
Detecting Causality in the Presence of Byzantine
Processes: The Synchronous Systems Case
Anshuman Misra #

University of Illinois at Chicago, IL, USA

Ajay D. Kshemkalyani1 #

University of Illinois at Chicago, IL, USA

Abstract
Detecting causality or the happens before relation between events in a distributed system is a
fundamental building block for distributed applications. It was recently proved that this problem
cannot be solved in an asynchronous distributed system in the presence of Byzantine processes,
irrespective of whether the communication mechanism is via unicasts, multicasts, or broadcasts.
In light of this impossibility result, we turn attention to synchronous systems and examine the
possibility of solving the causality detection problem in such systems. In this paper, we prove
that causality detection between events can be solved in the presence of Byzantine processes in a
synchronous distributed system. The positive result holds for unicast, multicast, as well as broadcast
modes of communication. We prove the result by providing an algorithm. Our solution uses the
Replicated State Machine (RSM) approach and vector clocks.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms; Networks
→ Network algorithms

Keywords and phrases Byzantine fault-tolerance, causality, happens before, distributed system,
message-passing, synchronous system

Digital Object Identifier 10.4230/LIPIcs.TIME.2023.11

1 Introduction

1.1 Background
Causality is an important tool in understanding and reasoning about distributed execu-
tions [32]. Lamport formulated the “happens before” or the causality relation, denoted
→, between events in a distributed system [20]. Given two events e and e′, the causality
detection problem asks to determine whether e → e′. There are many applications of causality
detection including determining consistent recovery points in distributed databases, deadlock
detection, termination detection, distributed predicate detection, distributed debugging and
monitoring, and the detection of race conditions and other synchronization errors [18].

The causality relation between events can be captured by tracking causality graphs [7],
scalar clocks [20], vector clocks [5, 8, 22], and several other variants of logical clocks such
as hierarchical clocks [35], plausible clocks [34], dotted version vectors [30], interval tree
clocks [1], logical physical clocks [19], Bloom clocks [16, 23], incremental clocks [33], and
resettable prime clocks [17, 29]. Some of these variants track causality accurately while
others introduce approximations and inaccuracies as trade-offs in the interest of savings on
the space and/or time and/or message complexity overheads. As stated by Schwarz and
Mattern [32], the search for the holy grail of the ideal causality tracking mechanism is on.
These above works in the literature assume that processes are correct (non-faulty). The
causality detection problem for a system with Byzantine processes was recently introduced
and studied in [25].

1 Corresponding author
© Anshuman Misra and Ajay D. Kshemkalyani;
licensed under Creative Commons License CC-BY 4.0

30th International Symposium on Temporal Representation and Reasoning (TIME 2023).
Editors: Alexander Artikis, Florian Bruse, and Luke Hunsberger; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amisra7@uic.edu
mailto:ajay@uic.edu
https://orcid.org/0000-0003-2451-7306
https://doi.org/10.4230/LIPIcs.TIME.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Detecting Causality in the Presence of Byzantine Processes

The related problem of causal ordering of messages asks that if the send event of message
m happens before the send event of message m′, then m′ should not be delivered before m
at all the common destinations of m and m′. Under the Byzantine failure model, causal
ordering has recently been studied in [2] for broadcast communication and in [24, 26, 27] for
unicast, multicast, as well as broadcast communication.

1.2 Contributions

It was recently proved that the problem of detecting causality between a pair of events cannot
be solved in an asynchronous system in the presence of Byzantine processes, irrespective of
whether the communication is via unicasts, multicasts, or broadcasts [25]. In the multicast
mode of communication, each send event sends a message to a group consisting of a subset
of the set of processes in the system. Different send events can send to different subsets
of processes. Communicating by unicasts and communicating by broadcasts are special
cases of multicasting. It was shown in [25] that in asynchronous systems with even a single
Byzantine process, the unicast and multicast modes of communication are susceptible to false
positives and false negatives, whereas the broadcast mode of communication is susceptible to
false negatives but no false positives. A false positive means that e ̸→ e′ whereas e → e′ is
perceived/detected. A false negative means than e → e′ whereas e ̸→ e′ is perceived/detected.

1. In light of the impossibility result for asynchronous systems, this paper examines the
solvability of causality detection in synchronous systems in the presence of Byzantine
processes.

2. We prove that causality detection between events can be solved in the presence of
Byzantine processes in a synchronous system. We provide an algorithm that solves the
causality detection problem. The positive result holds for unicasts, multicasts, as well as
broadcasts. Our solution uses the Replicated State Machine (RSM) approach [31], which
works only in synchronous systems, in conjunction with vector clocks.

3. This is the first paper to establish this result. The paper uses a simple combination of
RSMs and vector clocks and is yet significant, similar to results in [8, 22,32], because it
establishes a fundamental possibility result about causality detection in the presence of
Byzantine processes in a synchronous system.

4. The results for multicasts, unicasts, and broadcasts are summarized in Table 1. In a
system with n application processes, our RSM-based solution uses 3t+ 1 process replicas
per application process, where t is the maximum number of Byzantine processes that can
be tolerated in a RSM. Thus, there can be at most nt Byzantine processes among a total
of (3t+ 1)n processes partitioned into n RSMs of 3t+ 1 processes each, with each RSM
having up to t Byzantine processes. By using (3t+ 1)n processes and the RSM approach
to represent n application processes, the malicious effects of Byzantine process behaviors
are neutralized.

Roadmap. Section 2 gives the system model. Section 3 formulates the problem of detecting
causality in the presence of Byzantine processes. Section 4 proves the results outlined under
“Contributions” above. Section 5 gives a discussion and concludes.

A. Misra and A. D. Kshemkalyani 11:3

Table 1 Detecting causality between events under different communication modes in asynchronous
and synchronous systems. F P is false positive, F N is false negative. F P /F N means no false
positive/no false negative is possible.

