
25

Dynamic Multiroot, Multiquery Processing
Based on Data Sharing In Sensor Networks

ZHIGUO ZHANG, AJAY D. KSHEMKALYANI, and SOL M. SHATZ
University of Illinois at Chicago

Applications that exploit the capabilities of sensor networks have triggered significant research
on query processing in sensor systems. Energy constraints make optimizing query processing par-
ticularly important. This article addresses multiroot, multiquery optimization for region queries.
The work focuses on application-layer issues exploiting query semantics. The article formulates
three algorithms: a naı̈ve algorithm, without data sharing, and a static and heuristic data-sharing
algorithm. The heuristic algorithm allows sharing of partially aggregated results of preconfig-
ured geographic regions and exploits the location attribute of sensor nodes as a grouping crite-
rion. Simulation studies indicate the potential for significant energy savings with the proposed
algorithms.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Sensor networks, distributed query processing, geographic
coverage, multiquery optimization

ACM Reference Format:
Zhang, Z., Kshemkalyani, A. D., and Shatz, S. M. 2010. Dynamic multiroot, multiquery processing
based on data sharing in sensor networks. ACM Trans. Sensor Netw. 6, 3, Article 25 (June 2010),
38 pages. DOI = 10.1145/1754414.1754421 http://doi.acm.org/10.1145/1754414.1754421

1. INTRODUCTION

Wireless sensor networks consist of relatively inexpensive sensor nodes ca-
pable of sensing, computing, and wireless communication. This makes sensor
networks a promising platform for many applications, such as military recon-

An earlier version of this article appeared in the Proceedings of the International Conference on
Distributed Computing in Sensor Systems (DCOSS) 2008.
This material is based upon work supported by the U.S. Army Research Office under grant number
W911NF-05-1-0573.
Authors’ addresses: Z. Zhang, A. D. Kshemkalyani, and S. M. Shatz (corresponding author), De-
partment of Computer Science, The University of Illinois at Chicago, Chicago, IL 60607; email:
shatz@uic.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1550-4859/2010/06-ART25 $10.00
DOI 10.1145/1754414.1754421 http://doi.acm.org/10.1145/1754414.1754421

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:2 • Z. Zhang et al.

naissance, disaster rescue, traffic surveillance, manufacture automation, and
construction and environment monitoring. However, compared to general wire-
less networks, sensor networks have significant resource constraints, including
limited bandwidth, computation power, and energy supply (usually the result
of a nonreplaceable battery). All these constraints make energy conservation
in system design an important research area.

There are two main sources of energy consumption in sensor nodes. One is
consumption in the active waiting state [Cepra and Estrin 2002; Feeney and
Nilsson 2001], and the other is consumption due to communication [Younis
et al. 2002]. Zheng et al. [2003] proposed an optimal wakeup-sleep scheme to
maximize sensor nodes in a sleep state, to reduce energy consumption in the
waiting state. To reduce energy use associated with communication, a number
of research efforts use in-network aggregation [Boulis et al. 2003; Considine
et al. 2004; Madden et al. 2002; Madden and Franklin 2002; Sadagopan et al.
2005; Yao and Gehrke 2002]. Others use data caching at locations that minimize
packet transmissions [Prabh and Abdelzaher 2005] or special network routing
to minimize messages needed for query processing [Dasgupta et al. 2003; Li
et al. 2003]. For example, we previously proposed a grouping technique based on
query-informed routing to make in-network aggregation more energy efficient
[Zhang and Shatz 2006].

One way to extract sensor data from a distributed sensor network is by
using mobile agents that selectively visit the sensors and incrementally fuse
appropriate measurement data [Wu et al. 2004]. Another technique, which
is the subject of this article, is to inject queries into the network, treating
the sensors as a distributed database [Estrin et al. 2002]. The sensors are
programmed through declarative queries in a variant of SQL [Madden and
Franklin 2002]. The following is an example of such a query for monitoring
harmful radiation in some building:

SELECT room, AVG(radiation) FROM sensordb WHERE building = ERF
GROUP BY room HAVING AVG(radiation) > 100 DURATION 30 days
EVERY 1 minute

Most previous research on query processing in sensor networks has focused
on the processing of a single long-running aggregation query (see, for example
Madden et al. [2002], Madden and Franklin [2002], Yao and Gehrke [2002],
and Zhang and Shatz [2006]). As an extension to this line of research, Trigoni
et al. [2005] and Emekci et al. [2003] considered the case of reducing message
transmission by sharing sensor readings for multiple queries, where queries
are represented by particular query regions. For a given query, the query region
[Xmin, Xmax] × [Ymin, Ymax] is the geographical region that serves as the source of
sensor data to be retrieved by that query. We consider such region queries. For
example, for the query “SELECT AVG(temperature) FROM sensordb WHERE
position.X>= 25 and position.X<= 75 and position.Y>= 40 and position.
Y<= 60 DURATION 1 day EVERY 1 minute”, the query region is [25, 75]
× [40, 60]. Considering other predicates, such as “WHERE temperature>80”,
in conjunction with region queries would be an interesting generaliza-
tion to the work presented here. To simplify the presentation and focus

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:3

on the key idea of data sharing, we do not consider further such a
generalization.

Existing multiquery processing techniques work only in a centralized envi-
ronment, and require that queries arrive at a common root node. In this case,
since all query regions are known by this common root node, intersection re-
gions (the intersection areas among query regions) can be computed at the root
node, making it possible to share partially aggregated results of intersection re-
gions. Since these methods use centralized computation of intersection regions
at the root node, they are not directly suitable for multiple queries injected from
different root nodes. In addition, although existing methods attempt to share
the sensor-value readings of intersection regions, they do not account for the
effect of the routing structure on the efficiency of aggregation, and do not ad-
dress the problem of how to group sensor nodes according to query regions. As
a result, many intermediate nodes need to unnecessarily wake up and transfer
messages for sensor value readings of nodes that reside in the same query re-
gion, but which belong to different queries. The routing tree structure of sensor
networks can have significant impact on the aggregation efficiency of data re-
trieval in sensor networks. Therefore, using query information in the construc-
tion of a routing tree can provide improvement in terms of reducing message
transmission. Of course in practice, network properties such as link quality and
MAC protocols also significantly impact messaging performance. Since this ar-
ticle focuses on application-layer issues by proposing key ideas exploiting query
semantics, “lower-level” networking properties are left for future investigation.

This article formulates and addresses for the first time the problem of multi-
root, multiquery processing for long-duration aggregation queries over regions.
This problem arises in many applications where loosely coupled, or indepen-
dent, stakeholders want to gather information from a common (shared) sensor
network. As a specific example, consider a case of environmental monitoring,
where scientists studying wildlife migration and climatologists studying pollu-
tion patterns are operating from different locations, but both need to monitor
average rainfall volumes associated with different regions in a forest-based
sensor field. Another example arises in a battlefield situation, where two re-
motely located battalions want to monitor enemy troop movements in different
but partially overlapping battlefield sectors.

We consider the most general case, where multiple queries are injected asyn-
chronously into the network at different nodes, which we designate as root
nodes. Note that such a root node can be any sensor node of the deployed sen-
sor network; root nodes are not some special distinguished processor nodes.
In addition there is no global knowledge of the different queries, and hence
completely distributed solutions are required. We consider three algorithms:
a naı̈ve algorithm (NMQ), a static algorithm (SMQ), and a dynamic, heuristic
algorithm (ZMQ). The heuristic algorithm is based on dynamically sharing par-
tially aggregated results of preconfigured geographic regions, and it exploits
the novel idea of applying a grouping technique for optimization of multiroot,
multiquery processing, by using the location attribute of sensor nodes as the
grouping criterion. This optimization aims to maximally share the reading and
transmission of sensor node values belonging to multiple queries.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:4 • Z. Zhang et al.

Since the goal of our heuristic approach is to share sensor readings and data
transmission among different queries that have intersecting query regions, we
group sensor nodes so that nodes in an intersection region only need to send
their sensed values once, independent of the number of queries involved. To
facilitate this grouping, the sensor field is divided into zones, and a logical
data aggregation tree is established to hierarchically represent the zones. In a
distributed and asynchronous manner, a query taps into the data aggregation
tree at the lowest possible tree node such that the zone represented by that
node’s subtree contains the geographic area of its query coverage. The idea
of using a recursive tree for query dissemination and data retrieval has been
used in various contexts, such as for spatial aggregation queries in sensor
networks [Li et al. 2003]. Our approach becomes increasingly effective as the
query regions of the multiple queries increasingly overlap.

We performed extensive simulations on the discussed algorithms. The NMQ
algorithm treats queries independently and does not exploit any sharing of the
aggregated data by sharing of message transmission. Our simulation studies
indicate that the SMQ and ZMQ algorithms provide a significant reduction in
message transmission, which increases energy savings, under a wide range of
network conditions and query region options. The three algorithms are shown to
provide interesting trade-offs. One approach to further validate the findings of
this work is to perform measurement experiments using some sensor network
testbed.

Summary of Contributions. This article addresses the problem of processing
multiple aggregation queries introduced at different nodes in large-scale sensor
networks, and makes the following contributions.

(1) To the best of our knowledge, this is the first work to formulate and address
the optimization of multiroot, multiquery processing for region queries. Pre-
vious approaches to multiquery processing optimization assumed a com-
mon root node for all queries, and used a centralized approach to compute
the overlap regions. Our approach regards single-root multiquery process-
ing as a special case of multiroot, multiquery processing.

(2) This research provides a distributed algorithm, ZMQ, for determining in-
tersection query regions of multiple queries, and also proposes a static
algorithm, SMQ, that serves as a benchmark.

(3) By deriving the ZMQ algorithm, this research also extends query-informed
routing from single-query processing to multiquery processing.

(4) The research provides extensive simulations that show that the ZMQ al-
gorithm performs reasonably well under a wide range of sensor network
deployments and query region options. ZMQ is compared with the static al-
gorithm, SMQ, as well as the naı̈ve algorithm, NMQ, which does not exploit
any data sharing or transmission sharing.

