
Predicate Detection in Asynchronous
Pervasive Environments

Ajay D. Kshemkalyani, Senior Member, IEEE, and Jiannong Cao, Senior Member, IEEE

Abstract—An important task in sensor networks is to sense locally to detect global properties that hold at some instant in

physical time, namely, Instantaneously. We propose software logical clocks, called strobe clocks, that can be implemented by the

middleware when synchronized physical clocks are not available or are too expensive in resource-constrained environments.

Strobe clocks come in two flavors—scalar and vector. Let n be the number of sensors and p be the upper bound on the number

of relevant events sensed at a sensor. We propose an algorithm using vector strobes that can detect all occurrences of a

conjunctive predicate in time Oðn3pÞ. The algorithm has some false negatives but this is the best achievable accuracy in the face

of race conditions. We also present a variant algorithm using scalar strobes; it needs time Oðn2pÞ but may also suffer from some

false positives. We provide a characterization of the errors. Both algorithms can also detect relational predicates but with a greater

chance of error. The message complexity of strobe clocks (scalar and vector) and both algorithms is OðnpÞ, which is the same as

that of reporting each sensed event for detection of the predicate even with synchronized physical clocks. We formalize the

physical time modality, Instantaneously, and show its relationship to the logical time modalities Definitely and Possibly.

Index Terms—Sensor networks, predicate detection, pervasive computing, middleware, strobe clocks, distributed system

Ç

1 INTRODUCTION

A Sensor-actuator network is an asynchronous distrib-
uted system of networked-embedded sensors and

actuators that aim to sense-monitor-actuate the physical
world [18]. The monitoring is achieved via tracking a time-
dependent image of the spatiotemporal activities in the
physical world [14]. Evaluating predicates on that image is
an important problem. The temporal component of the
predicate specifies various timing relations on the observed
values of the variables that need to satisfy the predicate. The
most common of these timing relations is the “instanta-
neous” snapshot of the variables, namely, the Instanta-
neously modality; although more complex timing relations
exist, for example, [3], [17], [26], [29].

Pervasive systems are typically asynchronous distribu-
ted systems that sense-monitor-actuate the physical world.
A pervasive application is context-aware in that it can adapt
its behavior based on the characteristics of the environment
[1], [2], [10], [11], [12], [28], [30], [33], [34], [35]. The context
is, in the general case, determined by multiple decentralized
devices/sensors for context collection. For example, :
number of persons in room >5 ^ temp > 30�C. When

is true, reset thermostat to 27�C. Here, the radio frequency
identification (RFID) reader and the temperature sensor are
distributed devices. As another example, �: xi þ yj � 400,

where xi and yj are the number of people in adjoining
rooms, lounge i and dining room j, respectively. When � is
true, switch on the sign: “No Admittance: Please wait.”
Here again, the two RFID readers are distributed. In both
examples, asynchronous communication (wired or wire-
less) is required to operate the sense-monitor-actuate loop.
Note also that the monitoring problem is essentially that of
predicate detection.

Problem Motivation. A central problem in pervasive
systems is to take an “instantaneous” snapshot of the
variables, to capture their values at the same instant in
physical time in the asynchronous message-passing dis-
tributed setting. The existing literature on predicate detec-
tion for pervasive environments, for example, [1], [2], [10],
[11], [28], [30], [33], [34], [35], except for [12], assumes that it
can take instantaneous snapshots of the system. This is
possible with physically synchronized clocks. There is a
wide body of literature on providing tight clock synchro-
nization for wireless sensor networks (WSNs), for example,
RBS, TPSN, TinySync, TSync, see [32] for a survey.
However, we observe the following:

. No physically synchronized clock service may be
available from a lower layer, as might be the case for
very resource-constrained sensors or those in remote
environments.

. Furthermore, even if one of the many clock
synchronization protocols for WSNs, for example,
from [32], is available, it may not be affordable in
terms of energy consumption. Such service is not for
free as the costs are incurred by a different layer.

. Clock synchronization also imposes a skew �, which
leads to imprecision in detecting predicates in
physical time. For example, there will be false
negatives when the overlap period of the local
intervals, during which the global predicate is true,
is less than 2� [25].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013 1823

. A.D. Kshemkalyani is with the Department of Computer Science,
University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL
60607-7053. E-mail: ajay@uic.edu.

. J. Cao is with the Department of Computing, Hong Kong Polytechnic
University, PQ816, Mong Man Wai Building, Hung Hom, Kowloon,
Hong Kong. E-mail: csjcao@comp.polyu.edu.hk.

Manuscript received 5 Mar. 2012; revised 1 June 2012; accepted 17 June 2012;
published online 25 June 2012.
Recommended for acceptance by J. Wu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2012-03-0175.
Digital Object Identifier no. 10.1109/TC.2012.162.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

. Such clocks impose cross-layer dependence and
hamper portability.

. Physically synchronized clocks also provide more
exposure to privacy concerns and security issues by
requiring all users to participate in the network layer
synchronization protocol.

For these reasons, we explore the option of using
lightweight middleware layer logical clocks to detect global
predicates. Such clocks also provide layer-independence
and allow portability.

Contributions. We make the following contributions:

1. We formally propose a software logical clock, called
strobe clock, that can be implemented by the middle-
ware when synchronized physical clocks are not
available or are too expensive in resource-con-
strained environments. These clocks “synchronize”
only at relevant events, and are based on system-
wide broadcasts that are similar to those used by
physical clocks at lower layers. They are useful to
observe system state in physical time at runtime. We
use strobe clocks to evaluate predicates [6] under a
physical time modality specification (Instantaneously)
using no physical clocks. Strobe clocks come in two
flavors—scalar and vector.

2. Using vector strobes, we propose an algorithm that
can detect all occurrences of a conjunctive predicate
[6] in time Oðn3pÞ, where n is the number of sensors
and p is the upper bound on the number of relevant
events sensed at a sensor. The algorithm suffers from
some false negatives in the face of race conditions
but this is the best achievable accuracy. We also
present a variant algorithm using scalar strobes; it
needs time Oðn2pÞ but may also suffer from some
false positives. We characterize the degree of
accuracy of the predicate detection algorithms. Both
algorithms can also detect the harder class of
relational predicates [6], but with a greater chance
of error. The message complexity of strobe clocks
(scalar and vector) and both algorithms is OðnpÞ,
which is the same as that of reporting each sensed
event for detection of the predicate even with
synchronized physical clocks.

3. We formalize the physical time modality specification
(Instantaneously) and show how to detect it using no
physical clocks. In the process, we are using logical
strobe clocks for the detection. The algorithms for
detecting a predicate in the asynchronous distrib-
uted environment use algorithms based on detecting
the traditional Definitely and Possibly modalities for
distributed program executions. We formally show
the relationship between the Instantaneously mod-
ality of physical time under the single time axis
model and the Definitely and Possibly modalities of
logical time under the multiple time axis partial
order time model.

Organization. Section 2 discusses related work. Section 3
gives the system model, execution model, and time model
for a pervasive system. Section 4 gives the proposed
logical strobe clocks—scalar and vector—and discusses
how they can be used to simulate physical time. Section 5

gives the predicate detection algorithm using vector
strobes and analyzes the inherent inaccuracies. Section 6
gives the predicate detection algorithm using scalar
strobes and analyzes the inherent inaccuracies. Section 7
relates the physical time modality Instantaneously being
detected by the algorithms to the Definitely and Possibly
modalities that are logical time modalities used in the
analysis of distributed program executions. Section 8 gives
a concluding discussion.

2 RELATED WORK

In the distributed computing literature, the Chandy-
Lamport global snapshot algorithm is useful to detect
stable predicates [5]. Cooper and Marzullo [6] presented
the first algorithm to detect unstable relational predicates.
The algorithms to detect conjunctive predicates under the
Definitely and Possibly modalities were given by Garg and
Waldecker [8], [9]; they have several drawbacks:

1. The algorithms detect only the first occurrence of a
predicate and hang; they cannot detect further
occurrences of predicates.

