
Value the Recent Past: Approximate Causal
Consistency for Partially Replicated Systems

Ta-Yuan Hsu , Student Member, IEEE and Ajay D. Kshemkalyani , Senior Member, IEEE

Abstract—In wide-area distributed systems, data replication provides fault tolerance and low latency. Causal consistency in such

systems is an interesting consistency model. Most existing works assume the data is fully replicated because this greatly simplifies the

design of the algorithms to implement causal consistency. Recently, we proposed causal consistency under partial replication because

it reduces the number of messages used under a wide range of workloads. One drawback of partial replication is that its meta-data

tends to be relatively large when the message size is small. In this paper, we propose an algorithm Approx-Opt-Track which provides

approximate causal consistency whereby we can reduce the meta-data at the cost of some violations of causal consistency. The

amount of violations can be made arbitrarily small by controlling a tunable parameter, that we call credits. We present the analytic data

to show the performance of Approx-Opt-Track. We then give simulation results to show the potential benefit of Approx-Opt-Track, viz.,

its ability to provide almost the same guarantees as causal consistency, at a smaller cost.

Index Terms—Causal consistency, causality, distributed shared memory, partial replication

Ç

1 INTRODUCTION

DISTRIBUTED data repositories support a wide range of
services, such as social networks. The application tiers

of such repositories rely on the storage level to provide low
latency, reliable, available data store systems [1], [2], [3].
Such data store systems often use data replication. However,
data replication triggers the issue about the consistency of
multiple data replicas. With data replication, consistency of
data in the face of concurrent reads and updates becomes an
important requirement. Different data consistency models
place restrictions on the order of reads and writes to the
shared store, based on different requirements.

There exists a spectrum of consistency models in distrib-
uted shared memory (DSM) systems [4] from the strongest
(i.e., linearizability where each operation appears to take
effect atomically), to the weakest (i.e., eventual consistency
that is purely a liveness guarantee but offers no safety guar-
antees). DSM systems are subject to the CAP theorem [5],
which states that for a replicated, distributed data store, it is
possible to achieve at most two of the three features: Consis-
tency of replicas, Availability of Writes, and Partition toler-
ance. This theorem is the major reason behind the increasing
prevalence of eventual consistency, popularized by Ama-
zon’s Dynamo [1], which guarantees that if no further
updates are made to a data object, all the replicas of this

object will eventually converge. However, eventual consis-
tency sacrifices consistency; replicas hosted at different data
centers may have different results with different order.

Causal consistency can provide stronger convergence
than eventual consistency without sacrificing low latency
operations. This has gained interest as a highly attractive
consistency model for distributed shared memory systems,
[6], [3], [7], [8], [9]. It has been proved that causal consis-
tency is the strongest form of consistency that satisfies low
latency, defined as the latency less than the maximum
(round-trip) wide-area delay between replicas [10]. Causally
consistent DSM systems specify that two operations that are
causally related must appear to every user in the same
order. This makes web applications more intuitive for users,
because actions appear to every user in the correct order.
Consider, for example, a user who posts a new photo to his
profile in a social network. Then, he comments on the photo
on his timeline wall. Without causal consistency, his friends
might observe the comment but not see this photo. It
requires extra programming efforts to prevent this inconsis-
tent scenario at the application level.

Although there have been several protocols designed for
causal consistency in DSM systems [6], [3], [7], [8], [9], these
protocols suffer from a common drawback that makes them
less efficient in network bandwidth: they need to implement
full replication, where each replica has to maintain a copy of
all the data (Complete Replication and Propagation—CRP).
These protocols become impractical due to the explosion of
big data access and the larger numbers of data replicas. Par-
tial replication is a promising paradigm to alleviate this
problem. Partial replication protocols only require that each
replica node holds a subset of all the data. Although partial
replication can avoid taking unnecessary network capacity
and hardware resources, extending partial replication pro-
tocols to implement causal consistency is full of challenges

� T.-Y. Hsu is with the Department of Electrical and Computer Engineering,
University of Illinois at Chicago, Chicago, IL 60607. E-mail: thsu4@uic.edu.

� A.D. Kshemkalyani is with the Department of Computer Science, University
of Illinois at Chicago, Chicago, IL 60607-7053. E-mail: ajayk@cs.uic.edu.

Manuscript received 23 June 2016; revised 15 July 2017; accepted 29 July
2017. Date of publication 15 Aug. 2017; date of current version 8 Dec. 2017.
(Corresponding author: Ajay D. Kshemkalyani.)
Recommended for acceptance by B. Ravindran.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2740174

212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2465-686X
https://orcid.org/0000-0002-2465-686X
https://orcid.org/0000-0002-2465-686X
https://orcid.org/0000-0002-2465-686X
https://orcid.org/0000-0002-2465-686X
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
mailto:
mailto:

as compared to full replication. This is primarily because
partial replication has to track transitive causal dependen-
cies between each pair of processes, which makes the
complexity of tracking dependencies higher and the depen-
dency meta-data larger.

Recently, the first partial replication protocol for causal
consistency, named the Opt-Track protocol [11], was pro-
posed, by statically binding each client with one of many
replica nodes. Opt-Track is adapted from the KS algorithm
[12], [13], which aims at reducing the dependency meta-
data size and storage cost for causal message ordering in
message passing systems.