Mode of Detecting “happens before” Detecting “happens before”
communication in asynchronous systems in synchronous systems
Multicasts Impossible [25] Possible, Theorem 11

F P, F N F P , F N

Unicasts Impossible [25] Possible, Corollary 12
F P, F N F P , F N

Broadcasts Impossible [25] Possible, Corollary 13
F P , F N F P , F N

2 System Model

This paper deals with a distributed system having Byzantine processes which are processes
that can misbehave [21,28]. A correct process behaves exactly as specified by the algorithm
whereas a Byzantine process may exhibit arbitrary behaviour including crashing at any point
during the execution. A Byzantine process cannot impersonate another process or spawn
new processes.

The distributed system is modelled as an undirected graph G = (P,C). Here P is the set
of processes communicating in the distributed system. Let |P | = n. C is the set of (logical)
communication links over which processes communicate by message passing. The channels
are assumed to be FIFO. G is a complete graph.

The distributed system is assumed to be synchronous, i.e., there is a known fixed upper
bound δ on the message latency, and a known fixed upper bound ψ on the relative speeds of
processors [6]. In contrast, an asynchronous system has been defined as one in which there
is no upper bound on the message latency and on the relative speeds of processors [6]. A
synchronous system guarantees that the relative speeds of non-faulty processors and messages
is bounded, and this is equivalent to assuming that the system has synchronized real-time
clocks [31].

Let ex
i , where x ≥ 1, denote the x-th event executed by process pi. An event may be an

internal event, a message send event, or a message receive event. Let the state of pi after
ex

i be denoted sx
i , where x ≥ 1, and let s0

i be the initial state. The execution at pi is the
sequence of alternating events and resulting states, as ⟨s0

i , e
1
i , s

1
i , e

2
i , s

2
i . . .⟩. The sequence of

events ⟨e1
i , e

2
i , . . .⟩ is called the execution history at pi and denoted Ei. Let E =

⋃
i{Ei} and

let T (E) denote the set of all events in (the set of sequences) E. The happens before [20]
relation, denoted →, is an irreflexive, asymmetric, and transitive partial order defined over
events in a distributed execution that is used to define causality.

▶ Definition 1. The happens before relation → on events T (E) consists of the following
rules:
1. Program Order: For the sequence of events ⟨e1

i , e
2
i , . . .⟩ executed by process pi, ∀ x, y

such that x < y we have ex
i → ey

i .
2. Message Order: If event ex

i is a message send event executed at process pi and ey
j is

the corresponding message receive event at process pj, then ex
i → ey

j .
3. Transitive Order: If e → e′ ∧ e′ → e′′ then e → e′′.

▶ Definition 2. The causal past of an event e is denoted as CP (e) and defined as the set of
events {e′ ∈ T (E) | e′ → e}.

TIME 2023

11:4 Detecting Causality in the Presence of Byzantine Processes

3 Problem Formulation

The problem formulation is done similar to the way in [25]. An algorithm to solve the
causality detection problem collects the execution history of each process in the system and
derives causal relations from it. Ei is the actual execution history at pi. For any causality
detection algorithm, let Fi be the execution history at pi as perceived and collected by
the algorithm and let F =

⋃
i{Fi}. F thus denotes the execution history of the system as

perceived and collected by the algorithm. Analogous to T (E), let T (F) denote the set of all
events in F . Analogous to Definition 1, the happens before relation can be defined on T (F)
instead of on T (E). With a slight relaxation of notation, let T (Ei) and T (Fi) denote the set
of all events in Ei and Fi, respectively.

Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0) of e1 → e2 using E and F ,
respectively. Byzantine processes may corrupt the collection of F to make it different from E.
We assume that a correct process pi needs to detect whether ex

h → e∗
i holds and e∗

i is an event
in T (E). If ex

h ̸∈ T (E) then ex
h → e∗

i |E evaluates to false. If ex
h ̸∈ T (F) (or e∗

i ̸∈ T (F)) then
ex

h → e∗
i |F evaluates to false. We assume an oracle that is used for determining correctness

of the causality detection algorithm; this oracle has access to E which can be any execution
history such that T (E) ⊇ CP (e∗

i).
Byzantine processes may collude as follows.

1. To delete ex
h from Fh or in general, record F as any alteration of E such that ex

h → e∗
i |F = 0,

while ex
h → e∗

i |E = 1, or
2. To add a fake event ex

h in Fh or in general, record F as any alteration of E such that
ex

h → e∗
i |F = 1, while ex

h → e∗
i |E = 0.

Without loss of generality, we have that ex
h ∈ T (E) ∪ T (F). Note that ex

h belongs to
T (F) \ T (E) when it is a fake event in F .

▶ Definition 3. The causality detection problem CD(E,F, e∗
i) for any event e∗

i ∈ T (E) at a
correct process pi is to devise an algorithm to collect the execution history E as F at pi such
that valid(F) = 1, where

valid(F) =
{

1 if ∀ex
h, e

x
h → e∗

i |E = ex
h → e∗

i |F
0 otherwise

When 1 is returned, the algorithm output matches the actual (God’s) truth and solves
CD correctly. Thus, returning 1 indicates that the problem has been solved correctly by the
algorithm using F . 0 is returned if either

∃ex
h such that ex

h → e∗
i |E = 1 ∧ ex

h → e∗
i |F = 0 (denoting a false negative), or

∃ex
h such that ex

h → e∗
i |E = 0 ∧ ex

h → e∗
i |F = 1 (denoting a false positive).

Using the state-machine replication approach, we show that F at a correct process can
be made to exactly match E, hence there is no possibility of a false positive or of a false
negative.

