
Brief Announcement: Byzantine-Tolerant
Detection of Causality in Synchronous

Systems

Anshuman Misra and Ajay D. Kshemkalyani(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. It was recently proved that the causality or the happens
before relation between events in an asynchronous distributed system
cannot be detected in the presence of Byzantine processes [Misra and
Kshemkalyani, NCA 2022]. This result holds for the multicast, unicast,
and broadcast modes of communication. This prompts us to examine
whether the causality detection problem can be solved in synchronous
systems in the presence of Byzantine processes. We answer this in the
affirmative by outlining two approaches. The first approach uses Repli-
cated State Machines (RSM) and vector clocks. Another approach is
based on a transformation from Byzantine failures to crash failures for
synchronous systems.

Keywords: Byzantine fault-tolerance · Happens before · Causality ·
Synchronous system · Message Passing

1 Introduction

The “happens before” or the causality relation, denoted →, between events in a
distributed system was defined by Lamport [6]. Given two events e and e′, the
causality detection problem asks to determine whether e → e′.

There is a rich literature on solutions for solving the causality detection prob-
lem between events. See [4,5,9,15,17] for an overview of some approaches such
as tracking causality graphs, scalar clocks, vector clocks [3,8], and variants of
logical clocks such as hierarchical clocks, plausible clocks, dotted version vectors,
Bloom clocks, interval tree clocks and resettable encoded vector clocks. Some of
these variants track causality accurately while others introduce approximations
as trade-offs to save on the space and/or time and/or message overheads. Schwarz
and Mattern [17] stated that the quest for the holy grail of the ideal causality
tracking mechanism is on. This literature above assumed that processes are cor-
rect (non-faulty). The causality detection problem for a system with Byzantine
processes was recently introduced and studied in [11].

A related problem is the causal ordering of messages. Under the Byzantine
failure model, causal ordering has recently been studied in [10,12,13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 57–61, 2023.
https://doi.org/10.1007/978-3-031-44274-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_5&domain=pdf
http://orcid.org/0000-0003-2451-7306
https://doi.org/10.1007/978-3-031-44274-2_5

58 A. Misra and A. D. Kshemkalyani

Contributions. It was recently proved that the problem of detecting causality
between a pair of events cannot be solved in an asynchronous system in the pres-
ence of Byzantine processes, irrespective of whether the communication is via
unicasts, multicasts, or broadcasts [11]. In the multicast mode of communication,
each send event sends a message to a group consisting of a subset of the set of
processes in the system. Different send events can send to different subsets of pro-
cesses. Communicating by unicasts and communicating by broadcasts are special
cases of multicasting. It was shown in [11] that in asynchronous systems with
even a single Byzantine process, the unicast and multicast modes of communica-
tion are susceptible to false positives and false negatives, whereas the broadcast
mode of communication is susceptible to false negatives but no false positives.
A false positive means that e �→ e′ whereas e → e′ is perceived/detected. A
false negative means than e → e′ whereas e �→ e′ is perceived/detected. The
impossibility result for asynchronous systems prompts us to examine whether
the causality detection problem can be solved in synchronous systems in the
presence of Byzantine processes. We answer in the affirmative for unicasts, mul-
ticasts, and broadcasts by outlining two approaches in this brief announcement.
The results are summarized in Table 1.

Table 1. Solvability of causality detection between events under different communi-
cation modes in Byzantine-prone asynchronous and synchronous systems. FP is false
positive, FN is false negative. FP/FN means no false positive/no false negative is
possible.

Mode of
communication

Detecting “happens before”
in asynchronous systems

Detecting “happens before”
in synchronous systems

Multicasts Impossible [11] Possible

FP, FN FP , FN

Unicasts Impossible [11] Possible

FP, FN FP , FN

Broadcasts Impossible [11] Possible

FP , FN FP , FN

2 System Model

The distributed system is modelled as an undirected complete graph G = (P,C).
Here P is the set of processes communicating in the distributed system. Let
|P | = n. C is the set of (logical) FIFO communication links over which processes
communicate by message passing. The processes may be Byzantine [7,14]. The
distributed system is assumed to be synchronous [2].