The remainder of the article is organized as follows. Section 2 provides
background information, including system assumptions and challenges, and
an overview of two key areas of related research: using grouping to support

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:5

query-informed routing and defining sensor localization based on sensor field
zones. Section 3 proposes three algorithms for multiroot, multiquery process-
ing: the distributed, heuristic (zone-based) algorithm, ZMQ, the static algo-
rithm, SMQ, and the naı̈ve algorithm, NMQ. Section 4 provides details and
examples for the ZMQ algorithm. Section 5 discusses simulation experiments
to evaluate the ZMQ algorithm against the SMQ and NMQ algorithms. Finally,
Section 6 provides a conclusion, including some discussion of issues related to
sensor node failures, and outlines directions for future work.

2. BACKGROUND

2.1 System Model

The sensor network system model and the solution framework for multiroot,
multiquery optimization make the following assumptions:

(1) The queries to be optimized refer to the same type of sensor data, such as
the temperature of the environment. Multiple queries that probe for differ-
ent types of sensor data can be considered independently, and such query
processing can be simplified by using techniques like attribute correlation
[Gupta et al. 2005].

(2) Each node knows its geographical position and the scale of the sensor
field. Since GPS-enabled sensors incur a high cost and increased power
consumption, GPS is not a practical option for all sensor nodes. However,
much research has explored other techniques for localization in sensor
networks [Savvides et al. 2001; Wang and Xiao 2008; Xiao and Ouksel
2005], making this assumption reasonable.

(3) A query region is a rectangle aligned along the X and Y axes. For a region
that is not aligned with the axes, or not naturally rectangular, one can ap-
proximate the region by identifying one or more rectangular query regions
that cover the region of interest. An algebra of grid-fields can also be used
for dealing with arbitrarily gridded datasets [Howe and Maier 2005].

(4) For simplicity of presentation, we start by assuming that all queries use the
same sampling rate. Of course, in practice, multiple queries can have differ-
ent sampling rates, and our method does generalize for such cases. We will
discuss the implication of different sampling-rate queries in Section 4.4.

Our approach to multiroot, multiquery processing in sensor networks is mo-
tivated by the goal of sharing sensor readings and data transmission among dif-
ferent queries with intersecting query regions. We identify two key challenges
in designing a distributed solution for optimization of multiroot, multiquery
processing:

Challenge One (C1). How to determine the intersection regions of multiple
queries when these queries are injected into the sensor network at different
sensor nodes.

Challenge Two (C2). How to group nodes in different query regions for the
sake of aggregation efficiency.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:6 • Z. Zhang et al.

To address challenge C1 we use the notion of “zones” to represent query
regions. A zone is a subdivision of the geographical extent of a sensor field,
and each sensor node can independently compute the zones according to the
scale of the sensor field [Li et al. 2003]. More details on zones are given in
Section 2.2.2. Since zones are predefined when the network is deployed, in-
tersection zones are easy to identify even for queries injected at different root
nodes.

To address challenge C2, we apply a grouping technique [Sharaf et al. 2004;
Zhang and Shatz 2006] to group sensor nodes in the same zone, forming an
aggregation-efficient tree topology for multiple queries. Grouping sensor nodes
in the same zone into a subtree not only increases aggregation efficiency, but
also makes possible the sharing of partially aggregated results of zones. The
grouping technique we use is reviewed in Section 2.2.1.

In Section 3, we will show how to use the notion of zones and the grouping
technique to compose a fully distributed solution to the multiroot, multiquery
optimization problem.

2.2 Related Work

2.2.1 Using Grouping for Query-Informed Routing. Query processing in
sensor networks typically proceeds in three phases: (i) disseminating queries
into the network, (ii) sensing data, and (iii) retrieving data from the network.
For phases (i) and (iii), a tree topology is formed using some variant of the broad-
cast and convergecast techniques, for example, Durresi et al. [2005] presents
an optimized broadcast protocol using an adaptive-geometric approach. Here,
each node performs two actions: (1) according to the messages it receives, each
node decides its own tree level and selects a parent node with respect to the tree
topology being created, and (2) the node broadcasts its own id1 and tree level.
Once all nodes in the network have established their tree levels and parent
nodes, the tree topology is defined.

In previous methods [Madden et al. 2002; Madden and Franklin 2002], sen-
sor nodes select parent nodes only according to tree levels. The grouping tech-
niques used in Sharaf et al. [2004] and Zhang and Shatz [2006] are explicitly
motivated by the fact that it is common for queries in a sensor network to be
aggregation queries (such as COUNT, MAX, MIN, AVERAGE) using “GROUP
BY” or “WHERE” clauses. Such queries can form aggregation groups according
to a specific attribute of the sensor nodes, and there are situations where these
queries must remain active over long durations. The basic idea of the grouping
techniques is to try to force those sensor nodes with the same specific attribute
(which is used to form groups according to the “GROUP BY” clause or to form
query regions according to the “WHERE” clause) to be logically close to each
other when forming the tree topology. This will result in partial aggregates
being formed as low as possible in the tree topology. The work here is based on
the specific grouping technique described in Zhang and Shatz [2006].

Figure 1 illustrates the main idea of reducing the length of messages trans-

1We adopt the common assumption that each node in the sensor network has a unique identifier,
the node’s id.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:7

Fig. 1. A processing example for queries having WHERE clause.

mitted by intermediate nodes, saving energy associated with these nodes and
increasing lifetime of the sensor network. Nodes labeled with “B” in Figure 1
represent “blue nodes” (some arbitrary attribute), and we assume that a query
is injected at node S1,1.

Consider the query: SELECT SUM(value) FROM sensordb WHERE color =
blue.

If the tree topology is formed by using the grouping technique, as shown in
Figure 1(a), we can see that the aggregation will be completed at blue node S3,3.
Nodes S2,3, S2,2, and S1,1 only need to transmit a 1-tuple aggregated result to
the user. In this example, only seven nodes (including those blue nodes) send
messages, and each node only needs to send a 1-tuple message. Other nodes
can remain in a low-power idle state. However, if the tree topology is formed
by sensor nodes selecting parent nodes nondeterministically, the result may be
like that shown in Figure 1(b). In this situation, nearly all sensor nodes must
receive and transmit a 1-tuple message. For example, blue node S3,4 will need
to transfer its result via the path S2,5-S1,4-S1,3-S1,2-S1,1, and node S4,3’s result
must travel via the path S4,2-S3,1-S2,1-S1,1. Note that S3,3’s result goes through
S2,3, where the result can aggregate with the result obtained from S4,4 (which
travels via the path S3,5-S2,4-S2,3) and then move via the path S2,2-S1,1 to the
user. Because so many nodes are involved in message handling, the energy
consumption is high.

The basic strategy of grouping is to influence the routing tree topology con-
struction by leveraging aggregation groups or location groups defined by the
queries. In this article, we exploit this idea in the ZMQ algorithm by grouping
nodes based on an existing concept called “zones,” which is explained in the
next subsection. Our method of grouping by zones is discussed in Section 4.2.

2.2.2 Sensor Field Division Using Zones. Zones are a subdivision of the ge-
ographic extent of a sensor field. A zone is defined by the following constructive
procedure [Li et al. 2003]. Consider a rectangle R in the x-y plane. Intuitively,
R is the bounding rectangle that contains all sensors within the network. We
call a subrectangle Z of R a zone if Z is obtained by dividing R k times, k ≥ 0,
using a procedure that satisfies the following property: After the ith division,
0 ≤ i ≤ k, R is partitioned into 2i equal-sized rectangles. If i is odd (even), the ith

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:8 • Z. Zhang et al.

Fig. 2. Zone codes and boundaries.

division is along the values of the y-axis (x-axis). Thus, the bounding rectangle
R is first subdivided into two zones at level 1 by a vertical line that splits R into
two equal pieces. Each of these subzones is then split into two zones at level 2
by a horizontal line, and so on. This zone splitting continues until each sensor
node belongs to a unique zone. We call the nonnegative integer k the level of
zone Z, that is, level (Z) = k.

A zone can be identified either by a zone code, code (Z), or by an address,
addr (Z). The code code (Z) is a bit string of length level (Z), and is defined as
follows: If Z lies in the left half of R, the first (from the left) bit of code (Z) is
0, else 1. If Z lies in the bottom half of R, the second bit of code (Z) is 0, else
1. The remaining bits of code (Z) are recursively defined on each of the four
quadrants of R. This definition of the zone code matches the definition of zones
given before, encoding divisions of the sensor field geography by bit strings.

Figure 2 shows a deployed sensor network and the zone code for each zone.
The zone in the top-right corner of the rectangle R has a zone code 1111, and
its level is 4. The address of a zone Z, addr (Z), is defined to be the rectangle
defined by Z. Each representation of a zone (its code and its address) can be
computed from the other.

The zone with code 1111 represents the region [75, 100] × [75, 100] in
sensor network space [0, 100] × [0, 100], where space [xmin, xmax] × [ymin, ymax]
represents the geographic rectangular region with left-bottom point (xmin, ymin)
and right-top point (xmax, ymax). Similarly, given a region [25, 75] × [50, 100],
we can know that this region contains zone 011 and zone 110. We use the
same prefix of zones to represent a bigger zone that contains those zones. For
example, a zone with code 11 would include zones 1100, 1101, 1110, and 1111.
We define Prefix (codea, codeb) as the longest common prefix of codea and codeb.
For example, Prefix(1110, 11) equals 11.

Since each node knows its position and the scale of the sensor field, geo-
graphic zones can be predefined once the network is deployed. Each sensor
node knows its own zone code and the scale of the sensor field, and hence it
knows the geographical region that any zone code represents. Given a query

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:9

Fig. 3. NMQ for multiroot multiquery processing.

represented by a query region, all sensor nodes can independently identify
the same set of zones that represent that query region. This facilitates the
distributed computing of intersection regions.

