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Abstract. Causal ordering is an important building block for dis-
tributed software systems. It was recently proved that it is impossible
to provide causal ordering – liveness and strong safety – using a deter-
ministic non-cryptographic algorithm in the presence of even a single
Byzantine process in an asynchronous system for unicast, multicast, and
broadcast modes of communication. Strong safety is critical for real-time
distributed collaborative software such as multiplayer gaming and social
media networks. In this paper, we solve the causal ordering problem
under the strong safety condition in the presence of Byzantine processes
by relaxing the problem specification in two ways. First, we propose a
deterministic algorithm for causal ordering of unicasts in a synchronous
system that also uses threshold cryptography. Second, we propose a
(probabilistic) algorithm based on randomization for causal ordering of
multicasts in an asynchronous system that also uses threshold cryptogra-
phy. These algorithms complement the previous impossibility result for
the asynchronous system.

Keywords: Causal Order · Message Passing · Byzantine
Fault-Tolerance · Distributed Systems · Multicast

1 Introduction

Many distributed applications rely on causal ordering of messages for correct
semantics [2,14,15]. Algorithms for providing causal ordering have been pro-
posed over nearly the last four decades. Causal ordering requires that liveness
(each message sent by a correct process to another correct process is eventually
delivered) and strong safety (if the send event for message m1 happens before
the send event for message m2 and both messages are sent to the same correct
process(es), no correct process delivers m2 before m1) are satisfied.

It was recently proved that it is impossible to provide causal ordering –
liveness and strong safety – (using a deterministic algorithm) in the presence of
even a single Byzantine process in an asynchronous system for unicast, multicast,
and broadcast modes of communication in a system model that does not allow
cryptography [21,22]. In light of this result, algorithms for Byzantine-tolerant
causal ordering under the synchronous system model that satisfy liveness and
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a weaker notion of safety, namely weak safety, wherein there is path from the
send event of m1 to the send event of m2 passing through only correct processes,
were proposed [19,21]. These algorithms were for unicast, multicast, as well as
broadcast modes of communication. For the broadcast mode of communication,
a Byzantine-tolerant causal ordering algorithm for asynchronous systems was
proposed in [1] – this satisfies liveness and weak safety but no strong safety
as shown in [21]. Previously, a probabilistic algorithm based on atomic (total
order) broadcast and cryptography for secure causal atomic broadcast (liveness
and strong safety) in an asynchronous system was proposed [5]. This logic used
acknowledgements and effectively processed the atomic broadcasts serially. More
recently for the client-server configuration, two protocols for crash failures and
a third for Byzantine failure of clients based on cryptography were proposed for
secure causal atomic broadcast [9]. The third made assumptions on latency of
messages, and hence works only in a synchronous system.

Main Contributions: The impossibility result given in [22] showed a reduc-
tion from consensus to causal ordering, and the FLP impossibility result for
consensus [11] implied the impossibility of causal ordering using a determin-
istic algorithm in an asynchronous system. Solving consensus is equivalent to
or mutually reducible to solving the atomic broadcast problem [24], and both
are impossible using deterministic algorithms in an asynchronous system. In this
paper, we overcome the impossibility result of [21,22] mentioned above. We solve
the causal ordering problem in the presence of Byzantine processes by relaxing
the system assumptions in two ways.
1. First, we weaken the asynchrony assumption and propose an algorithm to

solve the causal ordering problem under the strong safety condition for uni-
casts in a synchronous system that also uses threshold cryptography.

2. Second, we propose an algorithm based on atomic broadcast in an asyn-
chronous system having Byzantine processes; the algorithm also uses thresh-
old cryptography. Solving consensus is equivalent to or mutually reducible to
solving the atomic broadcast problem [6,18], and both are impossible using
deterministic algorithms in an asynchronous system. However, atomic broad-
casts, i.e., total order broadcasts, can be solved (in the presence of Byzan-
tine processes) only using probabilistic algorithms in an asynchronous sys-
tem [5,7,12,16]. Our second algorithm for causal ordering uses a source-order
preserving total order broadcast primitive as a lower layer interface. It uses
threshold cryptography similar to the way it is used in [5] for secure causal
atomic broadcast but does not use acknowledgements and is not constrained
to process the atomic broadcasts serially, thus there is no concurrency inhi-
bition. Our algorithm is presented for the multicast mode of communication
and we show how it can be modified to unicast and broadcast modes which
are special cases of multicast mode.