Simulations to test for the meta-data size of Algorithm
Opt-Track in a DSM setting showed that the meta-data size
is practically linear in n, where n is the number of client pro-
cesses/replica nodes [14]. As a special case of Opt-Track, we
also proposed in [11], an improvement Opt-Track-CRP for
the full-replication case. Simulations [14] showed that Opt-
Track-CRP gives about 40% � 60% reduction in the meta-
data size compared to the best known CRP protocol, OptP ,
of Baldoni et al. [15]. Although Opt-Track-CRP (for full rep-
lication) has lower meta-data overhead than Opt-Track (for
partial replication), the net message size (bandwidth con-
sumed, counting the payload file size being written and
broadcast/multicast to the replicas) can be lower for Opt-
Track for a wide range of file sizes.

In the real world, the characteristics of causal consistency
and partial replication are highly suitable to modern social
network applications. Data replication costs are an impor-
tant factor in overall DSM system performance. Partial
replication can effectively reduce the replication costs, espe-
cially in the multimedia-oriented social networks (e.g.,
Instagram). Causal consistency improves social user experi-
ence since actions appear to everyone in the correct order.
Opt-Track provides causal consistency and achieves the
cost advantages of partial replication in DSM systems. For
large-sized files being written, the net meta-data overhead
for Opt-Track is negligible, and the algorithm shows very
good performance in terms of the net meta-data overhead
as a fraction of the total message size. However, we recog-
nize that for some applications where the data size is very
small, such as wall posts in Facebook or Twitter, the size of
the meta-data, even for Algorithm Opt-Track, can be a prob-
lem. This paper aims to further reduce the size of the meta-
data for maintaining causal consistency in partially repli-
cated DSM systems, based on Opt-Track.

1.1 Contributions

(1) We propose the concept of approximate causal consis-
tency whereby we can reduce the meta-data at the
cost of some possible violations of causal consis-
tency. The amount of violations can be made arbi-
trarily small by controlling a tunable parameter,
which we call credits.

(2) We integrate the notion of credits into the Opt-Track
algorithm, to give an algorithm Approx-Opt-Track
that can fine-tune the amount of causal consistency
by trading off the size of meta-data overhead. We
show three instantiations of the notion of credits,
namely hop count, time-to-live, and metric distance.

(3) For the hop-count instantiation, we quantitatively
evaluate the performance of Approx-Opt-Track for
implementing causal consistency under partial repli-
cation. By controlling initial credits, we use simula-
tions to analytically examine the trade-off between
initial credits and the size of meta-data. We also
study the impacts of varying the number of pro-
cesses, the replica factor, and the write rate.

With an initial credits small enough (credits = cr0), Approx-
Opt-Track is seen to show significant gains over Opt-Track.
In particular, for 40 processes, Approx-Opt-Track can lower
the meta-data size (i) by around 5% � 20% without causal
violations and (ii) from 40% � 60% for upto 0.5 percent
causal violations (credits < cr0).

The results (i) and (ii) imply that : a) Approx-Opt-Track is
capable of further reducing the meta-data of Opt-Track. b)
Approx-Opt-Track can significantly lower the meta-data by
sacrificing causal consistency slightly. It appeals for some
social network applications, which do not require completely
strict causal consistency. For example, in Instagram, most of
the comments/replies (update operations) correspond to the
image (object creation) poster. Very few replies that do not
appear in the correct order do not make the readers misun-
derstand the context of the comments. Approx-Opt-Track
can be expected to improve total replication cost especially
formultimedia social network applications.

This is the first study to develop the approximate causal
consistency algorithm for partial replication and evaluate
its performance. Note that our algorithm could be modeled
to also provide eventual consistency by using the “last-
writer wins” rule.

Preliminary version of contributions 1) � 2) appeared in
NDM ’15 [16] and that of 3) appeared in ARMS-CC ’16 [17].

1.2 Organization

Section 2 describes related work. Section 3 gives the system
model of causally consistent memory and the underlying
communication system. Section 4 presents the algorithm
Approx-Opt-Track that implements causal consistency under
partial replication. We have integrated the notion of credits
into this algorithm, and explain how it leads to approximate
causal consistency. Section 5 shows how the notion of credits
can be instantiated. Section 6 presents the communication
framework for simulating Approx-Opt-Track based on differ-
ent initial credits for the hop-count instantiation. Section 7
shows the experimental results. Section 8 illustrates the trade-
off between initial credits and the meta-data size. Section 9
gives a discussion and concludes.

2 RELATED WORK

Causal message ordering for message passing systems was
defined by Birman and Joseph [18] and they gave the ISIS
CBCAST (causal broadcast) protocol to implement causal
message ordering. An improved algorithm in the message
passing model was given by Schiper et al. [19]. Later, Raynal
et al. [20] proposed a simple abstraction and a matrix-based
implementation of causal ordering for multicasts and point-
to-point messaging. These implementations required Oðn2Þ
meta-data overhead in the average case. Kshemkalyani and
Singhal [12], [13] identified the necessary and sufficient

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 213

conditions on the meta-data overheads for multicasts, and
proposed an optimal algorithm (the KS algorithm) which
implements these conditions and requires OðnÞ meta-data
overhead in the amortized case [21], [22].

Ahamad et al. [23] introduced the definition of causal
consistency in DSM systems, and gave an algorithm for
implementing causal consistency in such systems assuming
full replication of the DSM. Baldoni et al. [15] later proposed
an application-level protocol, in full replication DSM sys-
tems, that improves on the performance of the Ahamad
et al. protocol. Their optimality criterion is enforced by the
protocol OptP , which uses a reliable broadcast primitive.
Recently, we proposed a protocol named Opt-Track [11] for
partial replication in DSM systems, that adopts the neces-
sary and sufficient conditions of the KS algorithm [12], [13]
from message-passing systems. This protocol is the first
work on causal consistency under partial replication, and
practically has linear (OðnÞ) meta-data overheads in the
amortized case [14].