3. MULTIQUERY MODELING

Multiquery optimization in sensor networks seeks to share data readings and
data transmissions for nodes in the intersection regions of multiple query re-
gions. In this section, we use an example to explain three algorithms: NMQ
(Section 3.1), SMQ (Section 3.2), and ZMQ (Section 3.3) for multiroot, mul-
tiquery processing. NMQ simply treats each query independently, and does
not achieve any optimization. It establishes a base level for performance com-
parison. SMQ is a static algorithm, in the sense that it optimizes based on
up-front knowledge of the multiple query regions. ZMQ is our proposed heuris-
tic method, which does not require any advance knowledge of the queries. It
is based on dynamically sharing partially aggregated results of preconfigured
geographic regions. We also explain how to solve the challenges C1 and C2 for
SMQ and ZMQ. The details of algorithm ZMQ are then discussed in Section 4.

3.1 The Naı̈ve Method (NMQ) for Multiroot, Multiquery Processing

We use the example of Figure 3 to explain the first and simplest algo-
rithm for multiroot, multiquery processing, the naı̈ve algorithm (NMQ). In

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:10 • Z. Zhang et al.

Fig. 4. SMQ subtrees for multiquery processing.

Figure 3, Q1 and Q2 are injected from two different nodes R1 and R2. The
different rectangles represent the two different query regions, which we de-
note as QR1 and QR2. The NMQ algorithm sets up different tree structures for
Q1 and Q2 separately. This naı̈ve algorithm does not share any sensor readings.
The grey nodes, which are the nodes in the intersection region of query regions
for Q1 and Q2, need to send the same readings to different parent nodes twice,
once for Q1 and once for Q2. Figure 3 shows the tree structures for Q1 and Q2
separately. A better algorithm would be to share the readings and messages of
the grey nodes by both Q1 and Q2.

3.2 Static (SMQ) Multiroot, Multiquery Processing

In order to lower the cost of multiquery processing, we seek to share the sensor
readings of sensor nodes in the intersection regions. Here, the two previously
mentioned challenges, C1 and C2, need to be solved.

To solve C1, reading-sharing methods need to know the identity of the nodes
in the intersection regions. Consider Figure 3. Since Q1 is known only to node
R1, and Q2 is known only to node R2, one option is to let the network first
construct the tree structure for Q1 and then adjust the tree structure in the
intersection region when Q2 is propagated in the network. Nevertheless, this
readjustment in the middle of processing Q1 would be difficult and energy con-
suming. Another approach for handling the intersection regions is to simply
assume that the multiple queries (and thus query regions) of interest are known
ahead of time, that is, to consider the static case. While this may not be realistic
in practice, it does allow us to create a benchmark algorithm that is semioptimal
in terms of taking advantage of precomputed intersection regions. We define an
algorithm (SMQ) that preconstructs subtrees for the intersection regions and
for the nonintersecting regions of queries. Figure 4 illustrates the subtrees for
the same deployment example presented in Figure 3. Note that here, one and
only one subtree is constructed for each region (including intersection regions).
The SMQ algorithm then establishes paths from the root nodes R1 and R2 to
those subtrees using a shortest path method, as illustrated in Figure 5.

The basic procedure for the SMQ algorithm is as follows.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:11

Fig. 5. SMQ topology for Figure 4.

(1) Compute the following regions: The intersection regions for all query re-
gions, and the nonintersecting regions associated with each query region.
For the example of Figure 4, we obtain the following three regions:
QR2∩QR1 (intersection region), QR1—QR2 (nonintersecting region asso-
ciated with QR1), and QR2—QR1 (nonintersecting region associated with
region QR2).

(2) For each region R identified in step 1, find the node r ε R with min(d1 +
d2 + · · · + dk), where di is the hop-count distance from node r to the root
node for query Qi, and query Qi contains region R. Let r be the root node
of a minimum spanning tree for region R.
For the example of Figure 4, node a is the root node for region QR1 – QR2,
since this node has the shortest hop-count distance to node R1. Likewise,
node b is the root node for region QR2∩QR1, since this node has the shortest
combined hop-count distance to both nodes R1 and R2.

(3) Set up routing trees using the shortest hop-count paths from the root nodes
of each spaning tree to the root nodes of the corresponding queries.

The resulting routing topology for Figure 4 is shown in Figure 5.
However, since the multiple regions are only known after all queries are

injected into the network, this method is applicable to multiroot, multiquery
processing only in the static case, so that the tree structures for the involved
regions can be set up in advance. Even if we could identify such regions that
work well for a set of multiple queries, it would not allow for the practical
situation when queries arrive dynamically or even dynamically change to spec-
ify a different set of query regions. Still, the SMQ method can serve as a
benchmark.

If we can know the intersection regions (i.e., if C1 is solved) we can use the
grouping technique to solve C2, by grouping nodes in the same region into one
subtree. In our simulations in Section 5, we use this method to compute the
results for SMQ. Section 5 provides further details on the implementation.

The SMQ algorithm computes intersecting regions after all queries have
been decided and injected into the network, but before setting up the routing
topology. This guarantees that each overlapping region forms one and only one
subtree, thus maximizing the sharing of sensor data.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:12 • Z. Zhang et al.

Fig. 6. Examples of predefined globally known regions.

3.3 Zone-Based (ZMQ) Multiroot, Multiquery Processing

To increase the sharing of data provided by sensor nodes in the presence of
dynamically arriving queries, we predefine a set of globally known regions in
the network, and then represent query regions in terms of these predefined
regions. The reason that the set of regions is defined to be globally known is to
provide different nodes the same view of the sensor field and allow them to use
these commonly known regions to represent the same query region. Figure 6
shows an example of such predefined globally known regions, represented as
a hierarchical tree. Each node in the tree represents one such region. For
example, the whole network [0, X] × [0, Y] is one globally known region, and
[0, X/2] × [0, Y/2] is another. The set of globally known regions forms a tree
structure such that the region represented by a parent node consists of the
regions represented by its children nodes.

Since a node cannot know ahead of time what the appropriate intersection
regions will be, it is not feasible to preset up exactly one region for each intersec-
tion region. So, we use a set of predefined globally known regions to represent
all possible query regions, and an intersection region is represented by one or
more such globally known regions. When a query is injected into the network,
the root node of the query computes a set of regions that can be used to repre-
sent the query region, and then establishes paths from itself to the root nodes
of these regions. Queries can share the partially aggregated results of those
regions that are a part of different query regions. Although the root nodes of
queries cannot know the intersection regions before knowing the queries, all
root nodes can use identical views of the globally known regions to represent
query regions. Thus, the intersection regions for any set of queries will be a set
of globally known regions.

The framework of globally known regions solves challenge C1. This frame-
work is implemented using zones, as reviewed in Section 2.2.2. In other words,
zones are a means for representing these specific regions. To solve challenge
C2, the ZMQ algorithm uses the grouping technique, reviewed in Section 2.2.1,
to group nodes in each zone into one subtree. All these zone subtrees form a
globally presetup tree.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:13

Fig. 7. The zone tree of all zones.

Thus in ZMQ, each node knows the globally known regions, and each node
can easily determine the globally known region to which it belongs. (Each node
computes its own zone code, and from this the node can then easily determine
if it is in a given zone.) Furthermore, the representing globally known regions
can be easily computed given a query region. Given the size of the sensor
field and a zone code, a node can easily compute the region represented by
this zone. Therefore, intersection regions are easy to determine, even in a
distributed environment. In the next section, we explain details for the zone-
based algorithm (ZMQ) for multiroot, multiquery processing.

4. ALGORITHM ZMQ (ZONE-BASED MULTIROOT, MULTIQUERY
PROCESSING)

Algorithm ZMQ is based on predefined zones and a statically presetup tree
structure for these predefined zones. When multiple queries are injected, each
root node of a query computes the zones of the query region, and sends the
query to these zones. Shared zones among queries can share sensor readings
and message transmissions inside the zones.

4.1 Zone Setup

The system model assumes that each sensor node knows its location and the
scale of the network region (see Section 2). Thus, each node can learn the loca-
tions of neighbors within radio range through direct-broadcast communication.
Upon hearing any neighbor node, a node builds its zone code and boundaries
accordingly, using the algorithm Build-Zone as used by Li et al. [2003]. The first
split of the whole sensor field creates two subzones, 0 and 1. Then, upon de-
tecting a new neighbor, a sensor node splits its current zone either vertically or
horizontally into two equal subzones, and then adjusts its zone code accordingly.
By this technique, each node knows its own zone code. All those zones form the
zone-tree structure, as shown in Figure 7. The parent-child relations in Figure
7 represent containment, where the parent zone is comprised of child zones.
Each node in the zone tree represents a zone, and the path from the root node to
the current node is the zone code of the zone represented by the current node.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:14 • Z. Zhang et al.

The rectangular region represented by each zone is decided once the con-
struction of zone codes is complete. For example, zone 01 represents the region
[0, X/2] × [Y/2, Y], while zone 1011 represents the region [3X/4, X] × [Y/4, Y/2].
After computing their zone codes, sensor nodes in the same zone automatically
form groups based on the zone codes they computed, as shown in the next
section.

4.2 Sensor Node Grouping in Zones

The method to group sensor nodes in each zone uses the grouping technique
introduced in Section 2.2.1. In contrast to the grouping technique in Zhang
and Shatz [2006], which used the “GROUP BY” or “WHERE” information in
queries to group sensor nodes, the grouping technique employed here uses the
information of “zones” to group sensor nodes.

In the algorithm Grouping Zone (and as used later), A is the sensor node
executing the algorithm, ZA is the zone represented by A, and code (ZA) is
the zone code of ZA. B is any neighbor node of A. Operator “+” is for string
concatenation. Zone code ES (empty string) represents the whole sensor field
zone. Operator “�n” eliminates the last n characters of a string; for example,
the result string for “110011� 1” is “11001”.