2. The algorithms can detect only conjunctive predi-
cates and not relational predicates.

3. The algorithms cannot detect the Instantaneously
modality.

4. They cannot detect predicates on sensed physical
world values but only on in-network variables,
because they rely on passively piggybacking time
stamps on in-network messages to advance vector
time, and there are no in-network messages in
sensornets.

Mayo and Kearns [25] gave an algorithm to detect
distributed predicates that held at some instant in time in
a system using approximately synchronized physical
clocks. Stoller [31] likewise gives an algorithm to detect
global state predicates with approximately synchronized
real-time clocks. In both these approaches, predicates using
the Instantaneously modality on the execution events are
detected using a physical time reference.

An algorithm to detect all occurrences of the Definitely
modality for conjunctive predicates was given in [20].
Notable differences of the vector strobe algorithm we
present to detect the physical time modality Instantaneously
(Algorithm 1 in Section 5.2) from [20] are the following.
First, our algorithm detects conjunctive and relational
predicates, not just conjunctive predicates. Second, our
algorithm is applicable to sensornets where there is no in-
network message communication whereas the algorithm in
[20] works only for traditional in-network distributed
executions because it relies on passively piggybacking time
stamps on in-network messages to advance vector time.
Third, our algorithm works in conjunction with the strobe
clocks we propose for sensornets, whereas the algorithm in
[20] works with traditional Mattern/Fidge vector clocks [7],
[24], [27]. Fourth, our algorithm aims to detect the
Instantaneously modality, not the Definitely modality de-
tected in [20]. Fifth, our algorithm is subject to the detection
of some false negatives (because of the limitations of our
model), whereas the algorithm in [20] is not.

1824 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

In the pervasive computing community [1], [2], [10], [11],
[12], [28], [30], [33], [34], [35], the default assumption made
was that instantaneous snapshots could be taken. By
considering a pervasive environment as an asynchronous
distributed environment, Huang et al. [12] used vector
clocks on control messages to detect the Definitely modality
over a conjunctive predicate defined on physical world
variables. Our work builds on this in multiple directions.
For example, first, we formalize and define the Instanta-
neously modality of physical time as a criterion of correct-
ness in pervasive environments. Second, we show its
relationship to the Possibly and Definitely modalities of
logical time. Third, we formalize vector strobe clocks and
scalar strobe clocks for evaluating predicates on values
sensed from the physical world. Fourth, we give two
algorithms using vector and scalar strobe clocks, respec-
tively, to detect the Instantaneously modality. Fifth, we
characterize and qualify the errors that occur in these two
detection algorithms. Sixth, we are able to detect each and
every occurrence of when the predicate holds, (subject to
the characterized errors). Detecting all occurrences of a
predicate is substantially more complex than detecting its
first occurrence only, which is what [12] detects. Seventh,
the algorithms presented work for relational predicates in
addition to conjunctive predicates, although the level of
accuracy is lower for relational predicates.

Our algorithms wait for an interval to complete before it
is processed. So there may be a delay in detecting a
predicate. Three algorithms [21] to detect the predicate
immediately are compared with our algorithms, in [21]. Our
vector strobe-based Algorithm 1 does not suffer from false
positives whereas the algorithms in [21] suffer from false
positives. Our algorithms have lower message complexity
than the consensus-based algorithm in [21].

A complete and orthogonal set of interaction types, i.e.,
placements of two intervals with respect to each other, in
terms of how they causally affect one another was
presented in [15]. We use this result to analyze the false
negative errors that occur in our algorithms.

A preliminary version of this paper, with a sketchy
system and execution model section, without any proofs,
and without any presentation of logical and physical time
modalities, was presented in [19].

3 SYSTEM AND EXECUTION MODEL

Sensor-actuator networks and pervasive environments are
distributed systems that interact with the physical world in
a sense-and-respond manner [13], [22]. The world plane
consists of the physical world entities and the interactions
among them. The network plane consists of the sensors/
actuators and the computer network connecting them.

For the network plane, we adapt the standard model of
an asynchronous message-passing distributed execution
(see [18]). Each sensor/actuator is modeled as a process
Piði 2 ½1; . . . ; n�Þ; the local execution is a sequence of
alternating states and state transitions caused by “relevant”
events. Assume a maximum of p such events at any
process. We assume FIFO communication among the
n processes and a reliable system. The communication
messages in the network plane may be of two types:

1) Messages to assemble/monitor global properties from
locally sensed values, and to output to/actuate the
controlled devices. 2) Messages that mimick the commu-
nication among the entities of the world plane. Such
messages attempt to capture the “true causality” [23]
among the events in the world plane, to recreate the
time-varying spatiotemporal image of the world plane. The
communication in the world plane happens along what
the literature terms as covert channels; currently science does
not know how to detect this communication.

We have used an event-driven execution model. An
event occurs whenever a monitored value, whether discrete
or continuous, changes significantly. The time duration
between two successive events at a process identifies an
interval. We model the event-driven activity at processes in
terms of intervals. The application seeks to detect a predicate
that is defined on attribute variables connected as a
conjunctive expression (a conjunctive predicate, e.g., in
Section 1) [6], [8] or a relational expression (a relational
predicate, e.g., � in Section 1) [6], and that also specifies
certain timing relationships on the intervals in which the
attribute values hold. The most popular timing relationship,
“concurrent” or “simultaneous” or the “Instantaneously”
modality, captures the notion of the instantaneous observa-
tion of the physical world.

Problem. Given a conjunctive or a relational predicate �
on sensed attribute values of the world plane, detect each
occurrence of � under the Instantaneously modality (i.e.,
holding at the same instant), without using physically
synchronized clocks, in the network plane having asyn-
chronous message transmissions.

The algorithms we present are based on detecting
overlap among intervals, and then evaluating � on over-
lapping intervals. The algorithms can detect both conjunc-
tive and relational predicates. Our characterization of
accuracy is the same for both types of predicates but the
level of accuracy is lower for relational predicates.

3.1 Time Model

To provide a time base in the middleware, the option is
either the partial order model or the linear order model. The
partial order of time is isomorphic to the partial order of the
traditional distributed execution in the network plane, and
is encoded by the causality-based Mattern/Fidge clocks [7],
[24]. But, in sensornets, it is unknown how to track the
communication over the covert channels that induce the
causal chains in the world plane; hence, this communication
cannot be simulated in the network plane and there are
pn possible consistent global states (CGSs).

For traditional distributed program executions, the
global state lattice [6], [24] derived from the causality-based
partial order of time is useful to reason about properties of
global states. This reasoning is not just for one run, but
across all runs of the same deterministic distributed program.
(In a rerun, concurrent events may be reordered, leading to
a different path in the state lattice.) But in sensornets and
pervasive environments, the physical world does not admit
reruns, and there are many nondeterministic factors such as
nature and human will; so usually applications need to
observe the actual np states in the actual execution. Hence,
there does not seem any need to deal with the state lattice.

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1825

But logical time—scalar or vector—need not be based
strictly on causality as defined by application layer
message-passing. We identify a need to build a partial
order of time that is not strictly causality based but still
useful to observe the world plane under the Instantaneously
modality of physical time. In the absence of a synchronized
physical clock service, we require some time base. The idea
is simple—logical time can simply be used to provide a base
of linear order/partial order time. Just as lower network
layer physical clock synchronization protocols periodically
bring multiple hardware clocks (scalars) “in sync” after
some drift, so also the middleware layer strobe clock that we
formalize periodically brings “in sync” the drifting scalars
or vectors at each process. Without a strobe, logical clocks
drift—they simply tick asynchronously at each relevant
local event. The strobe clock is a logical (scalar or vector)
clock synchronization service to synchronize the local
clocks at “critical events.” The strobe clock only needs to
guarantee monotonicity of logical time. It can be issued by a
process at any time, but no more frequently than when
relevant events are locally sensed.