4 Solution based on Replicated State Machines (RSMs)

4.1 Background on RSMs
The discussion in this section is based on the survey by Schneider [31]. A process execution
is modelled as the actions of a finite state machine. Two basic requirements are: (O1: FIFO
order) Messages issued by a client to a state machine are processed in the order issued, and
(O2: Causal order) If a message m1 issued to a state machine sm by client c could have
caused (i.e., causally preceded) a message m2 issued by client c′ to sm, then sm processes
m1 before m2.

A. Misra and A. D. Kshemkalyani 11:5

A t-tolerant version of a state machine is implemented by replicating that state machine
and running a state machine replica smr on different processors in an ensemble. If each
replica run by a correct processor starts in the same initial state and executes the same
requests in the same order, then each replica will execute the same step at each transition
and produce the same output. Under Byzantine failures, an ensemble implementing a t

tolerant RSM must have at least 2t+ 1 replicas and the output of each (correct) replica in
the ensemble is the output produced by t+ 1 replicas. To ensure that all replicas’ actions
and transitions are coordinated, all replicas in an ensemble must receive and process the
same sequence of messages. This can be expressed as two requirements.

Agreement: Every non-faulty replica receives every message.
Total order: Every non-faulty replica processes the messages it receives in the same order.

Agreement requires that (IC1) for each message sent by a replica, all non-faulty replicas of the
destination process agree on the contents of the message, and (IC2) if the transmitting replica
is non-faulty, then all non-faulty replicas of the destination process use the transmitter’s value
as the one on which they agree. Any of the Byzantine agreement protocols in the literature
can be used [21, 28]; they all require that the total number of replicas (of the destination
process) is at least 3t + 1. Furthermore, no deterministic algorithm can implement state
machine replication, which requires agreement or consensus, in an asynchronous system [9].
So we assume a synchronous system.

Total order can be satisfied by assigning unique identifiers to messages sent and having the
receiver’s smrs process the messages as per a total order relation on these unique identifiers.
For the RSM of application process pj , its various 3t+1 smrs are denoted smrj,w. A message
is defined to be stable at smrj,w once no message from a correct sender process replica (across
all sender processes from various sender process ensembles) having a lower unique identifier
can be subsequently delivered to smrj,w. Total order is implemented by requiring a replica
process to next process the stable request with the smallest stable identifier. Mechanisms for
generating unique identifiers satisfying FIFO and causal order are given by Schneider [31].
These mechanisms are based on synchronized real-time clocks (which guarantees O1 and
causal order O2 implicitly), or based on receiver replica-generated unique identifiers; the latter
approach also requires for maintaining FIFO order and causal order (O1 and O2) that once
a transmitter replica starts disseminating a message, it performs no other communication
until the current message has been delivered to every receiver replica that is a destination of
the current message. In a system with Byzantine processes, the replica-generated unique
identifiers approach along with using the assumptions on synchronized real-time clocks can
satisfy the total order. But note here that the requirement of synchronized real-time clocks
forces us to assume a synchronous system.

4.2 Adapting RSMs to Our Solution
In our system model having n application processes, each process pi modelled as a RSM is
replicated 3t+ 1-way as pi,1, . . . , pi,3t+1 and these processes form the ensemble pi. Various
RSM ensembles communicate in a peer-to-peer (P2P) manner with each other. When a
RSM ensemble sends/receives a message, it is referred to as a sender/receiver RSM ensemble.
Thus in a system having n application processes, there are (3t+ 1)n processes (i.e., replicas)
partitioned into n RSM ensembles and each ensemble can have at most t Byzantine processes.
Each pi,a, i.e., smri,a, uses a sequence number denoted seqi,a that is incremented for each
message that it sends/multicasts as a sender RSM replica. The (3t + 1)n processes can
be viewed as running in an application layer that is above the RSM layer which provides
Agreement and Total Order.

TIME 2023

11:6 Detecting Causality in the Presence of Byzantine Processes

Using the implementation of RSMs described by Schneider or any of the subsequent
implementations proposed since then, Agreement and Total Order are guaranteed. Further-
more, Total Order is guaranteed in a receiver RSM ensemble for messages from multiple
sender RSM ensembles. In addition, when each replica in the sender RSM ensemble does a
multicast, the following version of the Agreement property needs to be implemented.

Agreement−M : Every non-faulty replica in every RSM ensemble that is included in the
destination set of a multicast/broadcast receives the message multicast/broadcast.

Agreement-M requires that (IC1-M) for each message sent by a replica, all non-faulty replicas
of the destination processes of a multicast/broadcast agree on the contents of the message,
and (IC2-M) if the transmitting replica is non-faulty, then all non-faulty replicas of the
destination processes of a multicast/broadcast use the transmitter’s value as the one on
which they agree.

When a RSM replica receives a message from the RSM layer satisfying Total Order and
Agreement/Agreement-M, we say that the message is TOA-delivered to that RSM replica.
Under Byzantine failures, an ensemble implementing a t tolerant RSM in a system model
disallowing cryptography must have at least 3t+ 1 replicas and the output of each (correct)
replica in an ensemble is the output produced by a majority = t+ 1 replicas. Henceforth, we
treat majority as having the value t+ 1. Since we are using RSMs for “clients” and “servers”
in P2P mode, whenever a correct receiver replica is TOA-delivered (gets) t + 1 identical
messages M from the replicas of a sender ensemble, the (correct) receiver replica delivers the
message to the layer above. We say that a message M is SR-delivered to a RSM replica if
majority = t+ 1 identical copies of the message having the same seqj,∗ from the replicas of a
sender ensemble j have been TOA-delivered to it. On SR-delivery of a message to a RSM
replica, that replica makes the next transition according to the local state machine. The
Agreement and Total Order properties guarantee that if smri,a SR-delivers such a message,
then every other correct receiver replica smri,y in that ensemble will also SR-deliver that
same message M in exactly the order and sequence it was SR-delivered by smri,a. Note that
there are at least t+ 1 votes for this message M from the sender replica ensemble and since
there are at most t Byzantine processes in the sender replica ensemble, their state machines
can send only up to t messages (for any particular sequence number seqj,∗ from the sender
ensemble j) that are received by smri,a and that differ from the majority value of M received
t+ 1 times by smri,a.