Each node executes this algorithm after it detects that all its neighbor nodes
have decided their zones. The basic idea is that a node A (that is not the root
node) first searches neighbor nodes in its immediate parent zone (the smallest
zone containing ZA), to find a node with minimum zone code. If such a node B
exists, and its zone code is smaller than A’s zone code, then A selects B as its
grouping parent. Otherwise, A searches neighbor nodes in the parent zone of
its immediate parent zone, and so on, until it finds a parent.

Algorithm. Grouping Zone

1. code = code old = code(ZA) // Initialize zone code variables
2. While (code �= ES) // Iterate until code represents the whole network
3. code = code old � 1 //code represents the zone containing the

//zone represented by code old
4. T = ∅ // Initialize the temporary set T
5. For each B where B is neighbor of A
6. If (Prefix (code, code(ZB)) = code and

Prefix (code old, code (ZB)) �= code old)
7. T = T ∪ {B} // Put any neighbor B into set T, if B is not

// inside zone of code old, but is in the zone
// of code

8. If (T = ∅)
9. code old = code

10. Continue //Back to line 2 to try the upper level zone
11. Let C be the node in T with smallest code
12. If (code (ZC) < code (ZA))
13. Select C as A’s grouping parent node
14. Return // Parent node of A is C
15. code old = code
16. Return // A is the root node

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:15

Fig. 8. Grouping by zone.

Fig. 9. Grouping-tree of Figure 2.

Figure 8 illustrates a simple example of the algorithm Grouping Zone. Node
11 has three neighbors: 01, 00, and 10. This node first searches the direct parent
zone of zone 11, which is zone 1, and finds node 10, which has a smaller zone
code than itself. Therefore, node 11 selects node 10 as its grouping parent node.
The root node of zone 11 is node 11. Similarly, node 10 also has three neighbors.
This node first searches its direct parent zone 1, and finds node 11, which has a
bigger zone code than itself. So node 11 searches zone 1’s parent zone which is
zone ES, the whole region, and it finds that node 00’s zone code is the smallest
one. Node 10 would select 00 as its grouping parent node. The grouping-tree
structure for the four nodes is shown in Figure 8. Similarly, Figure 9 shows the
result of the zone grouping for Figure 2.

Definition 4.1. Zone links for the grouping-tree network are the parent-
child links formed using the Grouping Zone algorithm. A node’s zone link is
the link from the node to its parent. All the links in Figure 9 are zone links.

Zone links are preconstructed once a network is deployed and before any
queries are injected into the network. Each node has a unique zone link. The
zone-link tree formed by zone links has the property that nodes in the same
zone are in one subtree. This achieves the method of grouping by zone. Later,
when queries are received, the routing network only needs to be adjusted to
include paths from the root nodes of zones to the root nodes of queries. These
paths are established by “forward links,” as defined in the next section.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:16 • Z. Zhang et al.

Another advantage for grouping by zones is that the grouping-tree structure
can serve as a semantic tree structure that contains information about zones in
subtrees, which can be used to reduce unnecessary broadcasting to propagate
queries into the network; this directly saves sensor node energy. The concept is
compatible with other approaches that employ a semantic tree to help reduce
energy usage in sensor networks (e.g., Ye et al. [2002]).

Note that for unevenly distributed networks, or in the case of node fail-
ures, the Grouping Zone algorithm may form several tree structures in one
network. Consider Figure 9 as an example. If node 100 is absent (maybe due
to failure), which means node 101 cannot communicate with node 00, then
two tree structures will be formed: one rooted at node 00 and the other rooted
at node 101. However, even in the case of such multiple tree structures, the
routing-tree construction algorithm of the ZMQ method would still form one
routing tree for each query. We will discuss this situation further at the end of
Section 4.3.3.

It is possible for multiple nodes to end up with the same zone code. For
example, in Figure 9, if node 100 and node 101 were out of communication
range, then neither node would detect any other node in zone 10. Thus, both
nodes would claim code 10 and form two subtrees for zone 10. In such a case,
ZMQ works the same way as it does for multiple subtrees in the whole sensor
network, with some loss of data sharing due to separated subtrees for one
zone. Consider also the case that there is some third node that can detect node
101 and node 100, but still node 101 and node 100 cannot detect each other.
These three nodes will each initiate splits that continue until reaching a node
that does not detect any other node in its same zone. One of two situations is
reached: either each node will have its own zone code, which is the general case
for ZMQ’s operation; or two nodes will claim the same zone code, as in the case
previously mentioned. Either way, the zones do allow for proper operation of
the ZMQ algorithm.

4.3 Query Handling

Definition 4.2. Forward links are the parent-child links that connect root
nodes of zones to root nodes of queries. While a node only has one zone link, it
can have multiple forward links, one for each different query.

Forward links are created in the grouping tree in response to queries being
injected at root nodes; Section 4.3.2 presents these details. These links are
used to transfer partially aggregated value of zones to the root nodes of queries
during query processing. During query processing, forward links are all active,
while zone links may be in an active or inactive state, that is, some zone links
may not be used to process some queries and thus they are not a part of the
final routing topology.

Figures 10(a) and 10(b) show examples of active zone links, inactive zone
links, and forward links that are created for two queries injected at different
root nodes: query Q1 has query region [0, 75] × [50, 100], and query Q2 has
query region [25, 100] × [50, 100]. After the queries have been propagated into
the network, a routing topology is created. The edges shown as dashed lines in

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:17

Fig. 10(a). Example routing structure for query Q1.

Fig. 10(b). Example routing structure for query Q2.

Figure 10 illustrate the forward links, which form the paths from roots of zones
to root nodes of queries. The edges shown as dotted lines illustrate inactive zone
links. Solid-line edges illustrate active zone links, which form the subtrees for
queried zones.

4.3.1 Region Representation. For the sake of simplicity, we assume mul-
tiple queries have the same parameters. For example, all queries query the
temperature (although for different regions in the sensor field). Let Q be a

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:18 • Z. Zhang et al.

query over a region R. R can be represented by a set of zones. We can make the
following observation.

Observation 1. A region R (of a query Q) can be uniquely represented by
a set of zones S = {Z1, Z2, . . .}, where: (i) zones in S do not overlap with each
other (i.e., no node in Zi ∈ S is in Zj ∈ S, for Zi �= Zj), and (ii) no two zones in S
can be siblings.

To justify this observation, suppose R can be represented by two different
zone sets S = {Z1, Z2, . . ., Zi} and T = {Z1

′
, Z2

′
, . . ., Zi

′}. As S �= T, there must
exist some node in R that is in Zj (∈ S) and also in Zk

′
(∈ T), and Zj �= Zk

′
. From

the tree structure of zones, we know that either Zj contains Zk
′
or Zk

′
contains

Zj . Without loss of generality, suppose that Zj contains Zk
′
. As R includes zone

Zj , R includes all nodes in Zj . In order to satisfy property (i) for set T, while
including nodes in Zj – Z′

k in some zone in T, no parent zone of Zk
′

can be
included in T. Thus, a sibling zone of Zk

′
must exist in zone set T in order to

include all the nodes in R in the representation of T. This contradicts property
(ii) that no sibling zones are in the set for a region. So any region R must be
uniquely represented by a set of zones, and we call such a set of zones as R’s
“zone representation.” For convenience, we also refer to this set of zones as Q’s
zone representation (i.e., the set of zones can represent both a region and a
query that specifies that region).

Observation 1 is the basis for data sharing of intersection regions in our
multiroot, multiquery processing. Once sensor nodes are deployed, they first
use algorithm Build Zone to compute individual zone codes, and then use
algorithm Grouping Zone to group nodes in zones into subtrees and thus form
a complete zone-link tree. This was the presetup process. Now we address the
process of handling queries, which requires an algorithm for setting up paths
from root nodes of queries to root nodes of zones for queries, and algorithms for
data retrieval using the paths.

4.3.2 Supporting Routines for Routing and Data Retrieval. In the tree
built by the algorithm Grouping Zone, each zone can compute its partial ag-
gregation result in the zone’s root node in every sampling epoch. The processing
for a query Q needs to set up paths from the root node of Q to each of the root
nodes of the zones that belong to Q’s zone representation.

—The main algorithm Build Routing Topology uses two Boolean functions
IsIn (A, Code) and IsRoot (A, Code).

—IsIn (A, Code) determines if node A is in the zone represented by Code. The
Prefix function, as introduced in Section 2.2.2, returns the common prefix
string of two codes.

Examples. Let A be the sensor node such that code(ZA) = 00. Consider
three cases: (1) A is not in the zone represented by the zone code 01 (line 4
returns false). (2) A is in the zone represented by the zone code 0000, since
line 11 executes twice: first, vertically splitting the original ZA to create a new
zone ZA with code 000, and then horizontally splitting that zone ZA to create
yet another new zone ZA with code 0000. In line 13, tempcode equals the Code

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:19

value of 0000, so IsIn returns true. (3) A is not in the zone represented by the
zone code 0001. Again, line 11 executes twice, resulting in the same ending
zone ZA with code 0000. But, in line 14, tempcode (0000) is not equal to Code
(0001).

—IsRoot (A, Code) determines if node A is the root node of the zone repre-
sented by Code. The function Left (a,b) returns the portion of string a that re-
mains after removal of the substring Prefix(a,b). For example Left(11011000,
11001001) returns the string 11000, since Prefix(11011000, 11001001) re-
turns string 110.