Strobe clock messages are control messages and induce a
partial order. This partial order is artificial and arbitrary,
unlike the case for distributed programs, where the partial
order is induced explicitly by in-network semantic sends
and receives. It is important to observe that if the image of
the physical world could also track causality, then clock
needs to be different from the strobe clock. If it is not, it will
introduce false causality induced by the strobes and, hence,
infer fake causal relationships and eliminate possible
equivalent CGSs.

4 LOGICAL STROBE CLOCKS

We characterize the accuracy of our strobe-clock-based
algorithms to detect predicates using a parameter �. Define
� to be the bound on the asynchronous message transmis-
sion delay for a system-wide broadcast. � includes the
delays for queuing in local outgoing and incoming buffers,
propagation, process scheduling, context switching, and
possible retransmissions (to provide reliability), until the
received message is processed. In WSNs, and in closed
environments such as smart homes, � may be of the order
of hundreds of millisecs to secs. This is still small compared
to speeds of human and object movements. Although
difficult to estimate, � is not used by the clock protocols or
the predicate detection algorithms; it serves only to
characterize the degree of imprecision in detecting the
predicates. In practice, the accuracy is determined by the
actual message transmission delay �actual in any particular
race condition, and �actual � �. Thus, the accuracy of the
algorithms is adaptable to the actual operating conditions of
the sensor network and can be much better than predicted
using the upper bound �.

The skew that governs the imprecision using physical
clocks is of the order of microsecs to millisecs if software
protocols are available. (Hardware solutions achieve nano-
sec skews but are impractical in sensornets.) Although �,
that determines the accuracy of our algorithms, is of the
order of hundreds of millisecs to secs in small-scale
networks, such as smart offices and smart homes, it may
be adequate when the number of processes is low and/or
the rate of occurrence of sensed events is comparatively

low. This is the case for several environments such as office,
home, habitat, wildlife, nature, and structure monitoring. In
urban settings, such as smart homes and smart offices, the
number of sensors is typically low. Furthermore, lifeform
and physical object movements are typically much slower
than �. And in the wild, remote terrain, nature monitoring,
events are often rare, compared to �. Thus, we may not
need the precision (in urban settings or the wild) or be able
to afford the associated cost (in the wild) of synchronized
physical clocks.

4.1 Vector Strobe Clocks

A vector strobe clock Ci½1; . . . ; n� at process i consists of
n integers. The protocol is given by rules VSC1 and VSC2:

VSC 1. When process i executes (senses) a relevant event:
Ci½i� ¼ Ci½i� þ 1

System-wide_Broadcast (Ci).

VSC 2. When process i receives a strobe T :

ð8kÞ Ci½k� ¼ maxðCi½k�; T ½k�Þ.

4.2 Scalar Strobe Clocks

A scalar strobe clock Ci is maintained by each process i. The
protocol is given by rules SSC1 and SSC2:

SSC 1. When process i executes (senses) a relevant event:

Ci ¼ Ci þ 1

System-wide_Broadcast (Ci).

SSC 2. When process i receives a strobe T :

Ci ¼ maxðCi; T).

It is weaker than the vector strobe clock but is light-
weight (strobe size is Oð1Þ, not OðnÞ) and it can be used to
solve our problem if some false positives can be tolerated.

4.3 Features

Although similar to the causality-based Mattern/Fidge
vector clocks [7], [24], and Lamport scalar clocks [23], or
“interval vector clocks” [4], there are differences:

1. Strobe clocks track the progress of the local logical
time counter at each process by catching up or
synchronizing on the latest known time of other
processes, and do not track the causality induced by
message communication; causality-based clocks
track the causality induced by the message sends
and receives.

2. All strobes are control messages; in causality-based
clocks, time stamps are sent on and only on
computation messages.

3. On receiving a strobe, the receiver updates its clock
but does not tick locally; in causality-based clocks,
the receiver ticks on receiving a message.

4. The strobe clock protocol broadcasts its clock no
more frequently than at each relevant event (after
ticking its local component); in causality-based
clocks, the clock value is sent only on all computa-
tion messages and vector clock values are iso-
morphic to the partial order of events.

5. If � ¼ 0 (synchronous communication) and the
protocol strobes at each relevant event, strobe
vectors can be replaced by strobe scalars without
sacrificing correctness or accuracy. This is not so for

1826 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

the causality-based clocks even if � ¼ 0; Mattern/
Fidge clocks are still more powerful than Lamport
clocks when reasoning about the partial order of
distributed program executions. This difference
arises because strobe clocks broadcast at each sensed
event, thus synchronizing all the local clocks
instantaneously.

6. As we show, strobe clocks can be used to detect
predicates over sensed values of the physical
world, where there are no in-network computation
messages in the network plane sensornet. Vector
clocks have been used to detect predicates on in-
network program variables [6], [8], because they
rely on passively piggybacking time stamps on in-
network messages to advance vector time.

4.4 Application: Simulating Physical Time

We show how strobe clocks can be used to detect

conjunctive or relational predicates that held at some

instant in physical time (to simulate a single time axis).

We approximate the physical time axis as best as theoreti-

cally possible using vector strobe clocks.
A relevant event is modeled as a quadruple e ¼

ðPi; aj; val; tsÞ to represent the host process, attribute sensed,

attribute’s value, and the physical time of its occurrence

(unknown in our model). For each process/attribute pair, an

interval is represented by a value, start time, and finish time

as I ¼ ðval; ts; tfÞ. The interval is defined by two consecutive

events ðPi; aj; val1; t1Þ and ðPi; aj; val2; t2Þ for that ðPi; ajÞ
pair as: I ¼ ðval1; t1; t2Þ. Our goal is to evaluate whether a

predicate � holds whenever the global state changes. Using

strobe clock values to time stamp relevant events and hence

intervals, we are using monotonic logical time stamps that

are synchronized as tightly as theoretically possible.
Let I ¼ fI1; . . . ; Ing be a set of intervals, one per process.

Definition 1 (InstantaneouslyI modality of overlap). All

Ii 2 I overlap in physical time, i.e., InstantaneouslyI , iff

max
i
ðIi:tsÞ < min

i
ðIi:tfÞ: ð1Þ

For this set of intervals I , we define a number:

Definition 2 (Overlap of intervals). overlapðIÞ ¼
miniðIi:tfÞ �maxiðIi:tsÞ

Condition in (1) is equivalent to

8i8j; Ii:ts < Ij:tf : ð2Þ

As we do not have access to physical time, we use logical

time C values as a best approximation. Here, I:Cs and I:Cf
denote the start and finish logical clock values of interval I.