Let exi , where x ≥ 1, denote the x-th event executed by process pi. An event
may be an internal event, a message send event, or a message receive event. Let

Byzantine-Tolerant Detection of Causality in Synchronous Systems 59

the state of pi after exi be denoted sxi , where x ≥ 1, and let s0i be the initial state.
The execution at pi is the sequence of alternating events and resulting states, as
〈s0i , e1i , s1i , e2i , s2i . . .〉. The sequence of events 〈e1i , e2i , . . .〉 is called the execution
history at pi and denoted Ei. Let E =

⋃
i{Ei} and let T (E) denote the set of all

events in (the set of sequences) E. The happens before [6] relation, denoted →, is
an irreflexive, asymmetric, and transitive partial order defined over events in a
distributed execution that is used to define causality. The causal past of an event
e is denoted as CP (e) and defined as the set of events {e′ ∈ T (E) | e′ → e}.

3 Problem Formulation and a Brief Overview of Solutions

The problem formulation is analogous to that in [11]. An algorithm to solve the
causality detection problem collects the execution history of each process in the
system and derives causal relations from it. Ei is the actual execution history at
pi. For any causality detection algorithm, let Fi be the execution history at pi
as perceived and collected by the algorithm and let F =

⋃
i{Fi}. F thus denotes

the execution history of the system as perceived and collected by the algorithm.
Analogous to T (E), let T (F) denote the set of all events in F . Analogous to the
definition of → on T (E) [6], the happens before relation can be defined on T (F)
instead of on T (E).

Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0) of e1 → e2 using
E and F , respectively. Byzantine processes may corrupt the collection of F to
make it different from E. We assume that a correct process pi needs to detect
whether exh → e∗

i holds and e∗
i is an event in T (E). If exh �∈ T (E) then exh → e∗

i |E
evaluates to false. If exh �∈ T (F) (or e∗

i �∈ T (F)) then exh → e∗
i |F evaluates to false.

We assume an oracle that is used for determining correctness of the causality
detection algorithm; this oracle has access to E which can be any execution
history such that T (E) ⊇ CP (e∗

i).
Byzantine processes may collude as follows.

1. To delete exh from Fh or in general, record F as any alteration of E such that
exh → e∗

i |F = 0, while exh → e∗
i |E = 1, or

2. To add a fake event exh in Fh or in general, record F as any alteration of E
such that exh → e∗

i |F = 1, while exh → e∗
i |E = 0.

Without loss of generality, we have that exh ∈ T (E)∪T (F). Note that exh belongs
to T (F) \ T (E) when it is a fake event in F .

Definition 1. The causality detection problem CD(E,F, e∗
i) for any event e∗

i ∈
T (E) at a correct process pi is to devise an algorithm to collect the execution
history E as F at pi such that valid(F) = 1, where

valid(F) =
{

1 if ∀exh, exh → e∗
i |E = exh → e∗

i |F
0 otherwise

When 1 is returned, the algorithm output matches the actual (God’s) truth
and solves CD correctly. Thus, returning 1 indicates that the problem has been
solved correctly by the algorithm using F . 0 is returned if either

60 A. Misra and A. D. Kshemkalyani

– ∃exh such that exh → e∗
i |E = 1 ∧ exh → e∗

i |F = 0 (denoting a false negative), or
– ∃exh such that exh → e∗

i |E = 0 ∧ exh → e∗
i |F = 1 (denoting a false positive).