Our algorithms complement the previous impossibility result for the asyn-
chronous system. The main contribution of this paper is to develop efficient
causal ordering algorithms that provide strong safety in the presence of Byzan-
tine processes. These algorithms bypass the impossibility result proved in [21,22],
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which states that it is impossible to provide Byzantine-tolerant strong safety in
the absence of cryptographic protocols. This is a critical result from the perspec-
tive of real-world distributed applications because weak safety cannot guarantee
correct functioning of applications. For example, in a multiplayer online gaming
scenario utilizing a weak safety protocol for causal ordering, Byzantine play-
ers can order their events ahead of correct players’ events despite having causal
dependencies on the correct players’ events leading to unfair advantages in game-
play. However, by using a strong safety causal ordering algorithm, the gaming
application can ensure fair gameplay. Similar situations can arise in social media
networks (message ordering presented to users in a single message thread), col-
laborative group editing of documents (updates to documents need to ensure
causality across updates regardless of whether the update comes from a cor-
rect/Byzantine user) among other distributed applications.

Outline: Section 2 gives the system model. Section 3 reviews some basic
cryptography used in our algorithms. Section 4 reviews the specifications of
Byzantine-tolerant reliable multicast/broadcast and Byzantine-tolerant atomic
broadcast. Section 5 gives the algorithm for Byzantine-tolerant causal order of
unicasts in a synchronous system. Section 6 gives the algorithm for Byzantine-
tolerant causal order of multicasts in an asynchronous system. Section 7 con-
cludes.

2 System Model

This paper deals with a distributed system having Byzantine processes which
are processes that can misbehave [17,23]. A correct process behaves exactly as
specified by the algorithm whereas a Byzantine process may exhibit arbitrary
behaviour including crashing at any point during the execution. A Byzantine
process cannot impersonate another process or spawn new processes.

The distributed system is modelled as an undirected graph G = (P,H).
Here P is the set of processes communicating asynchronously in the distributed
system. Let n be |P |. H is the set of FIFO logical communication links over
which processes communicate by message passing. G is a complete graph.

The system is first assumed to be synchronous, i.e., there is a known fixed
upper bound δ on the message latency, and a known fixed upper bound ψ on the
relative speeds of processors [10]. We provide a deterministic causal ordering uni-
cast algorithm for this system model. Next, we assume an asynchronous system,
i.e., there is no upper bound δ on the message latency, nor any upper bound ψ
on the relative speeds of processors [10]. We provide a non-deterministic causal
ordering multicast algorithm for this system model.

Definition 1. The happens before relation → on messages consists of the fol-
lowing rules:

1. The set of messages delivered from any pi ∈ P by a process is totally ordered
by →.

2. If pi sent or delivered message m before sending message m′, then m → m′.
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3. If m → m′ and m′ → m′′, then m → m′′.

Let R denote the set of messages in the execution.

Definition 2. The causal past of message m is denoted as CP (m) and defined
as the set of messages in R that causally precede message m under →.

The correctness of Byzantine causal order unicast/multicast/broadcast is
specified on (R,→) for strong safety.

Definition 3. A causal ordering algorithm for unicast/multicast/broadcast mes-
sages must ensure the following:

1. Strong Safety: ∀m′ ∈ CP (m) such that m′ and m are sent to the same
(correct) process(es), no correct process delivers m before m′.

2. Liveness: Each message sent by a correct process to another correct process
will be eventually delivered.

3 Some Cryptographic Basics

We utilize non-interactive threshold cryptography as a means to guarantee strong
safety [25]. Threshold cryptography consists of an initialization function to gener-
ate keys, message encryption, sharing decrypted shares of the message and finally
combining the decrypted shares to obtain the original message from ciphertext.
The following functions are used in a threshold cryptographic scheme:

Definition 4. The dealer executes the generate() function to obtain the public
key PK, Verification key V K and the private keys SK1, SK2, ... , SKn.

The dealer shares private key SKi with each process pi while PK and V K
are publicly available.

Definition 5. When process pi wants to send a message m to pj, it executes
E(PK,m,L) to obtain Cm. Here Cm is the ciphertext corresponding to m, E is
the encryption algorithm and L is a label to identify m. pi then broadcasts Cm

to the system of processes.

Definition 6. When process pl receives ciphertext Cm, it executes D(SKl, Cm)
to obtain σm

l where D is the decryption share generation algorithm and σm
l is

pl’s decryption share for message m.