When smri,a sends a message to pj at the application level, it sends it to all replicas
smrj,b. When smri,a SR-delivers a message, a receive event is said to have occurred at the
application level. Henceforth, we also refer to smri,a as pi,a and RSM i as pi.

4.3 Data Structures and Algorithm

Algorithm 1 is an online algorithm in which each correct replica pi,a records in F =
⋃

k{Fk}
its view of the execution history of RSM pk via lines 1-21. This recording of F in the local
replica is done by piggybacking control information on the application messages; no extra
messages are used. There is also a module in Algorithm 1 lines 22-26 that takes as input
two events ex

h and e∗
i and produces output from {true, false} giving ex

h → e∗
i |F . Theorem 9

shows that the set of events in E matches the set of events recorded in F , even though E is
never recorded and is accessible only to an oracle. Next we show in Theorem 11 that using
the output of the algorithm lines 22-26 function test, and Theorem 9, the causality detection
problem is solved by Algorithm 1’s recording of F and function test using this F , i.e., there
are no false positives nor false negatives.

A. Misra and A. D. Kshemkalyani 11:7

Algorithm 1 Processing of control information and testing for ex
h → e∗

i . Code at process
pi,a.

Data: Each process pi,a maintains (i) an integer seqi,a, (ii) F which is the union of
sequences Fk (history of events at pk) for all k, (iii) integer matrix
LASKALSJ [n, n], (iv) integer matrix V [|T (Fi)|, n].

Input: ex
h, e∗

i

Output: ex
h → e∗

i |F ∈ {true, false}

1 when pi,a needs to send application message M to pj,∗: ▷ Each other correct pi,a′

state machine will execute likewise
2 seqi,a = seqi,a + 1
3 append current send event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)
4 (∀k) include history from Fk after event LASKALSJ [j, k] in inc_F

5 (∀k) LASKALSJ [j, k] = maxeventID(Fk)
6 send (M, inc_F, seqi,a, j) to each pj,∗ via RSM layer (to satisfy RSM Total Order and

Agreement for receiver ensemble pj)

7 when pi,a needs to send application message M to each pj,∗ for each pj ∈ G: ▷ Each
other correct pi,a′ state machine will execute likewise

8 seqi,a = seqi,a + 1
9 append current send event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

10 (∀k) include history from Fk after event minpj ∈G(LASKALSJ [j, k]) in inc_F

11 (∀pj ∈ G)(∀k) LASKALSJ [j, k] = maxeventID(Fk)
12 send (M, inc_F, seqi,a, G) to each pj,∗ for each pj ∈ G via RSM layer (to satisfy RSM Total

Order and Agreement−M for each receiver ensemble pj)

13 when (M, inc_F, seqj , i/G) is SR-delivered to pi,a from pj : ▷ Happens when t + 1
identical copies of (M, inc_F, seqj , i/G) for seqj (which equals seqj,∗) are
TOA-delivered from pj,∗

14 for all k do
15 if maxeventID(Fk) < maxeventID(inc_Fk) then
16 append history of events ⟨maxeventID(Fk) + 1, . . . , maxeventID(inc_Fk)⟩ from

inc_Fk to Fk

17 seqi,a = seqi,a + 1
18 append current receive event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

19 At internal event at pi,a:
20 seqi,a = seqi,a + 1
21 append current internal event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

22 To determine ex
h → e∗

i at correct state machine pi,a via call to test(ex
h → e∗

i):
23 if ex

h is in Fh and ∗ ≤ maxeventID(Fi) then
24 return(ex

h → e∗
i |F) ▷ the test is whether V [∗, h] ≥ x

25 else
26 return(false)

Algorithm 1 gives the processing of control information done at a RSM replica pi,a. Each
RSM replica maintains the following data structures.
1. An integer seqi,a, initialized to 0, that gives the sequence number of the latest local event

at pi,a.
2. A local F that is a set of sequences Fk. F contains pi,a’s view of the recorded execution

history Fk of each RSM pk.

TIME 2023

11:8 Detecting Causality in the Presence of Byzantine Processes

3. An integer matrix LASKALSJ [n, n], where LASKALSJ [j, k] gives the sequence number
of the latest send event by pk (as per/from the local Fk) at the point in time of the last
send event to pj,∗.
This data structure is for efficiently identifying to send to pj only the incremental updates
that have occurred to the local Fk at pi,a for each other process pk, that need to be
transmitted to the destinations pj of a message send event since pi,a’s last send to pj .

4. pi,a also maintains an auxiliary integer matrix V [|T (Fi)|, n], where V [s, k] is maxeventID-
(Fk) in F (es

i,a), i.e., the highest sequence number in Fk(∈ F) when the sth local event
es

i,a was executed at pi,a.
Lines 1-6 give the processing for sending a unicast. If multicast can be implemented as a set
of independent unicasts, similar code (but with a single increment in line 2) can be executed
for sending to each destination of the multicast group. Otherwise a multicast send processing
can be implemented via lines 7-12. When a message along with the incremental update
inc_F (containing the incremental updates for all pk as per the sender) is SR-delivered to
a RSM replica, it updates its Fk as shown in lines 13-18. A broadcast is a special case of
multicast and is hence handled as a multicast. The test for the happens before relation using
V is given in lines 22-26.

In the auxiliary matrix V at pi,a, row V [w] is the vector timestamp [8,22] of event ew
i,a

and could be stored along with the event in Fi. V [w, j] at pi,a identifies (gives the sequence
number of) the event at the surface of the causal past cone of event ew

i,a at RSM pj . At
event seqi,a for each type of event (unicast send (line 3), multicast send (line 9), delivery
(line 18), internal (line 21)), V [seqi,a, k] for all k is set to maxeventID(Fk). V is used only
to implement the test ex

h → e∗
i , viz., V [∗, h] ≥ x.