Algorithm. IsIn(A, Code)

1. // If Code is a prefix of A’s code, then A is in zone Code
2. If (Prefix(code(ZA), Code) = Code) Return true
3.
4. If (Prefix(code(ZA), Code) �= code(ZA)) Return false // Zone Code is not a sub-

// zone of zone code(ZA)
5.
6. // Zone Code is a sub-zone of code(ZA)
7. // Split code(ZA) to the length of zone Code to test if A is inside zone Code
8.
9. Repeat until level(ZA) = length of Code

10. // Split as described in Section 2.2.2
11 Let tempcode = code (ZA) after ZA is split into two new zones
12.
13. // Now tempcode has the same length as Code
14. If (tempcode = Code) Return true
15. Else Return false

Algorithm. IsRoot(A, Code)

1. If (Prefix (code(ZA), Code) = code(ZA)) // Zone code(ZA) contains zone Code
2. If (IsIn(code(ZA), Code)) // If A is inside zone Code, A is the root
3. Return true
4. // Otherwise, not a root node
5. Else Return false
6.
7. // Zone Code does not contain zone code(ZA)
8. If (Prefix (code (ZA), Code) �= Code) Return False
9

10. // Zone Code contains zone code (ZA)
11. tmpcode = Left (code (ZA), Code)
12. // If tmpcode = 0. . .0, A is the root since A is the minimum code if all nodes in

// zone Code extend to the same length as A’s code
13. // If A cannot detect another node in it’s parent zone, excluding it’s own zone
14 // (in the case of uneven distribution of nodes or the case of node failures), A is
15 // treated as a root node
16. If (tmpcode is a 0-string or A does not have zone link)
17. Return true
18. Else Return false

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:20 • Z. Zhang et al.

Examples. If code (ZA) is 0010 and Code is 000, then IsRoot (A, code) is false.
This is because line 1 is false and line 8 is true; the prefix does not match either
code. If code (ZA) is 0010 and Code is 001, then IsRoot (A, code) is true. This is
because line 1 is false, line 8 is false, and tmpcode in line 11 is 0. If code (ZA)
is 0010 and Code is 00, then IsRoot (A, code) is false. This is because line 1 is
false, line 8 is false, and tmpcode in line 11 is 10 (�= 00).

4.3.3 ZMQ Topology Construction for Routing and Data Retrieval. The
objective of the main algorithm Build Routing Topology is to construct routing
tree topologies for data retrieval for queries. The algorithm implements two
features: (1) It uses a special forward-link notification message, FL Notify, to
build forward links from root nodes of zones to root nodes of queries; (2) it
changes inactive zone links to active zone links based on whether a node is in
a zone that is a representing zone of a query.

We assume that each node in the network maintains a neighbor table record-
ing status information of its neighbors, such as id, tree level, etc. Once a node
receives a new query Q that has been injected into the network, this node sets
its tree level (for the query Q) as 1 because it is the root node of this query.
Then, this root node broadcasts a message called a Query Broadcast (QB) mes-
sage, containing its own id, tree level, the query information, and the zone
representation of the query. The broadcast is across one hop, hence only imme-
diate neighbors of the sender will receive the QB. Upon receiving such a QB
message from some node Z, a node A updates its own neighbor table, specifically
the data about neighbor Z (including Z’s tree level for Q).

Each node A executes the Build Routing Topology algorithm (specified next)
after it receives a broadcast message for query Q. The algorithm is executed
independently for each query Q (this corresponds to line 1 in the algorithm).
Consider any query Q for which some query broadcasts QB have been re-
ceived. Node A first tests if it has already selected a routing-tree parent node
(line 2) for this query. If node A has not selected such a parent node, A checks
its neighbor table to find a neighbor node M with minimum tree level for query
Q. A then selects M as its routing-tree parent node for query Q, and sets its
own tree level for Q as M’s tree level for Q plus 1 (lines 3, 4). A then broadcasts
its id, tree level, and Q’s query information in a QB message using a 1-hop
broadcast (line 5). Then, if A is a root node of a representing zone of query Q
(lines 6 and 7), A sets M as its forward link parent for Q, and sends a FL Notify
message for Q to M (lines 8 and 9). Otherwise, if A is in a representing zone of
the query but not a root node of that zone (line 12), A sets its own inactive zone
link to now be an active zone link.

Consider a scenario in which node A has received a FL Notify message for Q
from its child node. This can happen if one of A’s child nodes is a root node of a
zone representation for query Q, or one of A’s child nodes received a FL Notify
message for Q from one of the child’s children nodes. Node A constructs a
forward link for Q by setting the routing-tree parent node as the forward-link
parent node for Q and sending a FL Notify message for Q to this forward-link
parent (lines 4 to 5 in FL Message Handling). If node A has not received the
FL Notify message for Q from any child, this implies that A might not be in a

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:21

tree path from root nodes of zones to the root node of query Q and A might not
need to be in the active state in the data retrieval phase.

The construction of forward links is considered backward compared to the
construction of the tree structure because the tree structure is constructed from
the root node of a query to root nodes of representing zones, but the forward
links are constructed from root nodes of zones back to the root node of a query.
The QB broadcast messages diffuse from the root node of a query outwards into
the network, while FL Notify messages are first sent out by root nodes of zones.

Since the zone link of each node is unique (presetup by the Grouping Zone
algorithm), if two queries have a common zone in their zone sets, they both
actually change the status of the same zone links in the zone from inactive
to active. Hence, that subtree of the routing tree for both queries is common.
Only the root node of that common zone may construct different forward links
for different queries; the partially aggregated value of the zone will be sent
separately by the root node of the zone to the different root nodes of queries
along different paths. For the example in Figure 10(a) and 10(b), the routing
tree structures of Q1 and Q2 share the subtrees of zone 011 (includes nodes
0110 and 0111) and zone 110 (includes nodes 1100 and 1101).

Following is the detailed Build Routing Topology algorithm and the
FL Message Handling routine. For any node A, its forward-link parent is ini-
tially null.

Nodes having forward links or active zone links (as established by the afore-
said algorithm) would be in the active state, meaning that these nodes can
transmit data messages during query processing. Other nodes may go to a
sleep state to save energy. Nodes engaged in query processing do so by execut-
ing the Data Retrieval algorithm described in Section 4.3.4.

Algorithm. Build Routing Topology(A) // Node A executes this algorithm upon re-
ceiving a query broadcast, QB

1. For the query Q of the QB Do
2. If (node A has not selected a routing-tree parent node for this query Q)
3. From Neighbor Table, select node M with the min. tree level

for Q as A’s parent
4. Set A’s tree level for Q to 1 + M’s tree level for Q
5. Broadcast id, tree level, query Q and its representing zones
6. If (there exists a code c in representing zones such that

IsIn (A,c) = true)
7. If (IsRoot (A, c)) // A is a root of a representing zone

// for the query
8. Assign M as the forward-link parent of A for

query Q
9. Send a FL Notify message for Q to M

10. // This msg is processed by
// FL Message Handling

11. Else
12. Set the zone link of A to active state
13. End

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:22 • Z. Zhang et al.

Algorithm. FL Message Handling // Node A executes this routine upon receiving a
FL Notify message

1. For the FL Notify message received for Q
2. If forward-link is null
3. // A identifies a parent node P, as FL Notify is sent from child to

// parent node
4. Assign parent node P as the forward-link parent of A for query Q
5. Send a FL Notify message for Q to P
6. End

Returning to the case of an unevenly distributed network and the example
discussed at the end of Section 4.2, we use Figure 11 to illustrate the formation
of the routing tree structures. Recall that node 100 is absent in this example.
The link types in Figure 11 are the same as in Figure 10: dotted lines are inac-
tive zone links, dashed lines are forward links, and solid lines are active zone
links. Figure 11(a) shows the two trees that are preset up by the Build Zone
algorithm, while Figure 11(b) shows the routing tree structure generated by
the Build Routing Topology algorithm for a query Q, assuming that the query
region corresponds to zone 10.

Algorithm. Data Retrieval(A) // A is the node executing the algorithm

1. If (A is a leaf node)
2. Send zone code and sensor value to parent node
3. Return
4. Aggregate data received from children based on zones // Merge smaller zones
5. While (there is a forward link for a query)
6. Send on the forward link the partially aggregated value for that query
7. If (there is an active zone link)
8. Send all partially aggregated values based on zones along the zone link
9. Return

4.3.4 ZMQ Data Retrieval. Using Figure 9 as an example, node 1111 would
send the tuple (1111, value) to its parent node 1110, while node 1110 would
create an aggregated value for zone 111 and then send the tuple (111, aggre-
gated value) to its parent node 1100. For node 101, it receives (11, value) from
node 1100. It cannot aggregate its zone 101 with zone 11, so it would send a
two-tuple message ((101, its own value), (11, value)) to its parent node 100; and
so on.

4.3.5 Query Completion Actions. Once a query is complete and the query
data has been retreived, some clean-up actions are necessary to allow for sub-
sequent query processing. In particular, special Query Destroy messages are
sent along the forward links back to the root nodes of each zone. Nodes along
the path will remove the forward links for the completed query. In addition,
the descendents of the root nodes of the zones will deactivate the zone links if
only this completed query (and no others) was active in the zone; otherwise,
the zone links are not deactivated.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:23

Fig. 11(a). Zone trees in ZMQ presetup.

Fig. 11(b). Routing tree for query Q.

4.4 Queries with Different Sampling Rates

In Section 2 we made the assumption, for convenience of presentation, that
all queries use the same sampling rate. We now consider the more general
case, where queries can have different sampling rates. Clearly, those nodes
that must handle multiple queries, (i.e., nodes that are contained within over-
lapping zones) must sample at a frequency that is sufficient to meet the sam-
pling rate requirement of the query that has the highest sampling rate. Other
“nonoverlapping” nodes can simply use the sampling frequency associated with
the query whose query region contains the nodes. Therefore, only overlapped
zone links transmit data at the highest frequency; forward links will use the
query frequency that is established when the forward link is set up. Note that
even in the case of multiple queries with different sampling rates, the zone-
based multiquery processing method will still perform better than the naı̈ve
multiple-query processing method. This is because the zone-based technique
does not increase the sampling and transmission frequency at any node com-
pared to the frequency of that node in the naı̈ve query processing method.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:24 • Z. Zhang et al.

5. EXPERIMENTAL EVALUATION

We performed simulation experiments to compare and analyze the three multi-
root, multiquery processing algorithms; the naive multiquery processing algo-
rithm (NMQ) (Section 3.1), the static multiquery processing algorithm (SMQ)
(Section 3.2), and the zone-based multiquery processing algorithm (ZMQ)
(Section 3.3).