When process pj receives a cipher message Cm intended for it, it has to wait
for k decryption shares to arrive from the system to obtain m. The value of k
depends on the security properties of the system. It derives the message from
the ciphertext as follows:

Definition 7. When process pj wants to generate the original message m from
ciphertext Cm, it executes C(V K,Cm, S) where S is a set of k decryption shares
for m and C is the combining algorithm for the k decryption shares that gives m.
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The following function V is used to verify the authenticity of a decryption
share:

Definition 8. When a decryption share σ is received for message m, the Share
Verification Algorithm is used to ascertain whether σ is authentic:
V (V K,Cm, σ) = 1 if σ is authentic, V (V K,Cm, σ) = 0 if σ is not authentic.

4 Reliable Broadcast and Atomic (Total Order)
Broadcast Properties

The multicast algorithm for asynchronous systems that we propose assumes
access to a BA_broadcast primitive that provides Byzantine-tolerant total order
and delivers a broadcast message via BA_deliver.

Definition 9. Byzantine-tolerant atomic (total order) broadcast provides the
following guarantees [7,8,12,13,16,24]:

1. (BAB-Validity:) If a correct process BA_delivers a message m from sender-
(m), then sender(m) must have BA_broadcast m.

2. (BAB-Termination-1:) If a correct process BA_broadcasts a message m, then
it eventually BA_delivers m.

3. (BAB-Agreement or BAB-Termination-2:) If a correct process BA_delivers a
message m from a possibly faulty process, then all correct processes eventually
BA_deliver m.

4. (BAB-Integrity:) For any message m, every correct process BA_delivers m at
most once.

5. (BAB-Total-Order:) If correct processes pi and pj both BA_deliver messages
m and m′, then pi BA_delivers m before m′ if and only if pj BA_delivers m
before m′.

This total order primitive also provides source-FIFO order [13], i.e., if a
process BA_broadcasts m before m′, then m is BA_delivered before m′ at all
correct processes. As it is impossible to provide Byzantine-tolerant total order
using a deterministic algorithm in an asynchronous system due to its equivalence
to consensus [5,24], we use a probabilistic algorithm such as in [5,7,12,16].

Byzantine Reliable Broadcast (BRB) [3,4] is invoked via BR_broadcast and
delivered via BR_deliver. It is defined similar to Definition 9 minus BAB-Total-
Order.

We propose a causal order multicast algorithm for asynchronous systems. In
a multicast, a message is sent to a subset of processes forming a process group.
Different multicast send events can send to different process groups. Byzantine-
tolerant causal multicast is invoked as BC_multicast(m,G), where G is the mul-
ticast group, and delivers a message through BC_deliver(m). Based on the relia-
bility properties proposed in the literature for Byzantine Reliable Broadcast [3,4]
and Byzantine Causal Broadcast [1], we define Byzantine Causal Multicast as
follows.
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Definition 10. Byzantine Causal Multicast satisfies the following properties:

1. (BCM-Validity:) If a correct process pi BC_delivers message m from send-
er(m) to group G, then sender(m) must have BC_multicast m to G and
pi ∈ G.

2. (BCM-Termination-1:) If a correct process BC_multicasts a message m to G,
then some correct process in G eventually BC_delivers m.

3. (BCM-Agreement or BCM-Termination-2:) If a correct process in G
BC_delivers a message m from a possibly faulty process, then all correct pro-
cesses in G will eventually deliver m.

4. (BCM-Integrity:) For any message m, every correct process in G BC_delivers
m at most once.

5. (BCM-Causal-Order:) If m → m′, m is sent to G, m′ is sent to G′, then no
correct process in G ∩ G′ BC_delivers m′ before m.

BCM-Causal-Order is the Strong Safety property of Definition 3 whereas
BCM-Termination-1 and BCM-Agreement imply the liveness property of Defi-
nition 3.

Definition 11. A Byzantine-tolerant causal multicast algorithm must sat-
isfy BCM-Validity, BCM-Termination-1, BCM-Agreement, BCM-Integrity, and
BCM-Causal-Order.