Approximation using vector strobes. To approximate (2), we

check for:

8i8j; Ii:Cs½i� � Ij:Cf ½i�: ð3Þ

For � > 0, we have (see Section 5.1)

Ii:Cs½i� � Ij:Cf ½i�ð¼)^ 6(¼ÞIi:ts < Ij:tf : ð4Þ

For � ¼ 0, we have

Ii:Cs½i� � Ij:Cf ½i� () Ii:ts < Ij:tf : ð5Þ

Approximation using scalar strobes. To approximate (2), we

check for:

8i8j; Ii:Cs � Ij:Cf : ð6Þ

For � > 0, the following holds (see Section 6.1):

Ii:Cs � Ij:Cfð6¼) ^ 6(¼ÞIi:ts < Ij:tf : ð7Þ

Its utility is nevertheless shown (see Section 6.1).
When � ¼ 0, the scalar strobe clock behaves exactly like

the vector strobe clock, and the following equation holds:

Ii:Cs � Ij:Cf () Ii:ts < Ij:tf : ð8Þ

To approximate (2), if we were to replace � by < in the

test of (6), we get

8i8j; Ii:Cs < Ij:Cf ; ð9Þ

Ii:Cs < Ij:Cfð6¼) ^ 6(¼ÞIi:ts < Ij:tf when � > 0 ð10Þ

Ii:Cs < Ij:Cf () Ii:ts < Ij:tf when � ¼ 0: ð11Þ

There is a tradeoff in the use of the approximation of (6)

versus the approximation of (9). This tradeoff will be

analyzed in Section 6.1.
Approximations. The physical world execution traces one

path (of the OððpnÞ!ðp!ÞnÞ possible paths) through np of the OðpnÞ
states in the state lattice. The goal is to identify the states in

this path and evaluate the predicate in them. At each sensed

event, a strobe is broadcast atomically at a send event. The

send nor the receive events for the strobes have any semantic

significance. The control messages for the strobe clock create

artificial causal dependencies that help to approximate

instantaneous observation because they eliminate many of

the OðpnÞ states in which the intervals did not overlap. But

the number of possible CGSs in the sublattice induced by the

strobes is still OðpnÞ. The faster the strobe transmissions, the

leaner the lattice; in the limit, � ¼ 0, we get a linear order of

np states. Unlike executions of distributed programs where

program-determined semantic messages may not get sent

for long periods while local variables’ values change

multiple times, resulting in fat lattices, clock strobes get sent

at each value change. This gives us the “slim lattice postulate”

for CGSs in sensornet observations. A message gets sent for

each sensed event, causing a reduction in the number of

CGSs. Fig. 1 shows an example execution and corresponding

value-lattice. A control message is broadcast atomically with

each sensed event; there are no underlying computation

messages in the network plane.
For these CGSs, due to the inherent transmission delays,

it is theoretically possible either to verify that the intervals
overlapped, or to only suspect that they overlapped. To
identify all cases where overlap is verified can be done in
polynomial time. This is because there are at most np such
candidate solutions and each candidate solution takes at
most Oðn2Þ time for verification in our Algorithm 1. But to
identify all cases where overlap is suspected requires
exponential time, even if � is conjunctive. This is because
this task requires evaluating each state in the lattice of

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1827

CGSs, even if those states did not occur in the actual
execution. This is discussed further in Section 7.

5 DETECTION USING VECTOR STROBES

5.1 Characterization and Analysis of Accuracy

To characterize the degree of imprecision in (4) that creeps
in when we simulate physical clocks with logical vector
strobe clocks, consider any pair of intervals Xi and Yj at Pi
and Pj, respectively. These intervals can be placed with
respect to each other in one of 29 mutually orthogonal ways
only, as shown in the left part of Fig. 2 [15]. X is shown in
a fixed position as a rectangle whereas the possible
relative positions of Y are shown by horizontal lines.
The dashed lines indicate the boundaries of the causal past
and causal future of the events minðXÞ and maxðXÞ,
(induced by strobes). Thus, #minðXÞ and minðXÞ" indicate
the boundaries of the causal past and the causal future of
event minðXÞ. # maxðXÞ and maxðXÞ" indicate the

boundaries of the causal past and the causal future of
event maxðXÞ. The distinction between those positions of
Y with two labels each is shown in the right part of Fig. 2.
In each pair, the difference lies in how #maxðY Þ and
minðY Þ" intersect with X.

Of the 29 mutually orthogonal placements, the following
18 logical placements (labeled in normal font in the figure):

ID; IX; ID0; IU; IE; IW; IE0; IT ; IF ;

IS; IO; IL; IP ; IL0; IM; IM 0; IN; IN 0
ð12Þ

satisfy (3). These are exactly the placements of interval Y

that stretch to the right of the dashed line minðXÞ" (for

these Ii:Cs½i� � Ij:Cf ½i�) and which also stretch to the left of

the dashed line # maxðXÞ (for these, Ij:Cs½j� � Ii:Cf ½j�).
Using (4) and (2), observe that these placements imply

physical time modality Instantaneously. If our algorithm

evaluates the predicate only when these modalities in (12)

are satisfied among the intervals in I , the algorithm will not

detect any false positives and can verify overlap. This is

achieved by our proposed Algorithm 1.
Observe that placements IA and IQ of interval Y

(labeled in italics in the figure) will never overlap with
interval X. Of the 29 mutually orthogonal placements,
excluding IA, IQ, and the 18 placements of (12), we have
the following remaining nine logical placements (labeled in
boldface in the figure):

IB; IR; IC; IV ; IG; IH; IK; II; IJ; ð13Þ

which may or may not overlap in physical time, and it is
theoretically impossible using logical clocks and asynchro-
nous communication to determine the Instantaneously
physical time modality specification in these cases. (Thus,
it is impossible to verify whether the intervals X and Y
actually overlapped.)

With multiple processes, even if intervals at one pair of
processes are related by one of these nine placements, to not
raise false alarms, the algorithm should not detect Instanta-
neously even if the intervals happen to overlap. One can
only suspect that overlap occurred. These are, thus, potential
false negative cases. (If need be, these cases can also be
detected; see the algorithms in [4] and Section 7.) The extent

1828 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 1. An example execution of strobe messages based on sensed

values, and its corresponding lattice of CGSs.

Fig. 2. Timing diagram for complete set of orthogonal interaction types between intervals [15].

of false negatives will depend on the duration of intervals,
their placements, and the bound �.

Theorem 1. Using vector strobe clocks, the correctness of
detecting the Instantaneously modality using (3) is char-
acterized as follows:

1. If overlap � �, then the modality can be correctly
detected.

2. If 0 � overlap < �, then a false negative may occur.
3. If overlap < 0, then the modality can be correctly

detected as not holding.

Proof.

1. We have 8i8j, Ij:tf � Ii:ts � �, which implies (2).
Also, we have that the vector strobe sent by Pi at
Ii:ts will reach Pj before Ij:tf and hence Ii:Cs½i� �
Ij:Cf ½i� as per VSC1 and VSC2. Hence, (2)
implies (3).

Equation (3) implies (2) due to the implemen-
tation of VSC1 and VSC2 and the nonnegative
transmission times involved.

Hence, the Instantaneously modality will be
correctly declared using (3) as an approximation
to (2).

2. There are three possible subcases:

a. Every pair of intervals is related by one of the
relations in (12).

Then, from Fig. 2, observe that for each of
these relations, Ii:ts < Ij:tf (using a simple
left-to-right scan) and also Ii:Cs � Ij:Cf be-
cause the dashed lines indicate the traversal
of the vector strobes. (It cannot be visually
depicted that 0 < overlap < � because that is
a physical time specification whereas the
diagram is a logical time depiction.) In this
subcase, (2) if and only if (3), and hence, the
modality holds and can be correctly detected
using (3) as an approximation to (2).

b. At least one pair of intervals is related by one
of the relations in (13) and all other pairs of
intervals are related by one of the relations in
(12) or (13).

For any pair of intervals (say, Ii and Ij)
related by (13), it is possible that the overlap
duration between them is less than �. If so,
the vector strobe sent by Ii at Ii:ts may not
reach (directly or transitively) Pj before Ij:tf ,
in which case Ij:Cf ½i� 6� Ii:Cs½i�. Equation (3)
does not hold and overlap between Ii and Ij
will not be detected using (3) as an approx-
imation to (2)—leading to a false negative.

c. At least one pair of intervals is related by
one of the two relations IA and IQ not in
(12) or (13).

Observe that in this subcase, overlap < 0,
contradicting the case assumption.

3. There is at least one pair of intervals Ii and Ij in I
such that Ii:tf � Ij:ts < 0. The vector strobe sent
by Pj at the start of Ij with time stamp Ij:Cs will
not reach Pi before Ii ends, and by VSC1 and

VSC2, Ii:Cf ½j� 6� Ij:Cs½j�. Hence, (3) will not be
satisfied and the Instantaneously modality will not
be declared, correctly. Hence, no false positives
will occur. tu

5.2 Detection Algorithm Using Vector Strobes

Algorithm 1 uses strobe clocks to detect a physical time
modality, namely Instantaneously. To design the algorithm,
we guarantee no false positives. We seek to detect a set of
intervals, one per process, such that 1) pairwise, they satisfy
one of the placements in (12), and hence from (3) and (4),
satisfy (2); and 2) � is true over the attribute values in these
intervals. Line 7 onwards encode the logic for the repeated
detection of �.