—NMQ constructs a different routing tree for each query, thereby using a
different tree for each query region.

—ZMQ is implemented based on the details in Section 4.
—Based on the position data for ZMQ, we can compute the intersection regions

for SMQ. Then the grouping technique is used to group nodes in the same
intersection regions together in the same subtree to compute the results for
SMQ. As SMQ assumes that the multiple query regions are known before
the query processing, it forms one subtree for each intersection region. For
example, if Q1 is over region R1, Q2 is over region R2, SMQ forms one subtree
for R1 – R1 ∩ R2, one for R2 – R1 ∩ R2, and one for R1 ∩ R2, and then collects
information through the root nodes of these three subtrees.

We use the SUM queries that compute the sum of all readings of the sensors in
a rectangular area in our experiments. The following is an example query for
the sum of sensed temperatures in the area [10, 20] × [50, 70] every 10 seconds
for one hour.

SELECT SUM(sensor.temp) FROM sensordb WHERE (sensor.x ≥ 10 AND sen-
sor.x ≤ 20) AND (sensor.y ≥ 50 AND sensor.y ≤ 70) DURATION 1 hour EVERY
10 seconds.

For simplicity, all queries have the same duration and same epoch, but have
different query areas. The configuration of our experiments is as follows.

Deployment. We use a 256 × 256 cell matrix, where a sensor can be placed
at the center of a cell. The length of each side of a cell is 1. Each node, except
the nodes in the border cells, can communicate directly with its eight direct
neighbors in the matrix. By default, each cell has a sensor placed in it.

Input parameters.
N: The number of queries (each query defines a query region).

D: The network density, defined as the number of sensors per cell of the sensor
field matrix. To be consistent with the system model, the highest value of D is
1. This is also the default value.

QR: The query region representing a query.

OP: Overlap percentage, the percentage of the nodes inside intersection regions
over all nodes in query regions. This is defined as follows.(∑

I

(sizeof (I) ∗ (numberof (I) − 1))/
∑

Q

sizeof (Q)
)

∗ (N/(N − 1)), where :

—I is an intersection region, defined as the largest region in which all the nodes
are queried by the same set of queries.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:25

Fig. 12. An example of overlap percentage.

—sizeof (I) is the number of nodes in the intersection region I,
—numberof (I) is the number of queries that each node in I receives, and
—(N/(N-1)) is a scale factor for normalization.

The intuition behind the definition of overlap percentage is as follows. In
any region, the number of nodes times the number of queries in excess of one
that the nodes handle represents the net excess overlapping of queried nodes
in that region. The numerator of the OP value is the summation across all
regions of this net excess overlapping of queried nodes. This is divided by the
total number of queried nodes, considered independently across all queries.
Thus, the OP value provides the fraction of queried nodes (across all queries,
considered independently) that overlap across the various queries. This fraction
is multiplied by (N/(N-1)) as a normalizing factor so that the value of OP ranges
from 0 to 1.

Example. An example of the overlap percentage (OP) is shown in Figure 12.

sizeof (QR1∩QR2∩QR3) = 4 and numberof (QR1∩QR2∩QR3) = 3.

sizeof (QR1∩QR3−QR1∩QR2∩QR3) = 6 and numberof (QR1∩QR3−QR1∩QR2
∩QR3) = 2.

sizeof (QR1∩QR2−QR1∩QR2∩QR3) = 5 and number of (QR1∩QR2−QR1∩
QR2∩ QR3) = 2.

sizeof (QR2∩QR3−QR1∩QR2∩QR3) = 2, and number of (QR2∩QR3−QR1
∩QR2 ∩ QR3) = 2.

sizeof(Q1) is 30, sizeof(Q2) is 24 and sizeof(Q3) is 24.
OP = (4× (3–1) + 6× 1 + 5× 1 + 2× 1)/(5× 6 + 4× 6 + 4× 6)) × (3/(3–1)) =
(31/78) × 1.5 = 60%.

Metric. Average number of messages (ANM) per node per epoch, which is
defined as the total number of messages used in each retrieving epoch divided
by the total number of nodes included in the query regions. Nodes in intersec-
tion regions are counted separately for each query, that is, nodes in intersection
regions are counted multiple times. This is because we want to use ANM as a

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:26 • Z. Zhang et al.

metric to capture the extent of sharing of the readings. Smaller ANM means
more sharing inside the network. However, the ANM may be more than 1 be-
cause we count all messages transmitted inside the network. Thus, while we
only count nodes inside query regions, there are overhead messages from root
nodes of the query regions to root nodes of queries. For NMQ, ANM is always
greater than 1. Formally,

ANM = (total number of messages)/
(∑

Q

size of (Q)
)

.

In the example of Figure 11, if the total number of messages transmitted in
the network is T, then ANM = T / (5× 6 + 4× 6 + 4× 6) = T/78.

The Query Region (QR) of each query is represented by a rectangle, for
example, 64× 98 represents a query region of width 64 and length 98 units.
Given all 4 input parameters, we perform an initial simulation setup step
which computes random positions for the variously sized query regions and
for the root nodes of each query. Those query region locations that fulfill
the input conditions on the Overlapping Percentage (OP) are then used to
drive the simulation step. To randomly place one of the fixed-size query re-
gions, we randomly select a coordinate position within the simulated sensor
field cell matrix and use this to define the top-leftmost corner of the query
region.

In practice, sensor nodes and query regions are likely to follow some type of
clustering, following the boundaries of buildings, directions of roads, etc. Thus,
it is possible to consider tuning of the ZMQ algorithm for specific application
environments so as to take advantage of known or predicted boundaries in
the topology and of workload when setting up zones. Since our evaluations are
based on random assignment simulations, the analysis represents a “worse-
case” type scenario. The algorithms would likely perform better if they were
tuned for specific conditions.

5.1 Impact of Overlap Percentage (OP)

In this experiment, we show the impact of the overlap percentage on the per-
formance of the three algorithms. We hold constant the input parameters QR
and N, but vary the position of different query regions to change the overlap
percentage for all queries. The results for three different sets of QR and N are
shown in Figure 13.

Observe that ZMQ outperforms NMQ as the percentage of overlapping in-
creases, and ZMQ has nearly the same performance as SMQ.

The reason that the total number of messages used by NMQ does not change
significantly is because different tree structures are set up for each of the dif-
ferent queries, no reading and transmissions are shared, and the change of
positions of query regions does not significantly affect the total number of mes-
sages transferred in the network. The reason that the number of messages used
by ZMQ and SMQ decreases is because these algorithms share the readings
of sensor nodes in the intersection regions. As the overlapping increases, more
sharing is possible, and fewer messages are needed.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:27

0.5

1.0

OP 25% 50% 75% 100%

A
N

M

NMQ

ZMQ

0%

SMQ

QR = 64×96
N = 2

0.5

1.0

OP 25% 50% 75% 100%

A
N

M

NMQ

ZMQ

0%

SMQ

QR = 48×48

N = 6

0.5

1.0

OP 25% 50% 75% 100%

A
N

M

NMQ

ZMQ

0%

SMQ

QR = 64×64
N = 10

(a)

(b)

(c)

Fig. 13. Impact of OP on the average number of messages.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:28 • Z. Zhang et al.

Notice that ZMQ uses more messages than NMQ when there is no overlap
between the two query regions. This is because ZMQ slightly decreases the
amount of data aggregation that can be achieved and increases the number
of messages needed if a query region contains more than one presetup zones.
However, we can also see from Figure 13 that if there is an overlap between
the query regions, the number of messages reduced by sharing readings and
transmissions exceeds the number of messages increased due to the decrease in
data aggregation. We refer to the ability to exploit potential data aggregation
as aggregation extent. So, aggregation extent represents how good a routing
topology is at exploiting sharing of partially aggregated information. Naturally,
high aggregation extent is desired.

The difference between ZMQ and SMQ is because each intersection region
in ZMQ may consist of more than one zone, that is, more than one subtree,
while each intersection region in SMQ consists of just one subtree. The ag-
gregation extent for intersection regions for ZMQ is slightly less than the ag-
gregation extent for SMQ. This causes ZMQ to use some more messages than
SMQ.

5.2 Impact of Network Density (D)

In this experiment, we show the effect of the density of the sensor network on
the performance of the three algorithms. We hold QR, N, and OP fixed, and vary
the density of the sensor field. The average number of messages transmitted,
as a function of density, for different QR, N, and OP is shown in Figure 14. The
density in Figure 14 is computed by the number of sensor nodes divided by the
size of the sensor field. For example, given the fixed 256 × 256 sensor field, the
density 1/4 in Figure 14 means that there are 128 × 128 sensor nodes evenly
spread in the sensor field.

Observe that for all algorithms, as density decreases, the ANM increases
for all settings of OP, N, and QR. This is because when density decreases,
the nodes become further apart, and more messages are needed to collect the
nodes’ readings. This can also be seen from the definition of ANM, namely,
(total number of messages) / (

∑
Q

sizeof (Q)). As D decreases, the denomina-

tor decreases proportionately to D, but the numerator does not change as
rapidly.

We can observe in Figure 14 that even if the query regions have significant
overlap, ZMQ may perform worse than NMQ when the density is sufficiently
low. The reason is that as the density becomes lower, the number of nodes in
the intersection area decreases, and the data and transmission sharing also
decreases. At some threshold, the number of messages added because of the
decrease in aggregation extent may exceed the number of messages decreased
by data sharing.

5.3 Impact of Query Region Size (QR)

Figure 15 shows the relationship between size of query regions and the
average number of messages transmitted in each epoch for the three

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:29

1.0

2.0

D1/2 1/4

A
N

M

NMQ

ZMQ

1/1

SMQ

QR = 48×48
N = 2
OP = 85%

3.0

1/6 1/8

1.0

2.0

1/2 1/4

A
N

M

1/1

QR = 64×64
N = 15
OP = 70%

3.0

1/6 1/8

NMQ

ZMQ

SMQ

D

(a)

(b)

(c)

1.0

2.0

D 1/2 1/4

A
N

M

NMQ

ZMQ

1/1

SMQ

QR = 32×32
N = 10
OP = 60%

3.0

1/6 1/8

Fig. 14. Impact of density on average number of messages.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:30 • Z. Zhang et al.