5 Causal Order Unicast in a Synchronous System

In Algorithm 1 we present a causal ordering algorithm guaranteeing strong safety
and liveness in the presence of t Byzantine processes for synchronous systems.
Algorithm 1 is inherently asynchronous, because it does not assume the expensive
and binding notion of rounds. Algorithm 1 requires that key generation and
distribution has been accomplished by a trusted dealer prior to start of execution.
Therefore, all processes have access to global PK (public key), V K (verification
key) and have a local SKi (secret key). Algorithm 1 assumes that the network
provides an upper bound δ on the message transmission time. Algorithm 1 has
to prevent Byzantine processes from implementing the following actions:

1. Reading the contents of an incoming message prior to delivering it and sending
an outgoing message based on the contents of the undelivered message with
the intention of causing a strong safety violation.

2. Sending a message to a correct process with the intention of preventing further
messages getting delivered at that process, causing a liveness attack.

When pi wants to unicast a message m to pj , it encrypts m with PK and
broadcasts the ciphertext Cm along with pj ’s id (j) and a globally unique message
id idm to the system. pj requires (t+1) unique decryption shares from processes
in the system to obtain m from Cm. Upon receiving a ciphertext Cm, all processes
compute their respective decryption shares σm

x . Upon receiving Cm, pj inserts
Cm into its FIFO delivery queue and broadcasts a request for decryption shares.
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If the required number of decryption shares do not arrive within (3δ + 1) time
units, pj will delete Cm from its delivery queue preventing liveness attacks by
Byzantine processes. This will be formally proved in Theorem 1.

When a process pk receives pj ’s request for its decryption share for m, it
first checks to make sure that pj is indeed the recipient of m. If that is the
case, pk waits for (δ + 1) time units and sends σm

k to pj . Once pj receives the
required number of decryption shares, it decrypts Cm and replaces it with m in
its delivery queue. When Cm is both decrypted and m is at the head of the queue,
it gets delivered when the application is ready to process the next message. The
intuitive reasoning for preservation of strong safety by Algorithm 1 is as follows:
Since correct processes wait for (δ+1) time units before sending their decryption
shares, a Byzantine process pk can read a message m at least (δ + 1) time units
after receiving Cm. Hence, any message m′ such that m → m′ that pk sends to
process pl will arrive at pl at least 1 time unit after any m′′ sent to pl, where
m′′ → m → m′. Hence m′ will be after m′′ in the delivery queue at pl. This
is formally proved in Theorem 2. Algorithm 1 can tolerate upto t Byzantine
failures, where the total number of processes, n > 2t.

Each message m has a globally unique identifier idm assigned by the sender.
In the Algorithm 1 pseudo-code, technically Cm, σm

i , S should be Cidm
, σidm

i ,
Sidm

respectively; however to simplify the presentation, we use the first version
while keeping in mind that the data structure is to be associated with a particular
idm.

Theorem 1. All messages sent by a correct process to another correct process
via unicast following Algorithm 1 will eventually be delivered even in the presence
of Byzantine processes.

Proof. Consider message m sent by pi to pj . pi executes broadcast(Cm, j, idm)
at line 3, ensuring that all processes receive Cm and compute their respective
decryption shares at line 5. Once pj receives Cm, it pushes Cm into a FIFO
queue, starts a timer of (3δ + 1) time units at lines 6–8. pj then broadcasts a
request for decryption shares to all processes at line 9. The maximum latency
for an individual response to this request is the sum of (i) the maximum of the
maximum time it takes for the request sent at line 9 to arrive (δ) at a receiver
and the maximum time it takes for the broadcast of line 3 to reach the receiver
(δ), (ii) the waiting time at the receiver of this request (δ + 1), and (iii) the
maximum latency of the response to pj (δ). Therefore, pj will receive decryption
share σm

x from each correct process px within max(δ, δ) + (δ + 1) + δ = (3δ + 1)
time units. Since there are at least (t + 1) correct processes, pj is guaranteed
to receive the required (t + 1) decryption shares in line 16 before message m
times out (lines 20–22). Therefore, Cm is guaranteed to be decrypted and m is
guaranteed to be present in Q (lines 16–19).

A ciphertext Cm′ present ahead of m in Q at pj is one of the following:

1. Cm′ was sent by a Byzantine process pl. In this case, the required number of
decryption shares for Cm′ in lines 16–20 may not arrive within (3δ + 1) time
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Algorithm 1: Secure Causal Unicast in a Synchronous System
Data: Each process has access to PK (global public key) and V K (global

verification key) as well as a local secret key SKi. Each process
maintains a FIFO queue Q for incoming application messages.