4.4 Correctness Proof
Events such as ex

h with a single subscript which denotes the application-level process ID of ph,
are at the application level or RSM-ensemble level. Events such as ex

h,a with two subscripts
denote events at smrh,a, i.e., ph,a, the individual state machine sm of replica a of RSM ph

in its RSM ensemble. Next, we adapt the definitions of E, of the happens before relation,
and of causal past to abstract away the RSM details.

▶ Definition 4. Define E_RSM to be the set of all events {ex
h} such that the events ex

h,a

have occurred at at least majority (= t+ 1) number of processes ph,a.

▶ Definition 5. The happens before relation →RSM on events in E_RSM (which occur in
ensembles of RSMs) consists of the following rules:
1. Program Order: For the sequence of events ⟨e1

i , e
2
i , . . .⟩ executed by RSM ensemble

process pi, ∀ x, y such that x < y we have ex
i →RSM ey

i .
2. Message Order: If event ey

j is a message receive event executed at RSM ensemble
process pj (i.e., at at least a majority of processes pj,b) and there is a corresponding RSM
send event ex

i in RSM ensemble pi (i.e., there are at least a majority events ex
i,a that are

the corresponding message send events at processes pi,a to RSM ensemble pj), we have
ex

i →RSM ey
j .

3. Transitive Order: If e →RSM e′ ∧ e′ →RSM e′′ then e →RSM e′′.

▶ Definition 6. The RSM-causal past of an event e ∈ E_RSM is denoted as CP_RSM(e)
and defined as the set of events {e′ ∈ E_RSM | e′ →RSM e}.

In the causality graph (E_RSM,→RSM), there is a RSM-causal path from any event in
CP_RSM(e) to e comprised of program order edges and message order edges.

A. Misra and A. D. Kshemkalyani 11:9

▶ Lemma 7. An event ex
h ∈ E_RSM occurs at each correct process ph,z in the RSM ensemble

ph.

Proof. By definition, an event ex
h ∈ E_RSM occurs at at least majority (= t+ 1) processes

ph,a in the RSM ensemble ph. As at least one of these majority processes ph,a′ must be correct
and executes ex

h,a′ , and from the Agreement/Agreement-M and Total Order properties of the
RSM, each correct smr ph,z will behave identically to ph,a′ and will execute ex

h,z. ◀

▶ Lemma 8. An event ex
h,z that occurs at a correct process ph,z also occurs as event ex

h in
the RSM ensemble ph.

Proof. As the RSM ensemble works in perfect unision, an event ex
h,z that occurs at a correct

process ph,z also occurs at all the correct replicas in RSM ensemble ph and thus at at least
majority replicas in that ensemble. Then by Definition 4, the event is also said to occur as
ex

h in RSM ensemble ph. ◀

▶ Theorem 9. For an event e at a RSM pi (e must occur at each correct process pi,z by
Lemma 7), the set of events T (F) when e is executed at each correct pi,z is CP_RSM(e).

Proof. There are two parts to this theorem.
1. If an event belongs to CP_RSM(e), the event must belong to T (F) when event e is

executed at correct process pi,z.
If event ex

h ∈ CP_RSM(e) then ex
h must be genuine (not fake) and there is a “RSM-

causal path” from ex
h to e in (E_RSM,→RSM). Such a RSM-causal path is comprised of

program order edges and message order edges. For each message order edge under →RSM

corresponding to a message hop along such a causal path, there are at least majority
(= t+ 1) edges under → from each of the at least majority (= t+ 1) correct processes
in the sender RSM ensemble to the at least majority (= t+ 1) correct processes in the
receiver RSM ensemble. Furthermore, for each program order edge at pj under →RSM

along the RSM-causal path, all the correct processes in the pj ensemble preserve the
content of F at the previous event along the corresponding program order edge under →.
Information about ex

h gets propagated via inc_Fh and Fh along all such message order
edges and program order edges through the processes pj along the “RSM-causal path”
from ex

h to e and gets inserted in Fh at pi,z, as can be seen from lines (1-6) (for unicasts)
or (7-12) (for multicasts), and lines (13-18). Once an entry is inserted in Fh at a correct
process, it is never deleted. Note, event e ∈ E_RSM and is specifically some event ey

i

that, by Lemma 7, must also occur as ei,z (or ey
i,z) at each correct process pi,z. Thus

ex
h ∈ CP_RSM(e) implies ex

h is in Fh when e is executed at pi,z.
2. If an event e′ belongs to T (F) when event e is executed at correct process pi,z (the event

e must also occur at RSM ensemble process pi by Lemma 8), the event e′ must belong to
CP_RSM(e).
For event ex

h in Fh when e∗
i,z occurs at pi,z, there are two cases: h = i and h ̸= i.

a. First consider h = i. ex
i,z (as ex

i) must have been inserted in Fi at ex
i,z only in line

3 (for unicast send event) or line 9 (for multicast send event) or line 18 (for receive
event) or line 21 (for internal event), and is never deleted by the correct process pi,z as
per the algorithm code. Clearly by Lemma 8, ex

i,z and e∗
i,z and all events in between

at pi,z must have occurred at RSM ensemble process pi as pi,z is a correct process.
As there exist program order edges under →RSM from ex

i to e∗
i and pi,z is a correct

process, it must be that ex
h=i ∈ CP_RSM(e∗

i).