D-causal ordering [24], [25] is designed for real-time mes-
sage passing applications in unreliable networks. This com-
munication abstraction guarantees that message delivery is
based on causality order with a limited lifetime, denoted as
D, after which the message data can no longer be valid. By
exploiting transitive dependencies in message transmission,
this real-time protocol significantly reduces the dependency
meta-data piggybacked on real application file data in the
case of peer-to-peer and broadcast communication. Real-
time based message communication RTCM [26] can guaran-
tee that multimedia data with real-time validity are effi-
ciently delivered to the application level in causality order.
Any message arriving at a destination before its time valid-
ity expires will be delivered to the application level. Due to
the supports for data with real-time deadlines, the data is
deleted after its valid deadline to minimize the dependency
information. ‘D’ is different from credits we propose in this
study. When credits become aged, the corresponding
dependency meta-data is removed. However, in D-causal
ordering, if the transmission time of a message is beyond D,
the whole message will be ignored.

Torres-Rojas et al. [27] provided consistent access to
objects based on the lifetime approach. The end of the life-
time assigned to an object indicates the time until which this
object is valid. By keeping track of the lifetimes of the values
stored in shared objects, they showed how to check the
mutual consistency of a set of related objects stored at a local
site in a synchronized system with efficient and scalable
implementations of object sharing across widely distributed
users. Crain et al. [28] illustrated a causally consistent proto-
col for geo-distributed partial replication with dependency
vectors. However, it still considered imprecise representa-
tion of dependencies, which can result in false dependencies.
Orbe [8] provided scalable causal consistency with explicit
dependency tracking under full replication.

3 SYSTEM MODEL

We use the same model used in [11], [15], [23], [29].

3.1 Causally Consistent Memory

We assume a concurrent system composed of n application
processes ap1; . . . ; apn interconnected through a distributed

shared memory Q which is formed of q variables
x1; x2; . . . ; xq. Each application process api is allowed to
either read from or write to any of the q shared variables.
Each variable has an initial value ?. riðxjÞv denotes that api
invokes a read operation on variable xj which returns value
v. wiðxjÞu denotes that api invokes a write operation on vari-
able xj which writes the value u.

A series of read and write operations performed in an
application process api generates a local history hi. The set
of local histories hi from all n application processes is
denoted by the global history H. When a local operation o1
precedes another local operation o2, this means that o1 pre-
cedes o2 under program order, denoted as o1 �po o2. When
two operations o1 and o2 from distinct processes api and apj
respectively, are such that o1 ¼ wðxÞv and o2 ¼ rðxÞv, this
means that read operation o2 retrieves the value written by
the write operation o1; o1 and o2 are related under the read-
from order, denoted as o1 �ro o2. Two properties can be sum-
marized as follows:

� for any operation o2, there is at most one operation o1
such that o1 �ro o2;

� if o2 ¼ rðxÞv for some x and there is no operation o1
such that o1 �ro o2, then v ¼?, meaning that a read
with no preceding write must read the initial value.

With both the program order and read-from order, the cau-
sality order, denoted as�co, can be defined on the set of oper-
ationsOH in a historyH. The causality order is the transitive
closure of the union of local histories’ program order and
the read-from order. Specifically, for two operations o1 and
o2 in OH , o1 �co o2 if and only if one of the following condi-
tions holds:

(1) 9api s.t. o1 �po o2 (program order)
(2) 9api; apj s.t. o1 and o2 are performed by api and apj

respectively, and o1 �ro o2 (read-from order)
(3) 9o3 2 OH s.t. o1 �co o3 and o3 �co o2 (transitive closure)
Essentially, the causality order defines a partial order on

the set of operations OH . For a causal shared memory, all
the write operations that can be related by the causality
order have to be seen by each application process in the
order defined by the causality order.

3.2 Underlying Distributed Communication System

To satisfy the causal consistency requirement under the par-
tial replication model, the DSM application is implemented
on top of a message passing communication system which
is composed of n interconnected sites, each of which hosts
an application process api and holds only a subset of varia-
bles xh 2 Q. The subset of variables kept on site si is
denoted as Xi for application process api. If the system rep-
lica factor is p and the variables are evenly replicated on all
the sites, then the average size ofXi is

pq
n .

To perform the read and write operations in the DSM
application, some primitives are provided to communicate
messages between different sites, as follows. The
RemoteFetchðmÞ primitive is invoked when an applica-
tion process performing a read operation to read variable x2

needs to deliver the message m to fetch x2’s value from a
randomly selected remote replica site (since x2 is not locally
replicated). Because this is a synchronous primitive, it will
not complete until the variable’s value is returned. If the

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

variable to be read is locally replicated, then the application
process simply returns the local value. The SendðmÞ primi-
tive is invoked when an application process performs a
write operation wðx1Þv to deliver the message m to all sites
that replicate the variable x1 with an updated value v. The
read and write operations performed by the application
processes also generate events in the underlying message
passing system. The following is a list of events:

� Send event. The invocation of SendðmÞ primitive by
application process api generates event sendiðmÞ.

� Fetch event. The invocation of RemoteFetchðmÞ
primitive by application process api generates event
fetchiðfÞ.

� Receive event. The receipt of a messagem at site si gen-
erates event receiveiðmÞ. The message m can corre-
spond to either a sendjðmÞ event or a fetchjðfÞ event.