1 when pi needs to send application message m to pj :
2 Cm = E(PK, m, idm)
3 broadcast(Cm, j, idm)

4 when 〈Cm, recipient, idm〉 arrives at pi:
5 σm

i = D(SKi, Cm)
6 if recipient = i then
7 Q.push(Cm)
8 start timer set to 3δ + 1 for message m
9 broadcast(request, idm) to ∀px

10 when pi receives 〈request, idm〉 from pj

11 if Cm has not arrived at pi then
12 wait for min(δ time units, arrival of Cm) in a non-blocking manner

13 if Cm has arrived ∧ pj is the recipient of message m then
14 wait for (δ + 1) time units in a non-blocking manner
15 send(σm

i ) to pj

16 when pi receives (t + 1) valid 〈σm
x 〉 messages:

17 Store (t + 1) decryption shares in set S
18 m = C(V K, Cm, S)
19 replace Cm in Q with m

20 when any Cm times out in Q:
21 if less than (t+1) valid decryption shares corresponding to m have arrived then
22 Q.delete(Cm)

23 when the application is ready to process a message at pi:
24 if Q.head() is decrypted then
25 m = Q.pop()
26 deliver m

units since starting the timer for Cm′ . In this case Cm′ will be deleted from
the queue in lines 20–22, thus ensuring progress.

2. Cm′ was sent by a correct process pk. Therefore, within (3δ + 1) time units
since its insertion in Q at pj , Cm′ will be decrypted and m′ will be present in
Q ready to be delivered as pk and correct processes will follow the protocol.

Combining points 1 and 2, m is guaranteed to reach the head of Q and eventually
be delivered in lines 23–26. ��
Corollary 1. Algorithm 1 guarantees liveness.
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Theorem 2. If m1 → m2 and both messages are sent to the same correct des-
tination process, then Algorithm 1 guarantees that m2 is not delivered before
m1.

Proof. Consider messages m1 and m2 sent to a correct process pk where m1 →
m2. In order for pk to ensure causal delivery of m1 with respect to m2 (lines
23–26), Cm1 must be enqueued in Q before Cm2 in lines 4–9. One of the following
scenarios must hold:

1. The same process pi sent both m1 and m2. Due to FIFO channels, Cm1 will
arrive before Cm2 at pk and as a result, get enqueued in Q before Cm2 .

2. pi sent m1 and pj sent m2. As m1 → m2, there must be at least one message
hop along the message chain from the sending of m1 to the sending of m2. Let
the last message along this message chain, which was delivered to pj , be m∗.
A lower bound on the duration between the sending of m1 and the sending of
m2 is (δ + 1). This is because Cm∗ must have resided in the Q at pj at least
for (δ+1) time units, the duration that pj ’s request is delayed by the correct
processes before they send pj their decryption shares for Cm∗ , before Cm∗ is
decrypted and delivered to pj .
As m2 is sent at least (δ + 1) time units after m1 is sent to the common
destination pk, even if Cm1 takes the full δ time units to reach pk and Cm2

takes 0 time units to reach pk, Cm1 will be queued ahead of Cm2 in Q at pk.

As Cm1 is enqueued ahead of Cm2 in Q at pk, causal delivery of m1 with respect
to m2 is guaranteed. ��
Corollary 2. Algorithm 1 guarantees strong safety.

Corollary 3. Algorithm 1 satisfies Definition 3 for causal order unicasting.

Note that the broadcasts in lines 3 and 9 can be replaced by a multicast to a
group of size k as long as the upper bound on the number of Byzantine processes
in the group satisfies k ≥ 2t + 1.

Algorithm 1 for unicasts can be adapted for multicast to groups, each group
being identified by Gidm

, with straightforward modifications (such as replac-
ing j by Gidm

in line 3 and replacing “recipient = i” by “i ∈ Gidm
” in line

6). This adaptation guarantees liveness and strong safety but does not provide
the reliability properties (BCM-Validity, BCM-Termination-1, BCM-Agreement,
BCM-Integrity). To satisfy these, one could replace the regular broadcast in line
3 by a Byzantine Reliable Broadcast primitive BR_broadcast. However, two mes-
sages sent by a process via BR_broadcast are not guaranteed to be delivered in
the order they were sent (thus even FIFO order is not guaranteed) [20] or in
a total order. Hence, we need to use a different approach for providing reliable
causal multicast. A different approach that invokes FIFO-total order broadcast
via BA_broadcast, for asynchronous systems in given in Sect. 6. This algorithm
in Sect. 6 is a probabilistic algorithm because its BA_broadcast cannot be imple-
mented in an asynchronous system deterministically.
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6 Causal Order Multicast for an Asynchronous System