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

16×16 32×32 48×48 64×64 80×80 96×96

OP = 50%
N = 2

QR

NMQ
ZMQ
SMQ

0.5

1.0

1.5

A
N

M

 RQ 61×61 32×32 48×48 64×64 80×80 96×96

OP = 60%
N = 10

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

16×16 32×32 48×48 64×64 80×80 96×96

OP = 80%
N = 6

QR

(a)

(b)

(c)

Fig. 15. Effect of QR on three algorithms.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:31

algorithms. Observe that as QR increases, the ANM (=total number of mes-
sages/ (

∑
Q

sizeof (Q))) for NMQ approaches 1. Also, as QR increases, ANM of

ZMQ approaches the ANM of SMQ. This implies that ZMQ performs better
when the sizes of query regions are large.

Figure 15 also shows that for all the algorithms, as the size of the query
region increases, the average number of messages for each node first decreases
and then becomes stable. This is because of two factors.

—Consider the ratio X:Y, where X is the number of messages used from the root
nodes of each region to the root nodes of queries, and Y is the total number
of sensor nodes in the query regions. This ratio represents an amortized
overhead to reach the query root from the region roots. As QR increases,
the numerator tends to decrease somewhat and the denominator increases,
thereby decreasing this overhead. As QR continues to increase, the value of
this overhead becomes relatively small.

—With increasing QR, the predominant factor becomes the degree of node
overlap and the sharing of sensor readings among regions. As QR increases,
this also tends to have a saturation effect. In our example, this sets in around
regions of size 48× 48.

As expected, ZMQ performs better than NMQ, irrespective of the size of the
query region assuming that the overlap percentage is not very low.

5.4 Impact of Number of Queries (N) Using Controlled Overlap Percentage

This experiment studies the effect of the number of queries on the performance
of the three algorithms. We set OP and QR, and vary the number of injected
queries. Figure 16 shows the results of the experiments. Observe that as the
number of queries increases, the ANM for SMQ and ZMQ decreases, but re-
mains almost stable for NMQ.

We also can find the answer from the definition of ANM as follows. Let:

—S be the number of nodes that can share reading and transmission,
—SN be the total number of sensor nodes in query regions (i.e.,

∑
Q

sizeof (Q)),

—E be the extra messages needed to send data from root nodes of subtrees to
root nodes of queries.

ANM = total number of messages/
(∑

Q

sizeof (Q)
)

= (SN − S+ E)/SN

= 1 − S/SN + E/SN.

For NMQ, S is always 0, so ANM of NMQ is always more than 1 and decreases as
SN increases. As the number of queries increases, SN and S both increase, while
E stays almost stable. Therefore, the overhead for SMQ and ZMQ approaches
the value 1−S/SN as the number of queries increases.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:32 • Z. Zhang et al.

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

 N 2 4 6 8 10 16 12 14

OP = 75%
QR = 48×48

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

 N 2 4 6 8 10 16 12 14

OP = 50%

QR = 32×32

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

N 2 4 6 8 10 1612 14

OP = 90%
QR = 16×16

(a)

(b)

(c)

Fig. 16. Effect of the N on three methods with fixed OP.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:33

NMQ

ZMQ

SMQ

0.5

1.0

1.5

A
N

M

N 2 3 4 5 6 7

QR = 48×48

Fig. 17. Effect of the N on our method without fixed OP.

5.5 Impact of Number of Queries (N) Using Uncontrolled Overlap Percentage

The previous experiment studied the impact of varying the number of queries
while controlling the overlap percentage. That was an “idealistic” experiment in
the sense that it does not reflect the reality that overlap percentage is dictated
by the queries and cannot be controlled.

Hence, in this experiment, we study the impact of the number of queries
without controlling the overlap percentage. We compute the ANM for the three
algorithms. This experiment assumes that the size of each query region is fixed.
The results are shown in Figure 17, assuming a 48× 48 query region. Observe
that as the number of queries increases, more intersection occurs. This causes
the reduction of the average number of messages transmitted by active sensor
nodes. As the number of queries increases, ZMQ follows the decreasing curve
of SMQ, while the overhead for NMQ approaches 1.

5.6 Comparison Summary

From the aforesaid simulation experiments, we measured and compared the
performance of the zone-based algorithm (ZMQ), the naı̈ve algorithm (NMQ),
and the static algorithm (SMQ). From the results, we can see that:

—SMQ always performs best, as expected.
—ZMQ performs generally better than NMQ when the sizes of the query re-

gions are big, the density of the sensor field is high, and there are large
overlaps among queries. ZMQ performs increasingly better than NMQ as
the sizes of query regions become larger, the sensor field density increases,
and the overlap among query regions increases.

The following table compares the performance and trade-offs involved.

Dynamic Aggregation Energy Time Space
queries extent efficiency complexity complexity Initialization Latency

NMQ Yes Very good Good O(n) O(n) No Small
ZMQ Yes Good Very good O(n) O(n) Yes, O(n) Moderate
SMQ No Very good Best O(n) O(n) No Small

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:34 • Z. Zhang et al.

Dynamic queries. NMQ and ZMQ can perform dynamic query processing,
that is, process queries on-the-fly. NMQ sets up a separate tree structure for
each query. Therefore, NMQ can dynamically set up a tree structure during
query processing when a new query is injected into the sensor network. After
ZMQ sets up the whole zone-link tree, it only needs to set up the tree paths
from the root nodes of a new query to the root nodes of the representing zones of
the query. Hence, ZMQ can also dynamically handle new queries in the middle
of processing. Because SMQ can only work when it knows all regions before
processing, it cannot dynamically handle new queries during its processing.

Aggregation extent. NMQ groups all nodes in a query region in one subtree
and SMQ groups nodes in one region (including intersection regions) in one
subtree. They both have very good aggregation extent. As ZMQ uses presetup
subtrees for zones, an intersection region may contain more than one zone. So
ZMQ has a good aggregation extent but not as good as that of NMQ and SMQ.

Energy efficiency. SMQ is always the most energy-efficient algorithm for
multiroot, multiquery processing, and ZMQ performs better than NMQ in most
situations.

Data retrieval algorithm overhead (time complexity and space complexity).
Since all three algorithms require a node to process results only from its chil-
dren nodes, which can be at most all of the eight neighbors, all three algorithms
have O(1) (constant) time complexity and space complexity at each node in one
epoch during the data retrieval phase. The whole network would then have
time complexity of O(n) for all three algorithms since in the worst case the
depth of a tree path can be O(n), where n is the number of nodes in the sensor
field. While each node takes a constant processing time, nodes on one tree path
must process serially. Similarly, for space complexity, the total is O(n), with
each node requiring O(1) space.

Initialization. NMQ and SMQ do not need to initialize the network, while
ZMQ needs to preset up the zone-link tree structure.

For the Build Zone algorithm for ZMQ, the time complexity is O(log n). To
see this, suppose nodes are evenly distributed in a

√
n∗ √

n space, so the size of
each node’s zone is one unit, the whole field is n units. In each iteration, the
space is divided into two equal-sized subspaces. Hence, the algorithm needs
log n time to terminate when each zone is split into a space of size one unit. So
the average time complexity of the Build Zone algorithm is O(log n), with the
worst case being O(n), when all nodes line up.

The time complexity for the Grouping Zone algorithm is O(log n), because
each iteration in the algorithm considers a zone with a size that is two times
the size of the previously considered zone. Since the size of the zone of each
of n nodes in a

√
n∗ √

n space is 1/n, the algorithm would terminate when it
reaches the zone represented by the empty-string zone code, which occurs in
log n iterations, worst case.

Since a node only needs to broadcast a message containing its information to
its neighbor nodes after it changes its zone code, the average additional energy
for Build Zone is log n for the whole life of the network. This is because a node

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:35

only needs to split at most log n times. In Grouping Zone, nodes do not need to
broadcast any messages to select a parent node. Thus, the total communication
overhead for ZMQ is log n messages per node over the life of the network, for a
total overhead of n log n.

From the previous analysis, we can see that ZMQ has some initialization
overhead in comparison to NMQ and SMQ, but these overheads are relatively
small.

Latency. The depth of the routing tree for ZMQ is O(2
√

n), while the depth
of the routing tree for NMQ and SMQ is O(

√
n). This is because the length of

the diagonal of a
√

n∗ √
n-sized sensor field is

√
n, while the step paths from

(0, 0) to (
√

n,
√

n) is 2
√

n. In the worst case, the depth of all three routing trees
is O(n), when all nodes line up.

Recommendation. The most applicable situation for ZMQ is when there are
big query regions, big overlap among queries, and high network density. Oth-
erwise, if the application requires dynamic query processing, NMQ is a good
algorithm. If the queries are known a priori (before any processing), and no
new queries come in during processing, SMQ is the best algorithm.

6. CONCLUSION AND FUTURE RESEARCH

This article identified and addressed, for the first time, multiroot, multiquery
optimization for long-duration aggregation queries over regions. Three algo-
rithms were presented: a naı̈ve algorithm (NMQ), a static algorithm (SMQ),
and a heuristic algorithm (ZMQ). SMQ and ZMQ are based on the sharing of
partially aggregated results from overlapping query regions. We performed a
detailed comparison and analysis of the three algorithms. Simulation exper-
iments indicate that the data-sharing algorithms provide significant energy
savings under a wide range of network conditions and query region options.

The SMQ method, which requires that all query regions be known before
processing, is the best algorithm in terms of energy saving, but it is not
practical. NMQ is the simplest algorithm, but performs worst in most sit-
uations. The ZMQ algorithm performs quite well when there are large-size
query regions and high overlap percentage. The performance of ZMQ almost
approaches the performance of SMQ. The experiments lead to the conclusion
that ZMQ is a practical and energy-efficient algorithm for multiroot, multiquery
processing.