� Apply event. When applying the value written by the
operation wjðxhÞv to variable xh’s local replica at
application process api, an event applyiðwjðxhÞvÞ is
generated.

� Remote return event. After the occurrence of event
receiveiðmÞ corresponding to the remote read opera-
tion rjðxhÞu performed by apj, an event remote
returni ðrjðxhÞuÞ is generated which transmits xh’s
value u to site sj.

� Return event. Event returniðxh; vÞ corresponds to the
return of xh’s value v either fetched remotely
through a previous fetchiðfÞ event or read from the
local replica.

Each time an update messagem carrying the information
wjðxhÞv is received at site si, a new thread is spawned to
check when to apply the update request to the local replica,
satisfying causal consistency. The condition whether the
update value is ready to be applied is called activation pred-
icate in [15]. This predicate AðmwjðxhÞv; eÞ, which is false by
default initially, becomes true only if the update request
mwjðxhÞv can be applied after the occurrence of local event e.
The local thread handling the update request will be
blocked until the activation predicate becomes true, at
which time the thread applies value v to variable xh’s local
replica. This apply action will result in the applyiðwjðxhÞvÞ
event locally.

3.3 Activation Predicate

Consider the causality order relation, !co, on send events
created in the underlying message passing system [15],
where the relation !co is a partial order on the send events
generated by write operations respecting the partial order
induced by �co on operations. We further modify its defini-
tion by adding condition (3) to accommodate the partial
replication system. Suppose that wðxÞa and wðyÞb are two
write operations in OH . Then, for their corresponding send
events in the underlying message passing system,
sendiðmwðxÞaÞ !co sendjðmwðyÞbÞ if and only if one of the fol-
lowing conditions holds:

(1) i ¼ j and sendiðmwðxÞaÞ locally precedes sendjðmwðyÞbÞ
(2) i 6¼ j and returnjðx; aÞ locally precedes sendjðmwðyÞbÞ
(3) i 6¼ j and 9l such that applylðwðxÞaÞ locally precedes

remote returnlðrjðxÞaÞ, which precedes (as per

Lamport’s ! relation [30]) returnjðx; aÞ, which
locally precedes sendj ðmwðyÞbÞ

(4) 9sendkðmwðzÞcÞ, such that
sendiðmwðxÞaÞ !co sendkðmwðzÞcÞ !co sendjðmwðyÞbÞ

The relation !co is a subset of Lamport’s “happened
before” relation [30], denoted by!. If there exists a!co rela-
tion on two send events, then they are also related by !.
However, the reverse way is not necessarily true. Thus, even
if sendiðmwðxÞaÞ ! sendjðmwðyÞbÞ without a return event in
between and i 6¼ j, these two send events are concurrent
under the!co relation. The!co relation better represents the
causality order in the DSM abstraction to eliminate the “false
causality” in the underlying message passing system, where
message receive events may causally relate two send events
while their corresponding write operations in the shared
memory application are concurrent under the �co relation.
(False causality was identified by Lamport [30].) In [15], the
authors have shown that sendiðmwðxÞaÞ !co sendjðmwðyÞbÞ ,
wðxÞa �co wðyÞb.

The optimal activation predicate is as follows:

AOPT ðmw; eÞ �6 9mw0 : ðsendjðmw0 Þ !co sendkðmwÞ
^ applyiðw0Þ 62 EijeÞ;

where Eije is the set of events that happened at the site si up
until e (excluding e).

The causal memory’s requirement that a write operation
shall not be seen by an application process before any caus-
ally preceding write operations is cleanly captured by this
activation predicate. This activation predicate AOPT ðmw; eÞ
is optimal because the moment it becomes true is the earliest
instant that the updatemw can be applied.

4 ALGORITHM

4.1 Opt-Track Protocol

As mentioned before, Opt-Track protocol [11] adapts the KS
algorithm to a partially replicated causal DSM system. Each
site si holds a collection of the most recent causal updates,
that happened before under the !co relation. Each record in
the collection contains a set of destinations, each of which
represents one replica node of the corresponding update.
When a write operation is initiated, the delivered multicast
update messages will piggyback the recently stored collec-
tion records. On receiving an update message, the receiver
site can use the optimal activation predicate AOPT to deter-
mine when to apply the update value under causal consis-
tency. Once the apply event is applied, the piggybacked
collection of records is associated with the corresponding
variable. If a read operation accesses the update variable
later, the corresponding associated collection of records will
be merged into the local collection of records. Opt-Track
will prune redundant destination records by the following
conditions to achieve the optimality of dependency meta-
data size. Here, implicitly remembering means that informa-
tion can be inferred from other later log entries, without
storing that information.

� Propagation and Pruning Condition 1: When an update
m corresponding to write operation wðxÞv is applied
at site s2, then the information that s2 is part of
the update m’s destinations no longer needs to be

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 215

explicitly remembered in the causal future of the
event apply2ðwÞ. We implicitly remember it in the
causal future (under the !co relation) of event
return2ðx; vÞ (and event remote return2ðr�ðxÞvÞ), to
clean the logs at other sites. This is because m is
already delivered to s2.

� Propagation and Pruning Condition 2: For two updates
mwðxÞv and m0

w0ðyÞv0 such that sendðmÞ !co sendðm0Þ
and both updates are sent to site s2, the information
that s2 is part of update m’s destinations is irrelevant
in the causal future of the event applyðw0Þ at all sites
sk receiving update m0. (In fact, it is redundant in the
causal future of sendðm0Þ, other than m0 sent to s2.)
This is because, by transitivity, applying update m0

at s2 in causal order with respect to a message m00

sent causally later to s2 allows inferring that the
update m has already been applied at s2. We implic-
itly remember in the causal future (under the !co

relation) of events returnkðy; v0Þ (and events remote
returnkðr�ðyÞv0Þ) that m is transitively guaranteed to
be delivered to s2, to clean the logs at other sites.