In Algorithm 2 we present a causal ordering algorithm guaranteeing strong
safety and liveness in the presence of Byzantine processes for asynchronous sys-
tems. Algorithm 2 is a non-deterministic algorithm, complementing the result
in [21,22]. Similar to Algorithm 1, Algorithm 2 requires that key generation and
distribution has been accomplished by a trusted dealer prior to start of execution.
Therefore, all processes have access to global PK (public key), V K (verification
key) and have a local SKi (secret key). In addition to this, all multicast groups
share a unique symmetric key for encryption and decryption of messages intended
for them. Algorithm 2 double encrypts each message, first with the group key
(KG) and then with the system key (PK) and invokes a source-order preserv-
ing atomic broadcast on the resulting ciphertext. Upon receiving the ciphertext,
all processes compute their respective decryption shares and the recipients of
the multicast message enqueue the ciphertext in their respective FIFO delivery
queues and broadcast a request to the system for decryption shares. Upon receiv-
ing the required number of valid and unique decryption shares, the ciphertext
is decrypted to obtain the ciphertext encrypted with the group key. When this
ciphertext reaches the head of the delivery queue it is decrypted with the group
key to obtain the original message and delivered to the application. The number
of Byzantine failures that Algorithm 2 can tolerate is dependent on the tolerance
of the atomic broadcast primitive used. The requirement for atomic broadcast
is typically n > 3t.

Each message m has a globally unique identifier idm assigned by the sender.
In the Algorithm 2 pseudo-code, technically Cm, C ′

m, σm
i , S should be Cidm

,C ′
idm

,
σidm
i , Sidm

respectively; however to simplify the presentation, we use the first
version while keeping in mind that the data structure is to be associated with a
particular idm.

Lemma 1. (Process Order:) If a process BA_broadcasts m1 before it BA_-
broadcasts m2, i.e., m1 → m2, and if some correct process is BA_delivered m1

and m2, then all correct processes are BA_delivered m1 before m2.

Proof. Follows from the source-FIFO ordering property of BA_broadcast. ��
Lemma 2. (Message Order:) If a (correct or Byzantine) process BA_broad-
casts message m2 after it BA_delivers, decrypts, and dequeues m1, i.e., m1 →
m2, then no correct process BA_delivers m2 before it BA_delivers m1.

Proof. When a process px BA_delivers, decrypts, and dequeues m1, it must
have received a decryption share σm1

x from at least one correct process pc which
implies that at least one correct process pc must have already BA_delivered m1.
By BAB-Agreement, all correct processes BA_deliver m1. The correct process pc
will necessarily never have BA_delivered m2 before it has BA_delivered m1. From
the BAB-Agreement property, if m2 is BA_delivered to any correct process, it
will necessarily be BA_delivered to all correct processes including pc. At pc, m2

will be BA_delivered after m1. Therefore by the BAB-Total-Ordering property,
m2 will be BA_delivered after m1 at all correct processes. ��



Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 121

Algorithm 2: Asynchronous Secure Causal Multicast
Data: Each process has access to PK (global public key) and V K (global

verification key) as well as a local secret key SKi. Each process
maintains a FIFO queue Q for incoming application messages. All
processes in a multicast group G locally store the group key KG.

1 when pi has to send m to Gidm via BC_multicast(m, Gidm):

2 C
′
m = Enc(KGidm

, m)

3 Cm = E(PK, C
′
m, idm)

4 BA_broadcast(Cm, Gidm , idm)

5 when 〈Cm, Gidm , idm〉 arrives at pi via BA_deliver():
6 σm

i = D(SKi, Cm)
7 if pi ∈ Gidm then
8 Q.push(Cm)
9 broadcast(request, idm) to ∀px

10 when pi receives 〈request, idm〉 from pj :
11 while Cm has not arrived at pi do
12 wait in a non-blocking manner

13 if pj ∈ Gidm then
14 send(σm

i ) to pj

15 when pi receives (t + 1) valid 〈σm
x 〉 messages:

16 Store (t + 1) decryption shares in set S

17 C
′
m = C(V K, Cm, S)

18 replace Cm in Q with C
′
m

19 when the application is ready to process a message at pi:
20 if Q.head() has been decrypted using decryption shares then
21 C

′
m = Q.pop()

22 m = Dec(KGidm
, C

′
m) using group key KGidm

23 BC_deliver(m)

Theorem 3. Algorithm 2 guarantees BCM-Validity, BCM-Termination-1,
BCM-Agreement, BCM-Integrity and BCM-Causal-Order in the presence of
Byzantine processes.

