently blocked.

The system operations are as follows:

1. When a process i wants to request resource R: i
updates its component of its clock, sends a times-
tamped request to the resource manager of R, and
enters (R, U)) in its process table. T-blocki is as-
signed the current clock value.

2. When the resource manager for R receives a request
from process i: it updates its clock.
(a) If R is free, it is assigned to i through a times-
tamped message and a lock is set on R.
(b) If R is not free, the request is placed in a queue.

3. When a process i receives a reply assigning it re-
source R: it updates its clock. The entry (R, w) in
the process table is changed to (R, Q) and Thlocki
is assigned the value 0 if i is no longer blocked.

4. When a process i releases R: it updates its compo-
nent of its clock, deletes the entry (R , Q) from the
process table, and sends a timestamped message to
the resource manager of R to unlock the resource.

5. When the resource manager of R receives a message
releasing the lock on R: it updates its clock and un-
locks the resource. (It can now assign the resource to
some process whose request is pending in the queue.)

The deadlock detection algorithm run periodically by a

1. The control site broadcasts a message to all processes
i to send their timestamps, and if they are blocked,
the variable T-block, and the process table. The con-
trol site waits until all replies are received.

control site operates as follows:

2. The control site constructs a wait-for-graph (WFG)
as follows: For each process i that reports itself as
blocked, it checks if T4lock,[i] 2 Tj[i] for all val-
ues of j # i. If the above condition is true, then for
entries (R, w) in i’s proces table, the edge i - R
is added to the WFG and for entries (R, Q) in i’s pro-
cess table, the edge R - i is added to the WFG.

3. The control site declares a deadlock if there is a di-
rected cycle in the WFG.

128

1

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:42:53 UTC from IEEE Xplore. Restrictions apply.

Remark 2 A blocked process i does not send out any
message until it unblocks. Therefore, ifprocess i reports
itselfas blocked and Tblock,[i] < q[i] for some j # i,
then i’s information that it is blocked is out-dated and in-
valid with respect to the latest consistent cut T observable
by the control site.

The control site constructs a snapshot of the system along
the latest observable consistent cut T using the timestamps
of uncoordinated events, one on each process. It checks
whether the blocked status reported by a process is re-
flected in T. If so, the dependency information reported
by the process is consistent with T and is used in the
WFG; if not, the information is out-dated and therefore
discarded. This is the key idea in this algorithm.

Theorem 2 A system is in a deadlock iff there is a di-
rected cycle in the WFG constructed by the above algo-
rithm.

ROOF:
1) The necessary condition: I f there is a deadlock, there
is a directed cycle in the WFG constructed. If there is a
deadlock, no deadlocked process has sent out a message
in which its component of the timestamp is greater than
the local clock value at which it deadlocked. Therefore,
in a WFG constructed, for no process i that deadlocked
at T-blockj will there exist another process j such that
q[i] > T-blockj[i]. If the system is deadlocked, all pro-
cesses i in the deadlock must have reached T-blockj[i]
in some WFG that observes the system along the latest
observable consistent cut T. When the WFG constructed
uses information reported by each process i after T-blocki,
it will contain a cycle because none of the (R, w) and
(R, a) edges of processes in the deadlock are out-dated.
2) The sacient condition: I f the WFG contains a di-
rected cycle, there is a deadlock. The central site ob-
serves the system along the latest observable consistent cut
T. If process i reports itself as blocked at TAlock, and
T-blocki [i] < Ti [i], j # i , then by Remark 2, the infor-
mation reported by i is out-dated. The WFG is constructed
using information reported by only those processes that are
blocked along the latest observable consistent cut. Thus,
no invalid edges are considered in the WFG. The result
follows. 0

4 Conclusions

we gave a one-phase algorithm to detect deadlocks. The
algorithm uses half the number of messages uskd by the
algorithm in [2] and can detect deadlocks faster. The al-
gorithm can easily be extended to more complex request
models such as the P-out-of-Q request model [4] and can
also factor in deadlock resolution because of which dead-
lock is not a stable property in the system [9].

References
K.M. Chandy, L. Lamport, Distributed Snapshots:
Determining Global States of Distributed Systems,
ACM Transactions on Computer Systems, 63-75,3(1),
1985.
G. S . Ho, C. V. Ramamoorthy, Protocols for Dead-
lock Detection in Distributed Database Systems, IEEE
Transactions Software Engineering, 554-557, SE-8(6),
Nov. 1982.
J. R. Jagannathan, R. Vasudevan, Comments on “Pro-
tocols for Deadlock Detection in Distributed Database
Systems”, IEEE Transactions Software Engineering,
371, SE-9(3), May 1983.
E. Knapp, Deadlock Detection in Distributed
Databases, ACM Computing Surveys, 19(4), 303-
328, Dec. 1987.
L. Lamport, Time, Clocks, and the Ordering of Events
in a Distributed System, CACM, 558-565.21(7), July
1978.
E Mattem, Algorithms for Distributed Termination
Detection, Distributed Computing, 2: 161- 175, 1987.

E Mattem, Virtual Time and Global States of Dis-
tributed Systems, Parallel and Distributed Algorithms,
North-Holland, 215-226, 1989.
P, Panengaden, K. Taylor, Concurrent Common
Knowledge: A New Dejinitwn Of Agreement for Asyn-
chronous Systems, pn>ceedings of the 5th ACM Sym-
posium on Principles of Distributed Computing, 197-
209, 1988.
M. Singhal, Deadlock Detection in Distributed Sys-
tems, Computer, 37-48, Nov. 1989.

We have given a correction to the two-phase deadlock de-
tection algorithm [2] by using timestamps. We prove the
algorithm correct by reasoning about the system state at an
absolute time instant. Absolute time is overly restrictive;
we can instead use virtual time [7] to observe the global
state of the system along a consistent cut [81. Using this,

129

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:42:53 UTC from IEEE Xplore. Restrictions apply.