Each process Pi maintains an interval queue IQ½z� and an
event queue EQ½z�, for strobes received from process Pz.
(Assume one attribute per process.) A strobe also piggy-
backs the sensed event’s quad-descriptor. Note, for online
detection of properties of the world plane, a sensor has to
immediately report the event to a monitor even while using

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1829

(synchronized) physical clocks; so a message transmission is
unavoidable. This algorithm detects both conjunctive and
relational predicates:

. For a conjunctive �; val at any process alternates
between 0 and 1; when val ¼ 1 on a received strobe,
the completed interval having val ¼ 0 need not be
processed (skip steps 5 and 7 onwards).

. For a relational �, each interval is processed.

Visually speaking, we step through the execution, state
by state, in physical time, by constructing states from the
interval queues. The challenge is doing so without using
physical clocks. The approach can be viewed as jumping
through a virtual state lattice of the partial order induced
by the strobes, without actually constructing one. In a
nutshell, 1) we loop, queuing intervals from each process,
until we identify a set I having overlap > 0. If � holds
over the values in I , raise an alarm. 2) We then prune the
IQs judiciously to ensure progress (more solutions can be
detected) and safety (not to miss any solution). In the
process, we have to ensure polynomial time overhead. An
important feature of the algorithm is that it does repeated
detection of � as strobes are generated, each time �
becomes true.

5.3 Correctness Argument

The correctness for a conjunctive predicate, subject to the
inherent false negatives constraints of the model as
explained in Section 5.1, follows from the following
observations:

1. The interval set forming the first solution is correctly
detected using the logic of lines 7-22. Specifically, as
observed in Section 5.1, the 18 placements of (12)
satisfy the tests of (3):

a. Safety. These tests are implemented in lines 17,
19, and eliminate only those intervals that do not
satisfy the test.

b. Liveness. In at most nðn� 1Þ executions of lines
17, 19, a solution set I gets found or an interval
gets deleted.

2. Safety. Once a solution I is detected, only intervals
Xi 2 I that cannot be part of another solution are
deleted from their queues IQ½i�, in line 23 onwards.

3. Liveness. For any solution set I , at least one interval
gets deleted from its queue in line 23 onwards.

4. The next solution is again found by the logic of
lines 7-22.

5. The number of solution interval sets is bounded by
the total number of intervals, which is np. As a
solution set contains n intervals, this bound is more
accurately stated as nðp� 1Þ þ 1.

In addition to conjunctive predicates, we aim to detect
relational predicates as best as possible. We are detecting
each global state that satisfies the relational predicate in the
Instantaneously modality, subject to the inherent false
negative constraints of the model and a polynomial time
overhead. The algorithm satisfies the characterization of
Section 5.1 and Theorem 1 for both conjunctive and
relational predicates. But the level of accuracy is lower for
relational predicates. This is because the algorithm verifies
whether a global state must have occurred. For a relational

predicate, it may happen that no one state must have
occurred, but collectively examined, one of some set of
states must have occurred. To examine collectively requires
building the lattice of CGSs, which cannot be done in
polynomial time despite the slim lattice postulate.

Consider the example execution and corresponding
value-lattice in Fig. 1. No one state ðx; yÞ ¼ ð4; 3Þ and
ðx; yÞ ¼ ð2; 5Þ must have occurred, but collectively, one of
fð4; 3Þ; ð2; 5Þg must have occurred because every path from
the initial state to the final state passes through one of these
two states. Hence, to determine whether a state in which
xþ y ¼ 7 must have occurred, it is necessary to build the
state lattice, which is expensive. Without the state lattice,
the algorithm cannot verify that either of ð4; 3Þ and ð2; 5Þ
must have occurred; hence, the level of accuracy is lower for
relational predicates than for conjunctive predicates. This is
discussed further in Section 7.

5.4 Complexity

To find the first solution that satisfies (3), the algorithm
continues till each interval queue IQ½k� has a head element.
The time overhead for this is Oðn2Þ. For each set of intervals
that satisfy (3), Oðn2Þ time is needed to eliminate at least one
interval; and let Oðfð�ÞÞ, the time to evaluate �, be OðnÞ.
Such a set needs to be considered at most np times. The time
complexity is Oðnpðn2 þOðfð�ÞÞÞÞ, or simply Oðn3pÞ, to
find all solutions.

Message cost is OðnpÞ system-wide broadcasts, each of
n integers. Note that the lower bound is �ðnpÞ (wireless)
broadcasts, of 1 integer each, because each sensed event
needs to be reported to a sink for assembly even with
synchronized physical clocks. However, if a multihop network
or a point-to-point medium was used in the network plane,
the OðnpÞ broadcasts would become Oðn2pÞ messages. In
contrast, if physically synchronized clocks were used, the
OðnpÞ transmissions of the sensed events to the sink would
require Oðnp � lognÞ or even Oðn2pÞ message (re)transmis-
sions to reach the sink, assuming a tree or a linear array
configuration, respectively. In the worst case, assuming a
tree configuration, the message complexity is a factor of n

logn
more than with synchronized hardware clocks.

6 DETECTION USING SCALAR STROBES

Using the test in (6), as the best approximation to (2), (7)
indicated that strobe scalars do not guarantee correctness of
detecting the Instantaneously modality.

6.1 Characterization and Analysis of Accuracy

Potential false positives. Consider the example execution in
Fig. 3, showing three intervals X, Y , and Z, at processes Pi,
Pj, and Pk, respectively. (Assume all clocks are initially 0.)

1830 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 3. False positives with scalar strobes.

The beginning of each interval I is time stamped I:Cs by the

scalar strobe clock rules, SSC1 and SSC2. The end of the

interval is time stamped I:Cf by the start time of the next

interval at that process. Messages in regular lines are the

scalar strobes sent at the start of X, Y , and Z; messages is

dotted lines are those sent at the start of the next intervals

following these. The local clock value is shown only when it

changes. Time stamps in bold are the start and end time

stamps of the intervals.
By applying the test of (6) for each pair of intervals,

observe that the test is satisfied; but although Y :ts ¼
2 � Z:tf ¼ 3, they do not overlap. This is a false positive.

If Z had extended in time as indicated by the dashed

extension, then the scalar strobe clocks would remain the

same and the detection would have been a true positive.
Potential false negatives. Consider the example execution

in Fig. 4. By applying the test of (6) for each pair of

intervals, observe that the test is not satisfied because

Y :ts ¼ 3 6� Z:tf ¼ 2. However, they do overlap. This is a

false negative. If Z had finished earlier in physical time

than the start of Y and the dotted strobes sent at the end

of Z reached at the same time as they do currently in the

figure, then the scalar strobe clocks would remain the

same and the nonsatisfaction of (6) would have been a

true negative.
Using (9) instead of (6) still gives false positives and false

negatives. Observe, when Y :Cs ¼ Z:Cf , (6) risks a false

positive whereas (9) risks a false negative.

Theorem 2. Using scalar strobe clocks, the correctness of

detecting the Instantaneously modality using (6) (or (9)) is

characterized as follows:

1. If overlap � �, then the modality can be correctly
detected.

2. If 0 � overlap < �, then a false negative may occur.
3. If �� < overlap � 0, then a false positive may occur.
4. If overlap � ��, then the modality can be correctly

detected as not holding.

Proof.