For messageM from source i and timestamped a, a desti-
nation set is denoted as Mi;a:Dests. Log entries are denoted
by l and message overhead entries as o. The logs at the sites
are cleaned by implicitly tracking messages by Pruning
Condition 1 or 2 as follows.

� Implicit Tracking 1: 9d 2 Mi;a:Dests such that d 2 li;a:
Dests

V
d 62 oi;a:Dests. Then d can be deleted from

li;a:Dests because it can be inferred that Mi;a is deliv-
ered to d or is transitively guaranteed to be delivered
in causal order. When li;a:Dests ¼ ;, it can be inferred
that Mi;a is delivered or is transitively guaranteed to
be delivered in causal order, to all its destinations.

� Implicit Tracking 2: If a1 < a2 and li;a2 2 LOGj, then
li;a1 implicitly or explicitly exists in LOGj. Entries of
the form li;a1 :Dests ¼ ; can be inferred by their
absence and should not be stored.

Using implicit knowledge about messages delivered and
transitively guaranteed to be delivered in causal order, the
Opt-Track protocol [11] automatically prunes the meta-
data. This pruning is in addition to the pruning done by
using explicitly maintained information. In the amortized
case, the meta-data is manageable and linear in n, rather
than quadratic (See Table 1 in [11] and [14]). Four metrics
were used in the complexity analysis:

� message count: the total number of messages gener-
ated in an execution.

� message space overhead: the total size of the meta-
data generated in an execution, which is formalized
as

P
i(# type i messages * size of type i messages).

� time complexity: the time complexity at each site si
for executing a write or a read operation.

� space complexity: the space complexity at each site si
for storing local logs.

The following parameters are used for the DSM system:

� n: the number of sites.
� q: the number of variables.
� p: the replica factor, i.e., the number of replica sites

for each variable. (rf : the replica factor rate is defined
as p/n)

� w: the number of write operations performed.
� r: the number of read operations performed.
The complexity of Opt-Track is summarized in Table 1.

We further illustrate the overhead of partial replication ver-
sus full replication in terms of Opt-Track and Opt-Track-
CRP. Suppose that f is the size of an image/data being writ-
ten and b is the number of bytes in an integer.

Full Replication. The net payload data size for a write
operation is ðn� 1Þ � f , and n� b� ðn� 1Þ for the meta-
data overheads in the worst case of Opt-Track-CRP protocol
[11]. In practice, the space size of the local log depends on
the number of entries in the local log, expressed as d, which
is only a small finite value. The read cost is zero. In short,
the total message space cost arising from one write opera-
tion in full replication is (n� 1)f + db(n� 1).

Partial Replication. In Opt-Track, the net payload data size

is ((p� 1) + ðn�pÞ
n)f for a write operation. With r

w reads per
write and n�p

n of them to fetch the data from a remote replica,
the read cost is (rw)

ðn�pÞ
n f . The corresponding meta-data over-

heads are ((p� 1) + ðn�pÞ
n)n2b + (rw)

ðn�pÞ
n ðn2 þ 1Þb in the worst

case. It was shown in [14] that the amortized log size and
message overhead size is approximatelyO(n), notO(n2). The
amortized total message space cost is ((p� 1) + ðn�pÞ

n)nb +
(rw)

ðn�pÞ
n ðnþ 1Þb.

Example. Assume that one word holds 4 B, f = 50 B (the
average text tweet size), and each message corresponds to
one write operation. In Figs. 1 or 2, p is 2; n is 4; d is 2. The

TABLE 1
Complexity Measures of Opt-Track [11]

Metric Opt-Track

Message count ððp� 1Þ þ n�p
n Þwþ 2r ðn�pÞ

n

Message space Oðn2pwþ nrðn� pÞÞ
overhead amortized Oðnpwþ rðn� pÞÞ
Time Complexity write Oðn2pÞ

read Oðn2Þ
Space Complexity Oðmaxðn2; npqÞÞ

amortized Oðmaxðn; pqÞÞ

Fig. 1. Illustration of causal consistency violation if credits are
exhausted.

Fig. 2. Illustration of meta-data reduction when credits are exhausted.

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

total transmitted data in Opt-Track is around 300 B. How-
ever, considering full replication, the total transmitted data
in Opt-Track-CRP is around 700 B. In the next section and
Section 5, we show the details of how to reduce the meta-
data overheads of Opt-Track further.

4.2 Basic Idea of Approx-Opt-Track

We can further reduce the size of meta-data by deleting
older dependencies rather than carry them around and
store them in logs. With very high probability, the older the
dependencies are, the more they are likely to be immedi-
ately satisfied as the corresponding messages are more
likely to be delivered. We introduce the notion of credits
associated with each meta-data unit of information. When a
dependency is created, it is allocated a certain number of
initial credits. For every read and write operation, we decre-
ment the available credits by some used-up credits, and
when the available number of credits reaches zero, the
dependency becomes “old enough” and can be deleted. By
setting the initial credits to1, we get the original Opt-Track
algorithm. By setting them to a smaller finite value, we can
prune meta-data information about older dependencies by
risking that those dependencies might not be satisfied,
rather than wait for the pruning mechanisms of Opt-Track
to prune them. Credits is a parameter that lets us approxi-
mate causal consistency to the accuracy desired.