Proof. 1. (BCM-Validity:) An incoming message m at a correct process pi sent
to group Gidm

is enqueued, double-decrypted, dequeued and BC_delivered
only if (i) pi belongs to Gidm

, and (ii) the (double-encrypted) message was
BA_delivered. This follows from the pseudo-code. As m was BA_delivered,
by BAB-Validity, it must also have been BA_broadcast by sender(m) with
parameter Gidm

. Therefore, a message m can be BC_delivered at pi only if it
is BC_multicasted in lines 1–4 by sender(m) to Gidm

via BA_broadcast after
double-encryption and pi ∈ Gidm

.



122 A. Misra et al.

2. (BCM-Termination-1:) Consider message m BC_multicast by a correct pro-
cess pi to group Gidm

. pi executes BA_broadcast(Cm, Gidm
, idm) at line 4,

ensuring via its properties of BAB-Termination-1 and BAB-Agreement that
all correct processes receive Cm via BA_deliver and compute their respective
decryption shares at lines 5–6. Once pj ∈ Gidm

receives Cm via BA_deliver,
it pushes Cm into a FIFO queue at lines 5–9. pj then broadcasts a request for
decryption shares to all processes at line 9. pj will receive decryption share
σm
x from each correct process px eventually, once px has also BA_delivered

Cm and computed its decryption share. Since there are (2t + 1) correct pro-
cesses, pj is guaranteed to receive the required (t + 1) decryption shares in
line 15. Therefore, Cm is guaranteed to be decrypted and C ′

m is guaranteed
to be present in Q (lines 15–18). The encryption of m using the group key
KGidm

in line 2 and its corresponding decryption in line 22 ensures that only
members of group Gidm

can access the content of C ′
m.

A ciphertext Cm′ present ahead of C ′
m in Q at pj may have been sent

via BA_broadcast by a Byzantine process or by a correct process. Irrespec-
tive of this, as Cm′ has been BA_delivered to (correct) process pj , by the
BAB-Agreement property of BA_broadcast it (Cm′) would also have been
BA_delivered to all at least 2t+1 correct processes px which would compute
their decryption share σm′

x in line 6 and reply to pj ’s request broadcast in line
9 with the decryption share σm′

x in line 14. Thus pj is guaranteed to get (t+1)
decryption shares and decrypt Cm′ to C ′

m′ which can then get popped from
Q after its double-decryption using its group key KGid

m′ . This allows C ′
m to

be at head(Q) and get processed when popped (lines 19 to 23). Therefore,
any message enqueued in the delivery queue will eventually reach the head of
the queue. This means m is guaranteed to reach the head of Q and eventually
be BC_delivered in lines 19–23 ensuring BCM-Termination-1.

3. (BCM-Agreement:) If a correct process pi ∈ Gidm
BC_delivers a message m,

it means that Cm was BA_delivered in lines 5–9. By the BAB-Agreement
property of BA_broadcast, this means that all correct processes in the sys-
tem BA_deliver Cm, compute their respective decryption shares and push
Cm in their respective delivery queues if they are part of Gidm

. Therefore,
if there exists another correct process pj ∈ Gidm

, it will receive Cm via
BA_delivery and insert Cm in its delivery queue. From the reasoning for BCM-
Termination-1 given in the above item, we know that any message enqueued
in the delivery queue eventually reaches the head of the queue. Therefore,
Cm will eventually reach the head of the queue. Additionally, between lines
10–18, pj will receive (t+1) decryption shares required to decrypt Cm in the
queue since there are (2t + 1) correct processes in the system. Therefore, m
is guaranteed to be BC_delivered at pi and any correct pj in Gidm

in lines
19–23, thereby guaranteeing BCM-Agreement.

4. (BCM-Integrity:) By the BAB-Integrity property of BA_broadcast a message
is BA_delivered at most once at a correct process. Therefore any incoming
message will be enqueued (lines 5–9) and dequeued from the delivery queue
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(lines 19–23) at most once at a correct process. Hence, any given message m
will be BC_delivered at most once at a correct process.