1. We have 8i8j, Ij:tf � Ii:ts � �, which implies (2).
Also, we have that the scalar strobe sent by Pi at
Ii:ts will reach Pj at or before Ij:tf and, hence,
Ii:Cs � Ij:Cf as per SSC1 and SSC2. Hence, (2)
implies (6).

Equation (6) implies (2) due to the implemen-

tation of SSC1 and SSC2 and the nonnegative

transmission times involved.

Hence, the Instantaneously modality will be

correctly declared using (6) as an approximation

to (2).
2. A false negative may or may not occur, as

explained earlier using Fig. 4. The scalar strobe
sent by Pj at the start of Y may not reach Pk
before the end of Z if 0 � overlap < �, i.e.,
Z:tf � Y :ts < �. If the scalar strobe does not reach
Pk before Z:tf , the false negative occurs, else there
is no false negative.

3. A false positive may or may not occur, as
explained earlier using Fig. 3. The scalar strobe
sent by Pk at the end of Z may not reach Pj before
the start of Y if �� < overlap � 0, i.e., Z:tf �
Y :ts > ��. If the scalar strobe does not reach Pj
before Y :ts, the false positive occurs, else there is
no false positive.

4. There is at least one pair of intervals Ii and Ij in I
such that Ii:tf � Ij:ts � ��. The scalar strobe sent
by Pi at the end of Ii with time stamp Ii:Cf will
reach Pj at or before Ij begins, and by SSC1
and SSC2, Ij:Cs > Ii:Cf . Hence, (6) will not be
satisfied and the Instantaneously modality will not
be declared, correctly. Hence, no false positives
will occur. tu

Fig. 5 depicts the results of Theorems 1 and 2. The dashed

lines are indicative and do not imply a linear relation.

6.2 Detection Algorithm Using Scalar Strobes

The algorithm, implementing (6), is a modification of

Algorithm 1. The changes are shown in Algorithm 2.

Vector M is scalar Min Finish; lines (1, 3) update scalar

clocks; lines (17, 19) use scalar tests; lines (27-33) that delete

intervals get replaced by the scalar analogs in lines (27-30).

6.3 Complexity

To find the first solution that satisfies (6), time overhead till

each queue IQ½k� has a head element is Oðn2Þ. For each set

of intervals that satisfy (6), OðnÞ time is needed to eliminate

at least one interval. Such a set needs to be considered at

most np times. The time complexity is OðnpðnþOðfð�ÞÞÞÞ,
or simply Oðn2pÞ, to find all solutions.

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1831

Fig. 4. False negatives with scalar strobes.

The message cost and analysis are the same as in

Section 5.4, except that the strobe size isOð1Þ instead ofOðnÞ.

7 PHYSICAL TIME AND LOGICAL TIME MODALITIES

Two logical time modalities have been traditionally

defined under which a predicate can hold for distributed

executions [6].

Definition 3 (Logical time modalities) [6].

. Possiblyð�Þ. There exists a consistent observation of
the execution such that � holds in a global state of that
execution.

. Definitelyð�Þ. For every consistent observation of
the execution, there exists a global state of it in which
� holds.

Our algorithm uses the logic of the logical time modality

Definitely to detect the physical time modality Instanta-

neously. In this section, we analyze the types of errors that

occur due to this approximation.
The false negative outcomes in the vector strobe algo-

rithm are the cases of (13), where it is impossible to

determine whether an overlap in the considered I actually

occurred because of races. There are at most pn such

instances because only pn states occurred in the actual

execution. These cases may occur only if 0 < overlap < � and

can be flagged as potential false negatives by classifying them

in a new bin: borderline [21]. This bin would also include

some of those nonoverlap cases with �� < overlap < 0,

which could equally have been overlapping; unfortunately,

there are OðpnÞ such states in the borderline bin, most of

which never occurred. They can be flagged by enumerating

the state lattice. Although impractical despite the slim lattice

postulate, enumerating them is useful to: 1) not miss any

borderline case and let the application decide whether to

raise an alarm; 2) identify collections of states which

collectively can ascertain that a relational predicate held.

(See the example at the end of Section 5.3).

Definition 4 (Physical time modalities on overlap in I).
For any (global state identified by) I in the actual execution
that occurred, there are three modalities on its observation:

. InstantaneouslyI . The intervals in I overlapped (as
defined in Definition 1). There are np such states.

. DefI . It can be verified that the intervals in I
overlapped. There are at most np such states.

. PossI . Intervals in I can be verified to have
overlapped, or they might have overlapped but it is
impossible to ascertain. There are OðpnÞ such states.

DefI means the intervals overlapped and it is possible to
verify or ascertain. This case is ascertained when only the
relationships from (12) hold between every pair the
intervals in I . This is what the vector strobe algorithm
detects; see the mapping from the relationships from (12) to
the test in [16].

In the example execution of Fig. 1, let X and Y denote the
intervals at Pi and Pj, respectively. Then, for example, for
x ¼ 4 ^ y ¼ 5, we have the relationship IMðX;Y Þ from (12).
PossI ^DefI means the intervals might or might not

have overlapped and it is impossible to ascertain. This case
occurs when at least one of the relationships from (13) holds
between at least one pair of the intervals in I and none of
the relationships IA or IQ holds between any of the pairs of
intervals in I (see [16]).

With respect to the execution in Fig. 1, let X and Y denote
the intervals at Pi and Pj, respectively. Then, for example,

. for x ¼ 4 ^ y ¼ 3, we have relationship ICðX;Y Þ;

. for x ¼ 2 ^ y ¼ 5, we have IRðX;Y Þ;

. for x ¼ 6 ^ y ¼ 1, we have IKðX;Y Þ; and

. for x ¼ 4 ^ y ¼ 1, we have IBðX;Y Þ.
Such cases can be classified in the borderline bin. There

are OðpnÞ such states because it requires examining all the
states of the lattice of CGSs that even do not lie on the actual
path traced through it.

Also, PossI means we can ascertain with certainty that
the intervals did not overlap. This case is ascertained when
of the relationships IA or IQ holds between at least one of
the intervals in I . There are OðpnÞ such states, and these are
not even represented in the lattice of CGSs.

Theorem 3. For observing physical world phenomenon:

DefI ¼) InstantaneouslyI ¼) PossI ; ð14Þ

PossI 6¼) InstantaneouslyI 6¼)DefI : ð15Þ

Proof. Follows from Definition 4. tu

Let Set InstantaneouslyI , Set DefI , and Set PossI

denote the sets of sets of intervals satisfying the respective
physical time modalities. Theorem 3 is illustrated in Fig. 6.
The maximum numbers of solution sets that satisfy the
three modalities are indicated in the Venn Diagram.

Definition 5 (Physical time modalities under which
predicate holds).

. InstantaneouslyI ð�Þ. In the actual execution that
occurred, the intervals in I overlapped and the value of
� evaluated over I is true.

1832 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

Fig. 5. Probability of detecting overlap of intervals for the Instanta-

neously modality.

. DefI ð�Þ. In the actual execution that occurred, it can
be verified that the intervals in I overlapped, and the
value of � evaluated over I is true.

. PossI ð�Þ. In the actual execution that occurred, it can
be verified that the intervals in I overlapped or they
might have overlapped but it is impossible to ascertain,
and the value of � evaluated over I is true.

The vector strobe algorithm detects DefI and then

evaluates �. Thus, it evaluates DefI ð�Þ as an approximation

to InstantaneouslyI ð�Þ. Up to the np instances of DefI can

be detected in polynomial time Oðn3pÞ.
In contrast, to enumerate the borderline bin, it is necessary

to evaluate PossI ð�Þ. Even for a conjunctive predicate, this

requires exponential time because of the OðpnÞ instances of

PossI that occur in the lattice of CGSs.
The condition tested in (3) was used for testing for the

Definitely modality [6] for conjunctive predicates [8], [15],

[20]. Informally writing, DefI and PossI can be viewed as

counterparts of Definitely and Possibly modalities [6] defined

on predicates over executions of distributed programs, with

different semantics. We now relate the physical time

modalities to the logical time modalities.