Consider the timing diagram in Fig. 1. The messages
shown indicate those sent due to write operations to update
the remote replica. The causality chain induced by write
operations corresponding toM1,M2, andM3, and the inter-
vening apply and return events, ends inM3 being sent to site
s1. Normally in Opt-Track, the meta-data onM3 contains the
dependency that “M is sent to s1”, andwill preventM3 from
being delivered to s1 before M is delivered. However, if the
credits get expired along this causality chain, then M3 will
not carry the meta-data dependency that “M is sent to s1”
and hence M3 will be delivered by violating causal consis-
tency at s1. If credits are decremented slowly enough, then
with very high probability, M3 will carry the meta-data
information aboutM and causal consistency is not violated.

In another scenario, consider the timing diagram in
Fig. 2. It is the same as in Fig. 1, with the exception that mes-
sage M is delivered to s1 within a reasonable (i.e., an
expected) amount of time. Assume that the credits about
the dependency “M is sent to s1” get exhausted when M2 is
delivered to s4 along the causality chain hM1;M2i. The
dependency is thus deleted at s4 and is not carried in the
meta-data sent along with message M3. This results in
reduced meta-data onM3. This does not cause any violation
of causal consistency when the reduced meta-data is deliv-
ered to s1, becauseM has been delivered to s1.

4.3 Approx-Opt-Track

Algorithm 1 shows the steps performed by Approx-Opt-
Track. The following data structures are needed for each site.

(1) clocki: local counter for write operations performed
at site si by application process api.

(2) Applyi½1 . . .n	: an integer array (initially set to 0s).
Applyi½j	 ¼ y means that y updates written by appli-
cation process apj have been applied at site si.

(3) LOGi ¼ fhj; clockj;Dests; crig: the local log (initially
set to empty). Each entry h�i specifies a write opera-
tion, for which Dests is the destination set, in the
causal past. Only necessary destination information
is stored. cr is the remaining amount of credits
allowed before the entry ages out.

(4) LastWriteOnihvariable id; LOGi: a hash map of
LOGs. LastWriteOnihhi contains the piggybacked
LOG for the most recent update applied at site si to
locally replicated variable xh.

Algorithm 1. Approx-Opt-Track Algorithm, which is a
Modification of AlgorithmOpt-Track [11] (Code at site si)

WRITEðxh; vÞ:
1: clocki þþ;
2: cr :¼ initial credits;
3: for all l 2 LOGi do
4: l:cr :¼ l:cr� used credits;
5: if l:cr
 0 ^ l:Dests 6¼ ; then delete l;
6: for all sites sjðj 6¼ iÞ that replicate xh do
7: Lw :¼ LOGi;
8: for all o 2 Lw do
9: if sj 62 o:Dests then o:Dests :¼ o:Dests n xh:replicas;
10: else o:Dests :¼ o:Dests n xh:replicas [fsjg;
11: for all oz;clockz 2 Lw do
12: if oz;clockz :Dests ¼ ; ^ ð9o0

z;clock0z
2 Lwjclockz < clock0zÞ

then remove oz;clockz from Lw;
13: Sendmðxh; v; i; clocki; xh:replicas; cr; LwÞ to site sj;
14: for all l 2 LOGi do
15: l:Dests :¼ l:Dests n xh:replicas;
16: PURGE;
17: LOGi :¼ LOGi [fhi; clocki; xh:replicas n fsig; crig;
18: if xh is locally replicated then
19: xh :¼ v;
20: Applyi½i	 þ þ;
21: LastWriteOnihhi :¼ LOGi;

READðxhÞ:
22: if xh is not locally replicated then
23: RemoteFetch½fðxhÞ	 from randomly selected site sj

that replicates xh to get xh and LastWriteOnjhhi;
24: MERGEðLOGi; LastWriteOnjhhiÞ;
25: else MERGEðLOGi; LastWriteOnihhiÞ;
26: PURGE;
27: return xh;

On receivingmðxh; v; j; clockj; xh:replicas; c; LwÞ from site sj:
28: for all oz;clockz 2 Lw do
29: if si 2 oz;clockz :Dests thenwait until clockz
 Applyi½z	;
30: for all o 2 Lw do
31: o:cr :¼ o:cr� used credits;
32: if o:cr
 0 ^ o:Dests 6¼ ; then delete o;
33: xh :¼ v;
34: Applyi½j	 :¼ clockj;
35: Lw :¼ Lw [fhj; clockj; xh:replicas; c� used creditsig;
36: for all oz;clockz 2 Lw do
37: oz;clockz :Dests :¼ oz;clockz :Dests n fsig;
38: LastWriteOnihhi :¼ Lw;

On receiving fðxhÞ from site sj:
39: return xh and LastWriteOnihhi to sj;

The data structures are the same as in algorithm Opt-
Track, with the addition of the credits parameter cr in each
entry in LOGi. Algorithm 1 implements the optimality
mechanisms described in algorithm Opt-Track [11].

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 217

For a write operation, it will send different log meta-data
Lw to different replica sites. Lines (6)-(13) formulate the
meta-data for each replica site and minimize its space over-
head. Lines (8)-(10) and lines (14)-(15) can prune the desti-
nation sets by Propagation and Pruning Condition 2. Lines
(36)-(37) prune the redundant information by Propagation
and Pruning Condition 1. Lines (28)-(29) are used to imple-
ment the optimal activation predicate AOPT .