TIME 2023

11:10 Detecting Causality in the Presence of Byzantine Processes

b. Consider now h ̸= i. Set y to ∗, i′ to i, z′ to z.
As event ex

h is in Fh when ey
i′,z′ occurs at correct process pi′,z′ , then ex

h could have
been inserted only in line 16 on the SR-delivery of a message m at an event e1i′,z′ in
the causal past of ey

i′,z′ (along program order edges under → or under →RSM) that
resulted from the TOA-delivery from some (at least majority) of processes pj,a that
sent at event ew

j . As at least majority (= t+ 1) processes in the preceding sender RSM
ensemble reported the same inc_F in the same message for the message to have been
SR-delivered to pi,z, the impact of Byzantine processes in the ensemble is filtered out.
By Lemma 8 note that receive event e1i′ occurs at RSM ensemble pi′ because e1i′,z′

occurs at a correct process. Also, send event ew
j at RSM pj must have occurred as at

least a majority of processes pj,a sent m, and so ew
j must have occurred at all correct

processes pj,c in the ensemble pj . The message m corresponds to a message order edge
under →RSM . Moreover the send event ew

j at RSM pj belongs to CP_RSM(ey
i′) (and

hence to CP_RSM(e∗
i,z = e) by transitivity because ey

i′ ∈ CP_RSM(e) as per the
previous invocation (if any) of this case 2b). ex

h must have existed in Fh at the time
these correct pj,c sent m at ew

j,c. There are two subcases: j ̸= h and j = h.
i. j ≠ h. Invoke case 2b but with y set to w, i′ set to j, z′ set to c. This case gets

invoked at most n− 1 times as there are n− 1 processes (RSMs) pj (j ̸= h) in the
system and ex

h gets added to Fh at correct replica processes c of any particular pj

at most once.
ii. j = h: ex

h must have been inserted in Fh at ex
h(=j),c in line 3 (for unicast send event)

or line 9 (for multicast send event) or in line 18/21 at a receive/internal event, at
ph, i.e., at each correct pj,c. Clearly by Lemma 8, ex

j,c and ew
j,c and all events in

between at pj,c must have occurred at RSM ensemble process pj(=h) as pj,c is a
correct process and hence there exist program order edges under →RSM from ex

j(=h)
to ew

j . Moreover such an event e′ (or ex
h) must belong to CP_RSM(ew

j) (and hence
to CP_RSM(e∗

i,z = e) by transitivity because ew
j ∈ CP_RSM(e) as shown above

for case 2b of this invocation).
Combining transitively the above case invocations, it follows that event ex

h is in Fh

when e = e∗
i,z is executed at pi,z implies ex

h ∈ CP_RSM(e) and ex
h cannot be fake.

Both parts of the theorem thus stand proved. ◀

Next we adapt the definition of the CD problem to deal with the RSM approach. We
assume an oracle that is used for determining correctness of the causality detection algorithm
at p∗

i,z; this oracle has access to E_RSM which can be any downward-closed superset of
CP_RSM(e∗

i). Also let F (e∗
i,z) be the value of F at pi,z when e∗

i,z is executed.

▶ Definition 10. The causality detection problem CD(E_RSM,F (e∗
i,z), e∗

i,z) for any event
e∗

i,z at a correct process pi,z (where e∗
i ∈ E_RSM) is to devise an algorithm to collect the

execution history of events E_RSM as F (e∗
i,z) at pi,z such that valid(F) = 1, where

valid(F) =
{

1 if ∀ex
h, e

x
h → e∗

i,z|E_RSM = ex
h → e∗

i,z|F
0 otherwise

When 1 is returned, the algorithm output matches God’s truth and solves CD correctly.
Thus, returning 1 indicates that the problem has been solved correctly by the algorithm
using F . 0 is returned if either

∃ex
h such that ex

h → e∗
i,z|E_RSM = 1 ∧ ex

h → e∗
i,z|F = 0 (denoting a false negative and

(E_RSM ∩ CP_RSM(e∗
i,z)) \ T (F (e∗

i,z)) ̸= ∅), or
∃ex

h such that ex
h → e∗

i,z|E_RSM = 0 ∧ ex
h → e∗

i,z|F = 1 (denoting a false positive and
T (F (e∗

i,z)) \ E_RSM ̸= ∅).

A. Misra and A. D. Kshemkalyani 11:11

Algorithm 1 produces the output of ex
h → e∗

i |F at pi,a (lines 22-26) via recording F (lines
1-21). Theorem 9 showed that the set of events in E_RSM matched the set of events
recorded in F , even though E_RSM is never recorded and is accessible only to an oracle.
Next we show in Theorem 11 that using the output of the algorithm and Theorem 9, the
causality detection problem CD(E_RSM,F (e∗

i,z), e∗
i,z) is solved, i.e., there are no false

positives nor false negatives.

▶ Theorem 11. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the multicast mode of communication in synchronous systems.

Proof. This theorem has two parts – no false negatives and no false positives – and the
proof leverages the two cases in the proof of Theorem 9 which cover the multicast mode of
communication. Recall our assumption in Definition 10 that pi,z is a correct replica. By
Lemma 8, event e∗

i,z occurs as e∗
i in E_RSM . In what follows, we use CP_RSM(e∗

i,z)
instead of CP_RSM(e∗

i) to emphasize that the reasoning is at e∗
i,z at pi,z.