The following are some interesting problems for further research. It will be
useful to examine the case where query regions are not static, such as might be
the case for moving regions associated with mobile objects [Gedik et al. 2006].
Another problem is the effect of packet loss. For example, packet loss in the
ZMQ technique will affect multiple queries, instead of only one query as in
the case of NMQ. To evaluate the impact of network-layer properties on the
proposed query processing approach, it will be useful to consider radio-models
and MAC-layer issues. These might suggest routing trees that are different
from those that are optimal for pure query-informed routing, as was studied in
this article. Such multidimensional optimization of routing trees will require

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:36 • Z. Zhang et al.

new heuristics and a careful balance of trade-offs. Another interesting problem
is the optimization of heterogeneous multiple queries. This entails exploring
sensor reading and transmission sharing where queries specify different query
fields. One can also study the multiquery situation when there are “holes”
in sensor networks, such that sensor nodes are not evenly distributed. This
situation can impact the zone grouping and routing topology construction.

In this article, we considered geographic information as the sole criteria
for zone setup. In practice, information such as network partition in space
and data correlation inside geographical boundaries can help increase data
compression or aggregation. Future work can seek to exploit such information
in zone construction.

To simplify the discussion, we did not address the issue of sensor node
failures. But since failure of nodes in a sensor network may be quite common,
it is useful to consider the impact of such failures on the ZMQ algorithm and
at least suggest how the algorithm can be robust to these dynamic failures.
Periodic running of the Build Routing Topology is the key for such failure
handling of ZMQ. Since ZMQ has two type of links in the routing tree, forward
links and zone links, there are two types of node failures to consider: (1) the
failure of a node that is in a forward link; and (2) and the failure of a node that
is in a zone link.

First, consider node failure in a forward link. Since we use a shortest path al-
gorithm to build forwards links, the periodic running of Build Routing Topology
in a child node of the failed node will first detect the parent node’s failure in
its neighbor table. That child node can then use a shortest path approach to
select a node from among its live neighbors as a new parent node, and send a
FL notify message to that selected node. If the new parent node has not set up
a forward link path to the root node of the query, this message will trigger the
parent node to do so; if the new parent node is already in the routing topology
of the query, then the node does not need to do any thing. Different child nodes
may select different parent nodes; this does not affect the running of the algo-
rithm, but may slightly increase the overhead for data retrieval. Maintaining
information that indicates if a neighbor is already in a forward link path can
help improve performance during the process of deciding on a parent node from
several same-tree-level neighbor nodes. It does not appear that this will have
a significant impact on the performance of the query processing algorithms
discussed in this research.

Second, consider node failure in a zone link. In this situation, a child node
of the failed node can first try to select as a new parent node a neighbor node
that is in its same zone or the immediate parent zone, and with a smaller
zone code. If there is such a new parent node, the child can switch to that node
without trouble. If there is not such a node, the child can try to identify a similar
potential parent node from within the child’s immediate parent zone’s parent
zone, and so on. If it can select such a node, then the child node can switch to
that selected node without affecting its children nodes. However, if it cannot
select such a parent node, it will select from its neighbors one node that is also
in the query region, to allow for aggregation. If the child still cannot select a
parent based on the just identified process, then it will select any one of the

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

Multiroot, Multiquery Processing Using Data Sharing In Sensor Networks • 25:37

nodes from its neighbor table and use a shortest path method to build a reverse
path from itself to the root node by using Build Routing Topology. In the very
unlikely worst case, where each child of the failed node needs to build a forward
path from itself to query root-nodes, the aggregation extent will be reduced, and
more nodes need to be involved in data transmission. Further investigation on
the impact of worst-case node failure situations on the efficiency of the ZMQ
method remains as future research.

In the case of sensor node failures, if a node does not have a neighbor that has
a smaller tree level in its neighbor table when the failure happens in a forward
link, or if a node has to rebuild a shortest path from itself to the root node of
a query when failure happens in a zone link, data will be lost for the subtree
rooted at the node until the rebuilding is finished. For this situation, it will
be useful to investigate integration of robust aggregation in sensor networks
[Nath et al. 2004] into the ZMQ method.

REFERENCES

BOULIS, A., GANERIWAL, S., AND SRIVASTAVA, M. B. 2003. Aggregation in sensor networks: An energy-
accuracy trade-off. Ad Hoc Netw. 1, 2–3, 317–331.

CERPA, A. AND ESTRIN, D. 2002. ASCENT: Adaptive self-configuring sensor networks topologies. In
Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies
(InfoCom’02).

CONSIDINE, J., LI, F., KOLLIOS, G., AND BYERS, J. 2004. Approximate aggregation techniques for
sensor databases. In Proceedings of the IEEE International Conference on Data Engineering.

DASGUPTA, K., KALPAKIS, K., AND NAMJOSHI, P. 2003. Improving the lifetime of sensor networks via
intelligent selection of data aggregation trees. In Proceedings of the Communication Networks
and Distributed Systems Modeling and Simulation Conference.

DURRESI, A., PARUCHURI, V., IYENGAR, S. S., AND KANNAN, R. 2005. Optimized broadcast protocol for
sensor networks. IEEE Trans. Comput. 54, 8, 1013–1024.

EMEKCI, F., YU, H., AGRAWAL, D., AND ABBADI, A. E. 2003. Energy-conscious data aggregation over
large-scale sensor networks. Tech. rep., University of California, Santa Barbara.

ESTRIN, D., SRIVASTAVA, M. B., AND SAYEED, A. 2002. Tutorial on wireless sensor networks.
In Proceedings of the ACM International Conference on Mobile Computing and Networking
(MobiCom’02).

FEENEY, L. M. AND NILSSON, M. 2001. Investigating the energy consumption of a wireless network
interface in an ad hoc networking environment. In Proceedings of the Annual Joint Conference
of the IEEE Computer and Communications Societies (InfoCom’01).

GEDIK, B., WU, K.-L., YU, P. S., AND LIU, L. 2006. Processing moving queries over moving objects
using motion-adaptive indexes. IEEE Trans. Knowl. Data Engin. 18, 5, 651–668.

GUPTA, H., NAVDA, V., DAS, S. R., AND CHOWDHARY, V. 2005. Efficient gathering of correlated data
in sensor networks. In Proceedings of the ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’05).

HOWE, B. AND MAIER, D. 2005. Algebraic manipulation of scientific datasets. VLDB J. 14, 4,
397–416.

LI, X., KIM, Y. J., GOVINDAN, R., AND HONG, W. 2003. Multi-dimensional range queries in sen-
sor networks. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems
(Sensys’03). 63–75.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2002. Tag: A tiny aggregation
service for ad-hoc sensor networks. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation. 131–146.

MADDEN, S. AND FRANKLIN, M. J. 2002. Fjording the stream: An architecture for queries over
streaming sensor data. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’02).

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

25:38 • Z. Zhang et al.

NATH, S., GIBBONS, P. B., SESHAN, S., AND ANDERSON, Z. R. 2004. Synopsis diffusion for robust
aggregation in sensor networks. In Proceedings of the ACM Conference on Embedded Networked
Sensor Systems (Sensys’04).

PRABH, S. AND ABDELZAHER, T. 2005. Energy-conserving data cache placement in sensor networks.
ACM Trans. Sensor Netw. 1, 2, 178–203.

SADAGOPAN, N., KRISHNAMACHARI, B., AND HELMY, A. 2005. Active query forwarding in sensor net-
works. Ad Hoc Netw. 3, 1, 91–113.

SAVVIDES, A., HAN, C.-C., AND SRIVASTAVA, M. B. 2001. Dynamic fine-grained localization in ad-hoc
networks of sensors. In Proceedings of the ACM SIGMOBILE Conference.

SHARAF, M., BEAVER, J., LABRINIDIS, A., AND CHRYSANTHIS, P. 2004. Balancing energy efficiency and
quality of aggregate data in sensor networks. VLDB J. 13, 4, 384–403.

TRIGONI, N., YAO, Y., DEMERS, A., GEHRKE, J., AND RAJARAMAN, R. 2005. Multi-query optimization
for sensor networks. In Proceedings of the International Conference on Distributed Computing
on Sensor Systems (DCOSS’05). 307–321.

WANG, C. AND XIAO, L. 2008. Sensor localization in concave environments. ACM Trans. Sensor
Netw. 4, 1, 1–31.

WU, Q., RAO, N. S. V., BARHEN, J., IYENGAR, S. S., VAISHNAVI, V. K., QI, H., AND CHAKRABARTY, K. 2004.
On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Trans.
Knowl. Data Engin. 16, 6, 740–753.

XIAO, L. AND OUKSEL, A. M. 2005. Tolerance of localization imprecision in efficiently managing
mobile sensor databases. In Proceedings of the ACM International Workshop on Data Engineering
for Wireless and Mobile Access (MobiDE’05).

YAO, Y. AND GEHRKE, J. 2002. The Cougar approach to in-network query processing in sensor
networks. ACM Spec. Interest Group Manag. Data (SIGMOD) Rec. 31, 3, 9–18.

YE, F., LUO, H., CHENG, J., LU, S., AND ZHANG, L. 2002. A two-tier data dissemination model for
large-scale wireless sensor networks. In Proceedings of the ACM International Conference on
Mobile Computing and Networking (MobiCom’02).

YOUNIS, M., YOUSSEF, M., AND ARISHA, K. 2002. Energy-aware routing in cluster-based sensor
networks. In Proceedings of the 10th IEEE MASCOTS Conference.

ZHANG, Z. AND SHATZ, S. M. 2006. A technique for power-aware query-informed routing in support
of long-duration queries for sensor networks. In Proceedings of the International Conference on
Sensing, Networking and Control (ICNSC’06).

ZHENG, R., HOU, J. C., AND SHA, L. 2003. Asynchronous wakeup for ad hoc networks. In Pro-
ceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc’03).

Received June 2008; revised September 2009; accepted September 2009

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 25, Publication date: June 2010.