Algorithm 2 shows two functions used in Algorithm
Approx-Opt-Track (Algorithm 1). Function PURGE removes
the records with ; destination sets, per sender process.
When reading variable xh, function MERGE combines the
piggybacked log of the corresponding write to xh and the
local log LOGi. In this function, new dependencies are
added to LOGi and old dependencies in LOGi are pruned,
based on the information in the piggybacked data Lw. The
merging procedure realizes the optimality techniques of
Implicit Tracking1.

Algorithm 2. Procedures Used in Algorithm 1, Approx-
Opt-Track Algorithm (Code at Site si)

PURGE:
1: for all lz;tz 2 LOGi do
2: if lz;tz :Dests ¼ ; ^ ð9l0

z;t0z
2 LOGijtz < t0zÞ then

3: remove lz;tz from LOGi;
MERGE ðLOGi; LwÞ:

4: for all l 2 LOGi do
5: l:cr :¼ l:cr� used credits;
6: for all o 2 Lw do
7: o:cr :¼ o:cr� used credits;
8: for all oz;t 2 Lw and ls;t0 2 LOGi such that s ¼ z do
9: if t < t0 ^ ls;t 62 LOGi thenmark oz;t for deletion;
10: if t0 < t ^ oz;t0 62 Lw thenmark ls;t0 for deletion;
11: delete marked entries;
12: if t ¼ t0 then
13: ls;t0 :Dests :¼ ls;t0 :Dests \ oz;t:Dests;
14: ls;t0 :cr :¼ minðls;t0 :cr; oz;t:crÞ;
15: delete oz;t from Lw;
16: LOGi :¼ LOGi [Lw;
17: for all l 2 LOGi do
18: if l:cr
 0 ^ l:Dests 6¼ ; then delete l;

Notice that in the PURGE function, and in lines (11)-(12) of
the WRITE procedure, entries with empty destination list are
kept as long as and only as long as they are the most recent
update from the sender. This is required for implicit tracking
of messages delivered and guaranteed to be delivered in
causal order using Implicit Tracking 2, as explained in [11],
[12], [13]. Such entries should not be deleted even if their cred-
its allocation becomes zero. Thus in line 5, line 32, of the main
algorithm, and in line 18 of MERGE, we delete an entry with
exhausted credits only if its destination list is non-empty.

5 CREDIT INSTANTIATIONS

Using the hop count instantiation, credits of a meta-data
entry denote the hop count available before the entry ages
out and is deleted. A message is said to traverse one hop
when it traverses along a logical channel between any pair
of processes (sites). We make some notes about this instanti-
ation of Algorithm Approx-Opt-Track.

(1) Line 2: initial assignment of the hop count for a new
dependency created by a write operation.

(2) Lines (3)-(5): These lines are no-ops because there is
no message transfer.

(3) Lines (30)-(32): In line 31, the hop count is decre-
mented by one for each entry in the piggybacked
meta-data received.

(4) Line 35: The hop count is decremented by one for the
new dependency just formed by the received
message.

(5) Lines (4)-(7) in MERGE: The entries in LOGi do not
experience any decrease in hop count, while the
entries in Lw have the hop count decremented if the
data was remotely fetched by the read operation that
triggered the MERGE.

(6) Line 14 in MERGE: The hop count is set to the mini-
mum of the hop counts of the entries being merged.

(7) Lines (17)-(18) in MERGE: LOGi entries whose hop
count is zero are deleted.

Example. We illustrate Approx-Opt-Track with hop count
credits by using Figs. 1 and 2, and quantitatively show how
much improvement one can gain in running Approx-Opt-
Track against Opt-Track. Initially, a hop count credit x is
assigned to the meta-data “M is sent to s1” (denoted md).
After receiving and applying M1 at s2, the credits will be
decremented by one. WhenM2 is delivered to and applied at
s4, if the credit value x� 2 is not greater than zero,md will be
removed from the corresponding record. Thus, if x was ini-
tialized to 2, when M3 is delivered to s1 without piggyback-
ing md, applying M3 at s1 violates causal consistency in
Fig. 1, but not in Fig. 2. By controlling x, Approx-Opt-Track
can carry less amount of dependency meta-data. We expect
that if the initial allocation of x is made as a high single-digit,
by the time x reaches zero and themeta-data entry is deleted,
the message about which the meta-data is deleted would
already have reached its destination (with very high proba-
bility). Consider Fig. 2. In Opt-Track, there are 6 dependency
records delivered (1(M1) + 2(M2) + 3(M3)) and 5 dependency
records (2(s3) + 3(s4)) saved in local storages by the two apply
events. In Approx-Opt-Track, when x is set to 2, there are
5 dependency records delivered (1(M1) + 2(M2) + 2(M3)) and
4 dependency records (2(s3) + 2(s4)) saved in local storages
by the two apply events. Approx-Opt-Track can not only
reduce transmitted data and storage overheads as compared
to Opt-Track but can also maintain causal consistency. Our
simulation results focus on the relationship between ade-
quate x (no causal violation) and n (the number of processes)
and the trade-off between adequate x and how much meta-
data can be reduced further.

‘Physical time lapse’ and ‘metric distance traversed’ can
be used as instantiations of credits. Note that we assume
that the network is symmetric and homogeneous. In this
case, the TTL and physical distance are not good metrics or
they need to be modified to reflect the real trade-off between
causal violation and credits. For simplicity, we consider the
metric of the hop count credits.