Theorem 4. For the lattice of consistent global states induced by

the artificial strobes,

DefI ð�Þ ¼) Definitelyð�Þ ¼) InstantaneouslyI ð�Þ
¼) PossI ð�Þ ¼ Possiblyð�Þ:

ð16Þ

Proof.

1. DefI ð�Þ¼)Definitelyð�Þ. The right-hand side
(R.H.S.) follows from Definitions 4 and 5.

For conjunctive predicates, DefI ð�Þ ()
Definitelyð�Þ because the left-hand side (L.H.S.)

was shown in [16].
Note that for relational predicates, the Definitely

modality does not imply there is a I over which the

predicate � holds. See the counterexample using

Fig. 1 discussed at the end of Section 5.3. DefI ð�Þ
serves as an approximation to Definitelyð�Þ,

determining which requires evaluating PossI ð�Þ
for all states, i.e., lattice evaluation.

2. Definitelyð�Þ¼)InstantaneouslyI ð�Þ. For a con-
junctive �, this follows trivially from Definition 4.
For a relational �, in every execution, there is
some set I of intervals which overlap, leading to
the R.H.S. being true, although the I is different
in different executions.

3. InstantaneouslyI ð�Þ¼)PossI ð�Þ. Follows from
Theorem 3 for a conjunctive predicate. Definition
of InstantaneouslyI is independent of predicate
type. So if a relational predicate is true over a
single I , the R.H.S. also holds.

4. PossI ð�Þ ¼ Possiblyð�Þ. We note that PossI ð�Þ ¼
Possiblyð�Þ for both relational predicates and
conjunctive predicates because both require
only a single state in the state lattice in which
� holds. tu

Let

Set DefI ð�Þ; Set Definitelyð�Þ;
Set InstantaneouslyI ð�Þ; Set PossI ð�Þ;

and Set Possiblyð�Þ denote the sets of predicates that are

true under the corresponding modalities. Fig. 7 gives the

hierarchy of modalities on the predicate by relating

the physical time modalities of Definition 4 to the logical

time modalities of Definition 3 using a Venn diagram. For a

conjunctive predicate, the inner two circles are equal in size.
In summary, the vector strobe algorithm evaluates

DefI ð�Þ as an approximation to InstantaneouslyI ð�Þ:

1. Conjunctive predicate. DefI ð�Þ ¼ Definitelyð�Þ and is
the best possible approximation to

InstantaneouslyI ð�Þ:

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1833

Fig. 6. Hierarchy of DefI , InstantaneouslyI , and PossI physical time

modalities on overlap in I .

Fig. 7. Hierarchy of physical time modalities and logical time modalities

on a predicate �.

2. Relational predicate. DefI ð�Þ¼)Definitelyð�Þ and is
the best approximation to InstantaneouslyI ð�Þ that
can be made without increasing the Oðn3pÞ complex-
ity. To use the approximation of Definitelyð�Þ
would give greater accuracy but that requires
evaluating � over the lattice of CGSs.

Algorithm 3 modifies the vector strobe algorithm
(Algorithm 1) to classify some of the (false negative) states
encountered, in the borderline bin, without increasing
the Oðn3pÞ time. The bin would also include some true
negative states having �� < overlap < 0 that are encoun-
tered. Some false negatives will still persist as we are not
generating the state lattice. The modification is based on
detecting PossI in lines 17-20; and then checking for DefI

in line 26. If DefI does not hold, then the detection is
classified in the borderline bin.

8 DISCUSSION

Table 1 compares predicate detection using the proposed
middleware layer strobe clocks versus using synchronized
clocks from a lower layer [25]. The algorithms also allow
detection to be done by all observers at no additional
messaging cost. Results are observer-independent. The
algorithms provide all nodes the choice to run the algorithm

to know the outcome or to implement a rotating sink. To

implement a rotating sink, all nonsink nodes execute only

lines 1-3 in the predicate detection algorithms proposed.
The algorithms also have the following properties. If

communication were unreliable by way of message loss, a

lost message may lead to a wrong inference in its temporal

vicinity, but it has no ripple effect on future detection. A

crash failure of a sensor node impacts the future detection

of those predicates whose values depend on the variables

reported by the crashed node.
Recall that even with synchronized physical clocks, one

has to cope with false negatives due to skew (of the order of

microsecs or even millisecs using software protocols [32]),

when there are “races” [25]. In contrast, the bound � is of

the order of hundreds of millisecs to secs in small-scale

networks, for example, smart offices and smart homes.

However, middleware clocks are a viable option for sensing

in small-scale networks and pervasive environments,

because of the following:

1. The additional message cost, over reporting sensed
events to a sink, is relatively low (see Table 1 and
Sections 5.4 and 6.3);

2. Occurrence of false negatives is low when n is low
and/or the sensed event rate is low with respect to �.
This is the case for environments such as office, home,
habitat, wildlife, nature, and structure monitoring:

a. For example, in urban settings such as smart
homes and smart offices, the number of sensors
is typically low.

b. Furthermore, lifeform and physical object move-
ments are typically much slower than �. And in
the wild, remote terrain, nature monitoring,
events are often rare, compared to �.

Thus, we may not need the precision (in urban

settings or the wild) or be able to afford the associated

cost (in the wild) of synchronized physical clocks.
3. Simulations in related work [12] to detect

Definitelyð�Þ for a conjunctive � in a realistic model
of a smart office showed that despite increasing

1834 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

TABLE 1
Comparison of Middleware Strobe Clock Based and Synchronized (Physical)

Clock-Based Predicate Detection Algorithms to Sense Physical World Properties

the average message delay over a large range, the
probability of correct detection is quite high. The
simulations were backed by an analytical model
with supporting numerical results [12].

4. Middleware clocks avoid the cost of and dependence
on synchronized physical clocks in areas where they
are not available or not affordable. They also give
layer-independence.

5. They reduce the security issues and privacy con-
cerns that come into play when physical clock
synchronization is performed.

REFERENCES

[1] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing Quality of
Context in Pervasive Computing,” Proc. Int’l Conf. Quality
Software, pp. 193-200, 2006.

[2] Y. Bu, S. Chen, J. Li, X. Tao, and J. Lu, “Context Consistency
Management Using Ontology Based Model,” Proc. Int’l Conf.
Current Trends in Database Technology, pp. 741-755, 2006.

[3] R. Cardell-Oliver, M. Renolds, and M. Kranz, “A Space and Time
Requirements Logic for Sensor Networks,” Proc. Second Int’l Symp.
Leveraging Applications of Formal Methods, Verification, and Valida-
tion, pp. 283-289, 2006.

[4] P. Chandra and A.D. Kshemkalyani, “Causality-Based Predicate
Detection across Space and Time,” IEEE Trans. Computers, vol. 54,
no. 11, pp. 1438-1453, Nov. 2005.

[5] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determin-
ing Global States of Distributed Systems,” ACM Trans. Computer
Systems, vol. 3, no. 1, pp. 63-75, 1985.

[6] R. Cooper and K. Marzullo, “Consistent Detection of Global
Predicates,” Proc. ACM/ONR Workshop Parallel and Distributed
Debugging, pp. 163-173, May 1991.

[7] C. Fidge, “Timestamps in Message-Passing Systems that Preserve
Partial Ordering,” Australian Computer Science Comm., vol. 10,
no. 1, pp. 56-66, 1988.

[8] V.K. Garg and B. Waldecker, “Detection of Strong Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 12, pp. 1323-1333, Dec. 1996.

[9] V.K. Garg and B. Waldecker, “Detection of Weak Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 3, pp. 299-307, Mar. 1994.

[10] K. Henricksen and J. Indulska, “A Software Engineering Frame-
work for Context-Aware Pervasive Computing,” Proc. IEEE Int’l
Conf. Pervasive Computing and Comm. (Percom), pp. 77-86, 2004.