1. (E_RSM ∩ CP_RSM(e∗
i,z)) \ T (F (e∗

i,z)) = ∅. This follows from the first case of
Theorem 9 proof because each event in CP_RSM(e∗

i,z) belongs to T (F) at e∗
i,z. Let

ex
h ∈ CP_RSM(e∗

i,z). The causality test in lines 22-26 of Algorithm 1 will return true
because ex

h ∈ T (F) at e∗
i,z and V [∗, h] = maxeventID(Fh) (when ex

h was added to T (F)
at pi,z at or before e∗

i,z occurred) ≥ x. Hence ̸ ∃ex
h such that ex

h → e∗
i,z|E_RSM = 1∧ex

h →
e∗

i,z|F = 0. Hence there are no false negatives.
2. T (F (e∗

i,z)) \E_RSM = ∅. This follows from the second case of Theorem 9 proof because
each event in T (F (e∗

i,z)) must also belong to CP_RSM(e∗
i,z) which is a subset of E_RSM

by definition. For the causality test of ex
h → e∗

i at pi,z in lines 22-26 of Algorithm 1,
consider the two cases: ex

h is in Fh and not in Fh. If ex
h is not in Fh, then by case 1 of

Theorem 9 proof, ex
h ̸∈ CP_RSM(e∗

i,z) and the test correctly returns false. If ex
h is in Fh,

then by case 2 of Theorem 9 proof, ex
h ∈ CP_RSM(e∗

i,z) and V [∗, h] = maxeventID(Fh)
(when ex

h was added to T (F) at pi,z at or before e∗
i,z occurred) ≥ x. Hence the test

correctly returns true. Hence ̸ ∃ex
h such that ex

h → e∗
i,z|E_RSM = 0 ∧ ex

h → e∗
i,z|F = 1.

Hence there are no false positives.
The theorem follows. ◀

As unicast and broadcast are special cases of multicast, the prevention of false positives
and of false negatives for multicasts implies the prevention of false positives and of false
negatives for unicasts and for broadcasts also. Thus we have the following corollaries to
Theorem 11.

▶ Corollary 12. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the unicast mode of communication in synchronous systems.

▶ Corollary 13. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the broadcast mode of communication in synchronous systems.

5 Discussion and Conclusions

We proposed a RSM-based algorithm for solving the causality determination problem CD in
synchronous systems that can have at most nt Byzantine processes among a total of (3t+ 1)n
processes partitioned into n ensembles of 3t+ 1 processes each with each ensemble having up

TIME 2023

11:12 Detecting Causality in the Presence of Byzantine Processes

to t Byzantine processes. By using (3t+ 1)n processes and the RSM approach to represent n
application processes, the malicious effects of Byzantine process behaviors are neutralized.
This is true irrespective of whether the communication mode is by unicasting, multicasting,
or broadcasting. The RSM approach works only in synchronous systems. This result is in
contrast to the impossibility result for solving the CD problem in asynchronous systems in
the presence of even a single Byzantine process [25]. It would be interesting to determine
whether the CD problem can be solved in synchronous systems in the presence of Byzantine
processes using a direct approach without using RSMs.

Detecting causality between a pair of events is a fundamental problem [32]. Other
problems that use this problem as a building block include the following:

detecting the interaction type between a pair of intervals at different processes [10],
detecting the fine-grained modality of a distributed predicate [3, 14], and data-stream
based global event monitoring using pairwise interactions between processes [4],
detecting causality relation between two “meta-events” [11,13,15], each of which spans
multiple events across multiple processes [12].

It can be shown that these problems in Byzantine failure-prone synchronous systems are
solvable because they are reducible to causality detection in the presence of Byzantine
processes in synchronous systems.

Byzantine-tolerant causal ordering of messages under unicast mode or multicast mode
of communication has been proved to be unsolvable in asynchronous systems [26,27]. Two
forms of safety – strong safety (or unconditional safety) and a weaker form of safety called
weak safety were defined [26], and it was also shown that Byzantine-tolerant causal ordering
under broadcast mode of communication in asynchronous systems cannot satisfy strong
safety [26] (in a system model in which cryptographic techniques are not allowed). Neither
can the algorithm given in [2] for the broadcast mode of communication satisfy strong safety.
Algorithms to provide weak safety and liveness of Byzantine-tolerant causal ordering were
provided for synchronous systems in [24,27] (implicitly for unicast mode, multicast mode,
and broadcast mode). The use of the RSM approach can be seen to implicitly provide strong
safety and liveness of Byzantine-tolerant causal ordering (of unicast mode, multicast mode,
and broadcast mode of communication) in synchronous systems as order requirement O2
(Causal order) of the RSM specification is satisfied.

References

1 Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks. In Proc. 12th
International Conference on Principles of Distributed Systems, OPODIS, pages 259–274, 2008.
doi:10.1007/978-3-540-92221-6_18.

2 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Byzantine-tolerant causal
broadcast. Theoretical Computer Science, 885:55–68, 2021.

3 Punit Chandra and Ajay D. Kshemkalyani. Causality-based predicate detection across space
and time. IEEE Trans. Computers, 54(11):1438–1453, 2005. doi:10.1109/TC.2005.176.

4 Punit Chandra and Ajay D. Kshemkalyani. Data-stream-based global event monitoring
using pairwise interactions. J. Parallel Distributed Comput., 68(6):729–751, 2008. doi:
10.1016/j.jpdc.2008.01.006.

5 Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett., 39(1):11–16, 1991. doi:10.1016/0020-0190(91)90055-M.

6 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

https://doi.org/10.1007/978-3-540-92221-6_18
https://doi.org/10.1109/TC.2005.176
https://doi.org/10.1016/j.jpdc.2008.01.006
https://doi.org/10.1016/j.jpdc.2008.01.006
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1145/42282.42283

A. Misra and A. D. Kshemkalyani 11:13

7 E.N. Elnozahy. Manetho: Fault tolerance in distributed systems using rollback-recovery and
process replication, phd thesis. Technical report, Tech. Report 93-212, Computer Science
Department, Rice University, 1993.

8 Colin J. Fidge. Logical time in distributed computing systems. IEEE Computer, 24(8):28–33,
1991. doi:10.1109/2.84874.

9 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

10 Ajay D. Kshemkalyani. Temporal interactions of intervals in distributed systems. J. Comput.
Syst. Sci., 52(2):287–298, 1996. doi:10.1006/jcss.1996.0022.

11 Ajay D. Kshemkalyani. Reasoning about causality between distributed nonatomic events.
Artif. Intell., 92(1-2):301–315, 1997. doi:10.1016/S0004-3702(97)00004-0.