5. (BCM-Causal-Order:) Consider multicast messages m and m′ sent by px
and py to groups containing a correct process pk, where m → m′. Then
there must exist a message chain 〈m0,m1,m2, . . . mz−1,mz = m′〉 such
that (i) m0 was sent (via BA_broadcast) by pi0 = px after it sent m
(via BA_broadcast), (ii) ma−1 for a ∈ [1, z] was BA_delivered, decrypted,
and dequeued (BC_delivered) by pia before pia sent ma (by executing
BA_broadcast), and (iii) piz = py.
Let pk BA_deliver m and m′. Further, all correct processes BA_deliver ma−1

and ma, for a ∈ [1, z]. By Lemma 1 (Process Order), m → m0 and all cor-
rect processes will BA_deliver m0 after m. By Lemma 2 (Message Order),
mb−1 → mb, for b ∈ [1, z], hence all correct processes will BA_deliver mb−1

before mb. Hence by transitivity, it follows that all correct processes will
BA_deliver m before mz = m′. As pk is a common member of multicast
groups addressed by m and m′, it will enqueue m, i.e., Cm, before m′, i.e.,
Cm′ in Q. This ensures that m will be dequeued and delivered before m′, thus
satisfying BCM-Causal-Order.

��
Corollary 4. Algorithm 2 guarantees Byzantine-tolerant causal order multicast
as per Definition 11.

Since Algorithm 2 guarantees BCM-Termination-1 and BCM-Agreement, it
implicitly guarantees liveness. Algorithm 2 explicitly guarantees Strong Safety
because it guarantees BCM-Causal-Order.

Corollary 5. Algorithm 2 satisfies Definition 3 for causal order multicasting.

6.1 Adaptations to Special Cases

Asynchronous System, Unicast: The encryption in line 2 and corresponding
decryption in line 22 are done using the symmetric key Kij when pi is sending to
pj . In line 4, the second parameter of BA_broadcast is j and in line 5, the second
parameter of the delivered message is recipient. Line 7 tests if pi = recipient.
Line 13 tests if pj is the recipient of message m.

Asynchronous System, Broadcast: Lines 2 and 22 can be deleted as the
group contains all processes and there is no need to encrypt with the group key.

Synchronous System; Multicast, Unicast, and Broadcast: Algorithm 2
directly applies to a multicast in a synchronous system. The difference is that the
BA_broadcast which is necessarily a probabilistic algorithm in the asynchronous
system now becomes a deterministic algorithm. The special cases of unicast and
broadcast in an asynchronous system likewise work in a synchronous system with
the probabilistic BA_broadcast now becoming a deterministic BA_broadcast.
Due to the high message complexity and latency of this version of unicast in a
synchronous system, Algorithm 1 is more efficient for unicast.
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7 Discussion

We conjecture that it is impossible to provide strong safety in Byzantine-
tolerant causal order for multicasts, (unicasts, or broadcasts) in synchronous
systems without using cryptographic techniques, complementing the impossi-
bility result [21,22] for asynchronous systems. This is because in isolation, a
Byzantine process is free to delete true dependencies of its messages on mes-
sages that it sends out. By using cryptographic techniques, this advantage is
nullified by making the Byzantine process dependent on correct processes to
decipher and read incoming messages. This makes sure that a Byzantine process
cannot falsify/delete causal dependencies because it no longer operates in isola-
tion and requires cooperation of one or more correct processes in reading and
sending messages.

In this paper, we have extended previous work that provided weak safety
of causal order unicasts/multicasts to now provide strong safety with the use
of threshold encryption for both synchronous and asynchronous systems. The
causal ordering algorithm for asynchronous systems is non-deterministic, while
the algorithm for synchronous systems is deterministic. The synchronous algo-
rithm for unicasts (Algorithm 1) has a low cost with message complexity
O(n) point-to-point messages per application message, but assumes assistance
from the network in terms of an upper bound on message latency. The asyn-
chronous algorithm for multicasts (Algorithm 2) has a higher message cost of
at least O(n2) (depending on the implementation of the BA_broadcast primi-
tive [7,12,16]) plus O(n · |G|) point-to-point messages per multicast to group G,
but does not assume any support from the network. Depending on the applica-
tion requirements and constraints, either of the two algorithms can be used for
causal ordering.
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