[11] P. Hu, J. Indulska, and R. Robinson, “An Autonomic Context
Management System for Pervasive Computing,” Proc. IEEE Int’l
Conf. Pervasive Computing and Comm. (Percom), pp. 213-223, 2008.

[12] Y. Huang, X. Ma, J. Cao, X. Tao, and J. Lu, “Concurrent Event
Detection for Asynchronous Consistency Checking of Pervasive
Context,” Proc. IEEE Int’l Conf. Pervasive Computing and Comm.
(Percom), 2009.

[13] L. Kaveti, S. Pulluri, and G. Singh, “Event Ordering in Pervasive
Sensor Networks,” Proc. IEEE Int’l Conf. Pervasive Computing and
Comm. Workshops (Percom), 2009.

[14] A. Khelil, F. Shaikh, B. Ayari, and N. Suri, “MWM: A Map-Based
World Model for Wireless Sensor Networks,” Proc. Second Int’l
Conf. Autonomic Computing and Comm. Systems (Autonomics), 2008.

[15] A.D. Kshemkalyani, “Temporal Interactions of Intervals in
Distributed Systems,” J. Computer and System Sciences, vol. 52,
no. 2, pp. 287-298, Apr. 1996.

[16] A.D. Kshemkalyani, “A Fine-Grained Modality Classification for
Global Predicates,” IEEE Trans. Parallel and Distributed Systems,
vol. 14, no. 8, pp. 807-816, Aug. 2003.

[17] A.D. Kshemkalyani, “Temporal Predicate Detection Using Syn-
chronized Clocks,” IEEE Trans. Computers, vol. 56, no. 11, pp. 1578-
1584, Nov. 2007.

[18] A.D. Kshemkalyani and M. Singhal, Distributed Computing:
Principles, Algorithms, and Systems. Cambridge Univ. Press, 2008.

[19] A.D. Kshemkalyani, “Middleware Clocks for Sensing the Physical
World,” Proc Int’l Workshop Middleware Tools, Services, and Run-
Time Support for Sensor Networks (MidSens ’10), pp. 15-21, 2010.

[20] A.D. Kshemkalyani, “Repeated Detection of Conjunctive Predi-
cates in Distributed Executions,” Information Processing Letters,
vol. 111, no. 9, pp. 447-452, Apr. 2011.

[21] A.D. Kshemkalyani, “Immediate Detection of Predicates in
Pervasive Environments,” J. Parallel and Distributed Computing,
vol. 72, no. 2, pp. 219-230, Feb. 2012.

[22] A.D. Kshemkalyani, A. Khokhar, and M. Shen, “Execution and
Time Models for Pervasive Sensor Networks,” Int’l J. Networking
and Computation, vol. 2, no. 1, pp. 2-17, 2012.

[23] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[24] F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Proc. Int’l Workshop Parallel and Distributed Algorithms,
pp. 215-226, 1989.

[25] J. Mayo and P. Kearns, “Global Predicates in Rough Real Time,”
Proc. IEEE Symp. Parallel and Distributed Processing, pp. 17-24, 1995.

[26] P. Pietzuch, B. Shand, and J. Bacon, “Composite Event Detection
as a Generic Middleware Extension,” IEEE Network, vol. 18, no. 1,
pp. 44-55, Jan./Feb. 2004.

[27] M. Raynal and M. Singhal, “Logical Time: Capturing Causality in
Distributed Systems,” Computer, vol. 29, no. 2, pp. 49-56, Feb. 1996.

[28] M. Roman, C. Hess, R. Cerqeira, A. Ranganathan, R.H. Campbell,
and K. Nahrstedt, “A Middleware Infrastructure for Active
Spaces,” IEEE Pervasive Computing, vol. 1, no. 4, pp. 74-83, Oct.-
Dec. 2002.

[29] K. Romer and F. Mattern, “Event-Based Systems for Detecting
Real-World States with Sensor Networks: A Critical Analysis,”
Proc. DEST Workshop Signal Processing in Wireless Sensor Networks
ISSNIP, pp. 389-395, 2004.

[30] M. Sama, D.S. Rosenblum, Z. Wang, and S. Elbaum, “Model-
Based Fault Detection in Context-Aware Adaptive Applications,”
Proc. 16th ACM SIGSOFT Int’l Symp. Foundations Software Eng.
(SIGSOFT ’08/FSE-16), pp. 261-271, 2008.

[31] S. Stoller, “Detecting Global Predicates in Distributed Systems
with Clocks,” Distributed Computing, vol. 13, pp. 85-98, 2000.

[32] B. Sundararaman, U. Buy, and A.D. Kshemkalyani, “Clock
Synchronization for Wireless Sensor Networks: A Survey,” Ad-
Hoc Networks, vol. 3, no. 3, pp. 281-323, May 2005.

[33] C. Xu, S. Cheung, W. Chan, and C. Ye, “Partial Constraint
Checking for Context Consistency in Pervasive Computing,” ACM
Trans. Software Eng. Methodologies, vol. 19, no. 3, pp. 1-61, 2010.

[34] C. Xu and S.C. Cheung, “Inconsistency Detection and Resolution
for Context-Aware Middleware Support,” Proc. ACM SIGSOFT
Int’l Symp. Foundations Software Eng., pp. 336-345, 2005.

[35] C. Xu, S.C. Cheung, W. Chan, and C. Ye, “Heuristics-Based
Strategies for Resolving Context Inconsistencies in Pervasive
Computing Applications,” Proc. IEEE 28th Int’l Conf. Distributed
Computing Systems, pp. 713-721, 2008.

KSHEMKALYANI AND CAO: PREDICATE DETECTION IN ASYNCHRONOUS PERVASIVE ENVIRONMENTS 1835

Ajay D. Kshemkalyani received the BTech
degree in computer science and engineering
from the Indian Institute of Technology, Bombay,
in 1987, and the MS and PhD degrees in
computer and information science from The
Ohio State University in 1988 and 1991,
respectively. He spent six years at IBM Re-
search Triangle Park working on various aspects
of computer networks, before joining academia.
He is currently a professor in the Department of

Computer Science at the University of Illinois at Chicago. His research
interests include distributed computing, distributed algorithms, computer
networks, and concurrent systems. In 1999, he received the US National
Science Foundation Career Award. He previously served on the editorial
board of the Elsevier journal Computer Networks, and is currently an
editor of the IEEE Transactions on Parallel and Distributed Systems. He
has coauthored a book entitled Distributed Computing: Principles,
Algorithms, and Systems (Cambridge University Press, 2008). He is a
distinguished scientist of the ACM and a senior member of the IEEE.

Jiannong Cao received the BSc degree
in computer science from Nanjing University,
Nanjing, China, in 1982, and the MSc and PhD
degrees in computer science from Washington
State University, Pullman, in 1986 and 1990,
respectively. He is currently a professor in the
Department of Computing at Hong Kong Poly-
technic University, Hong Kong. Before joining
Hong Kong Polytechnic University, he was on
the faculty of computer science at James Cook

University and the University of Adelaide in Australia, and City University
of Hong Kong. His research interests include parallel and distributed
computing, networking, mobile and wireless computing, fault tolerance,
and distributed software architecture. He has published more than
200 technical papers in the above areas. His recent research has
focused on mobile and pervasive computing systems, developing
testbed, protocols, middleware, and applications. He has served as a
member of editorial boards of several international journals, a reviewer
for international journals/conference proceedings, and also as an
organizing/program committee member for many international confer-
ences. He is a senior member of the China Computer Federation, a
senior member of the IEEE, including the IEEE Computer Society and
the IEEE Communication Society, and a member of the ACM. He is also
a member of the IEEE Technical Committee on Distributed Processing,
IEEE Technical Committee on Parallel Processing, IEEE Technical
Committee on Fault Tolerant Computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1836 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