12 Ajay D. Kshemkalyani. Causality and atomicity in distributed computations. Distributed
Comput., 11(4):169–189, 1998. doi:10.1007/s004460050048.

13 Ajay D. Kshemkalyani. A framework for viewing atomic events in distributed computations.
Theor. Comput. Sci., 196(1-2):45–70, 1998. doi:10.1016/S0304-3975(97)00195-3.

14 Ajay D. Kshemkalyani. A fine-grained modality classification for global predicates. IEEE
Trans. Parallel Distributed Syst., 14(8):807–816, 2003. doi:10.1109/TPDS.2003.1225059.

15 Ajay D. Kshemkalyani and Roshan Kamath. Orthogonal relations for reasoning about posets.
Int. J. Intell. Syst., 17(12):1101–1110, 2002. doi:10.1002/int.10062.

16 Ajay D. Kshemkalyani and Anshuman Misra. The bloom clock to characterize causality in
distributed systems. In The 23rd International Conference on Network-Based Information
Systems, NBiS 2020, volume 1264 of Advances in Intelligent Systems and Computing, pages
269–279. Springer, 2020. doi:10.1007/978-3-030-57811-4_25.

17 Ajay D. Kshemkalyani, Min Shen, and Bhargav Voleti. Prime clock: Encoded vector clock
to characterize causality in distributed systems. J. Parallel Distributed Comput., 140:37–51,
2020. doi:10.1016/j.jpdc.2020.02.008.

18 Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, 2011. doi:10.1017/CBO9780511805318.

19 Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo Leone.
Logical physical clocks. In Proc. 18th International Conference on Principles of Distributed
Systems, OPODIS, pages 17–32, 2014. doi:10.1007/978-3-319-14472-6_2.

20 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21, 7, pages 558–565, 1978.

21 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. doi:10.1145/357172.357176.

22 Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland, 1988.

23 Anshuman Misra and Ajay D. Kshemkalyani. The bloom clock for causality testing. In
Diganta Goswami and Truong Anh Hoang, editors, Proc. 17th International Conference on
Distributed Computing and Internet Technology, volume 12582 of Lecture Notes in Computer
Science, pages 3–23. Springer, 2021. doi:10.1007/978-3-030-65621-8_1.

24 Anshuman Misra and Ajay D. Kshemkalyani. Causal ordering in the presence of byzantine
processes. In 28th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), 2022. doi:10.1109/ICPADS56603.2022.00025.

25 Anshuman Misra and Ajay D. Kshemkalyani. Detecting causality in the presence of byzantine
processes: There is no holy grail. In 21st IEEE International Symposium on Network Computing
and Applications (NCA), pages 73–80, 2022. doi:10.1109/NCA57778.2022.10013644.

26 Anshuman Misra and Ajay D. Kshemkalyani. Solvability of byzantine fault-tolerant causal
ordering problems. In Mohammed-Amine Koulali and Mira Mezini, editors, Networked
Systems, pages 87–103, Cham, 2022. Springer International Publishing. doi:10.1007/
978-3-031-17436-0_7.

TIME 2023

https://doi.org/10.1109/2.84874
https://doi.org/10.1006/jcss.1996.0022
https://doi.org/10.1016/S0004-3702(97)00004-0
https://doi.org/10.1007/s004460050048
https://doi.org/10.1016/S0304-3975(97)00195-3
https://doi.org/10.1109/TPDS.2003.1225059
https://doi.org/10.1002/int.10062
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/978-3-030-65621-8_1
https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1007/978-3-031-17436-0_7
https://doi.org/10.1007/978-3-031-17436-0_7

11:14 Detecting Causality in the Presence of Byzantine Processes

27 Anshuman Misra and Ajay D. Kshemkalyani. Byzantine fault-tolerant causal ordering. In
24th International Conference on Distributed Computing and Networking (ICDCN), pages
100–109, 2023. doi:10.1145/3571306.3571395.

28 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980. doi:10.1145/322186.322188.

29 Tommaso Pozzetti and Ajay D. Kshemkalyani. Resettable encoded vector clock for causality
analysis with an application to dynamic race detection. IEEE Trans. Parallel Distributed
Syst., 32(4):772–785, 2021. doi:10.1109/TPDS.2020.3032293.

30 Nuno M. Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte, and Ricardo Gonçalves.
Brief announcement: efficient causality tracking in distributed storage systems with dotted
version vectors. In ACM Symposium on Principles of Distributed Computing, PODC, pages
335–336, 2012. doi:10.1145/2332432.2332497.

31 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990. doi:10.1145/98163.98167.

32 Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Comput., 7(3):149–174, 1994. doi:
10.1007/BF02277859.

33 Mukesh Singhal and Ajay D. Kshemkalyani. An efficient implementation of vector clocks. Inf.
Process. Lett., 43(1):47–52, 1992. doi:10.1016/0020-0190(92)90028-T.

34 Francisco J. Torres-Rojas and Mustaque Ahamad. Plausible clocks: Constant size logical
clocks for distributed systems. Distributed Computing, 12(4):179–195, 1999. doi:10.1007/
s004460050065.

35 Paul A. S. Ward and David J. Taylor. A hierarchical cluster algorithm for dynamic, centralized
timestamps. In Proceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS 2001), pages 585–593, 2001. doi:10.1109/ICDSC.2001.918989.

https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TPDS.2020.3032293
https://doi.org/10.1145/2332432.2332497
https://doi.org/10.1145/98163.98167
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1007/s004460050065
https://doi.org/10.1007/s004460050065
https://doi.org/10.1109/ICDSC.2001.918989

	1 Introduction
	1.1 Background
	1.2 Contributions

	2 System Model
	3 Problem Formulation
	4 Solution based on Replicated State Machines (RSMs)
	4.1 Background on RSMs
	4.2 Adapting RSMs to Our Solution
	4.3 Data Structures and Algorithm
	4.4 Correctness Proof

	5 Discussion and Conclusions