In our first solution, we use the Replicated State Machine (RSM) app-
roach [16] and vector clocks in the algorithm for causality detection. We can
show that F at a correct process can be made to exactly match E, hence there
is no possibility of a false positive or of a false negative. The RSM approach
works only in synchronous systems. In a system with n application processes,
the RSM-based solution uses 3t + 1 process replicas per application process,
where t is the maximum number of Byzantine processes that can be tolerated
in a RSM. Thus, there can be at most nt Byzantine processes among a total
of (3t + 1)n processes partitioned into n RSMs of 3t + 1 processes each, with
each RSM having up to t Byzantine processes. By using (3t+ 1)n processes and
the RSM approach to represent n application processes, the malicious effects of
Byzantine process behaviors are neutralized.

Another approach is as follows. A generic transformation from Byzantine
failures to crash failures for synchronous systems can be applied [1], this requires
t < n/3. The possibility of correct Byzantine-tolerant causality detection would
be implied by the possibility of correct crash-tolerant causality detection.

References

1. Bazzi, R.A., Neiger, G.: Simplifying fault-tolerance: providing the abstraction of
crash failures. J. ACM 48(3), 499–554 (2001). https://doi.org/10.1145/382780.
382784

2. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988). https://doi.org/10.1145/42282.42283

3. Fidge, C.J.: Logical time in distributed computing systems. IEEE Comput. 24(8),
28–33 (1991). https://doi.org/10.1109/2.84874

4. Kshemkalyani, A.D.: The power of logical clock abstractions. Distrib. Comput.
17(2), 131–150 (2004). https://doi.org/10.1007/s00446-003-0105-9

5. Kshemkalyani, A.D., Shen, M., Voleti, B.: Prime clock: encoded vector clock to
characterize causality in distributed systems. J. Parallel Distrib. Comput. 140,
37–51 (2020). https://doi.org/10.1016/j.jpdc.2020.02.008

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

8. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms, pp. 215–226. North-Holland (1988)

9. Misra, A., Kshemkalyani, A.D.: The bloom clock for causality testing. In: Goswami,
D., Hoang, T.A. (eds.) ICDCIT 2021. LNCS, vol. 12582, pp. 3–23. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-65621-8 1

10. Misra, A., Kshemkalyani, A.D.: Causal ordering in the presence of Byzantine pro-
cesses. In: 28th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pp. 130–138. IEEE (2022). https://doi.org/10.1109/ICPADS56603.
2022.00025

https://doi.org/10.1145/382780.382784
https://doi.org/10.1145/382780.382784
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/2.84874
https://doi.org/10.1007/s00446-003-0105-9
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1007/978-3-030-65621-8_1
https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1109/ICPADS56603.2022.00025

Byzantine-Tolerant Detection of Causality in Synchronous Systems 61

11. Misra, A., Kshemkalyani, A.D.: Detecting causality in the presence of Byzantine
processes: there is no holy grail. In: 21st IEEE International Symposium on Net-
work Computing and Applications (NCA), pp. 73–80 (2022). https://doi.org/10.
1109/NCA57778.2022.10013644

12. Misra, A., Kshemkalyani, A.D.: Solvability of Byzantine fault-tolerant causal order-
ing problems. In: Koulali, M.A., Mezini, M. (eds.) NETYS 2022. LNCS, vol. 13464,
pp. 87–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17436-0 7

13. Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal ordering. In: 24th
International Conference on Distributed Computing and Networking (ICDCN),
pp. 100–109. ACM (2023). https://doi.org/10.1145/3571306.3571395

14. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

15. Pozzetti, T., Kshemkalyani, A.D.: Resettable encoded vector clock for causality
analysis with an application to dynamic race detection. IEEE Trans. Parallel Dis-
trib. Syst. 32(4), 772–785 (2021). https://doi.org/10.1109/TPDS.2020.3032293

16. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

17. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994)

https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1007/978-3-031-17436-0_7
https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TPDS.2020.3032293

	Brief Announcement: Byzantine-Tolerant Detection of Causality in Synchronous Systems
	1 Introduction
	2 System Model
	3 Problem Formulation and a Brief Overview of Solutions
	References