6 SIMULATION SYSTEM MODEL

We describe the experimental methodology used to evalu-
ate the performance of the proposed Approx-Opt-Track

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

algorithm in an asynchronous distributed system, with
respect to the instantiation of credits, by hop count. The sys-
tem is composed of a finite number of interconnected sites.
Each site has only one asynchronous process with a local
memory, for simplicity. All the processes can communicate
by asynchronous message passing through TCP channels of
the underlying network, where messages are delivered in
FIFO order with no omissions or duplications.

6.1 Process Model

Two major subsystems in a process are the application sub-
system and the message receipt subsystem. The purpose of
the application subsystem (AS) is to facilitate scheduling
operation events (write/read). AS not only maintains a
floating point local clock to generate event patterns based
on a temporal schedule, but also is responsible for handling
Write and Read functions. The message receipt subsystem
(MRS) takes charge of responding to remote request ser-
vice. MRS mainly consists of ApplyingMulticast and
RespondingFetch services.

The simulation system core is based on Approx-Opt-
Track. For a write operation wðxhÞv, AS invokes a send
event to deliver the message mðwðxhÞvÞ with the corre-
sponding meta-data��local log Lw and hop count credits to
other replicas. For a read operation rðxhÞ, AS returns the
local value of variable xh or invokes a fetch event to deliver
the message fetchðxhÞ to a predesignated site to retrieve the
remote variable xh’s value as well as the corresponding
meta-data LastWriteOnhhi and hop count credits. MRS can
recognize and allow the receipt of two distinct types of
incoming messages. First, if the incoming message m con-
tains a write operation wðxhÞv, MRS will determine when
to apply the new value v to the variable xh under causal con-
sistency and then update the meta-data log LastWriteOnhhi
and hop count credits. Second, on receiving a remote fetch
message mðfetchðxhÞÞ, it invokes a remote return event to
reply with the local value of the variable xh, the correspond-
ing meta-data log LastWriteOnhhi, and hop count credits to
the requesting site.

6.2 Simulation Parameters

The system parameters whose effects we examine on the
performance of Approx-Opt-Track are as follows:

� Number of Processes (n): The performance of every
DSM implementation highly depends on the node
count, or core count, and the underlying hardware
running the simulation (i.e., memory allocation of
the benchmark device). It is hence necessary to simu-
late a DSM system over a wide range of n. On an
Intel Core 2 Duo workstation with a JDK8 virtual
machine, we can simulate up to 40 processes.

� Number of Variables (q): q is usually unbound in a
real system. Subject to the memory limitation, q in
the benchmark experiment is one hundred.

� Replica Factor Rate (rf): The ratio of the number of
replicas to n.

� Write Rate (wrate): It is defined as the ratio of the
number of write operations to the total number of
operations. Binding by a variety of write rates, we
can study performance for read-intensive and write-
intensive application workloads.

� Hop Count Credits (cr): Credits of a meta-data entry
denote the hop count available before the entry ages
out and is removed.

� Message Count (mc): The total number of messages
generated by all the processes.

� Message Meta-Data Size (ms): The total size of all the
meta-data transmitted over all the processes.

6.3 Process Execution

For simplicity, we consider a homogeneous and fully con-
nected network, in which all the processes are symmetric.
The operation events are triggered based on a event schedule
randomly generated in advance. Subject to the underlying
hardware, the time interval Te between two events at a pro-
cess is given from 5 to 2,005 ms. The propagation time Tt is
from 100 to 3,000 ms. Consider the real-world network com-
munication situation. Tt is initially given as 5 ms � 300 ms
and Te is set to be 10 ms � 200 ms. We simulated multi-pro-
cesses on a standalone workstation. They use the TCP proto-
col to transmit messages, where each transmission
establishes a TCP “short” connection, getting closed after
delivering the message. This TCP port cannot be used imme-
diately. It is released after some delay. If Tt and Te are so short
as to cause sockets to be leaked, with time, this exhausts all
available TCP ports. A compromise solution is to increase the
number of ephemeral network ports and make sure the rate
at which the connections are created does not throttle the ker-
nel memory. There are no formally documented approaches
available to increase non-paged kernel memory in a stand-
alone machine. With not enough hop count credits, causal
violation would depend on the combination of Te and Tt. In
order to avoid connection exceptions, we need to lower the
connection rate in our simulation. To seek the next-best thing,
we formulate isomorphic communication patterns with the
above larger Te and Tt. The range of Te is finally set from 5
through 2,005 ms and that of Tt from 100 through 3,000 ms.
The simulation results of these two different time ranges in
smaller numbers of processes are not obviously distinct.

The processes in the distributed system execute concur-
rently. Simulating each process as an independent process
at a site invoked inter-process communication. When a pro-
cess gets initialized, it first invokes the MRS. Then, the sys-
tem executes Scheduled-ExecutorService in JDK to drive the
AS which extends TimerTask class��a JDK scheduling ser-
vice to dispose of the scheduling operation events. In the
simulation, the system relies on TCP channels to deliver
messages. An AS stops generating operation events once it
runs out of all the scheduling events and flags its status as
finished. The simulation is done when all the ASs have their
status set to ‘finished’.

6.4 Causal Consistency Verification

In this paper, we undertake a comprehensive study of the
trade-off relations among the initial allocation of credits, the
dependency meta-data size, and the causal consistency cor-
rectness. It is a critical issue to detect how many receiving
operations violate causal consistency in a simulation. In
Algorithm 1, theoretically, when the hop count reaches
zero, the dependency meta-data entry is deleted. It means
that not all the meta-data entries (explicit information of
destinations) are kept before the destination information
becomes redundant. Thus, while AOPT in lines (28)-(29)

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 219

(Algorithm 1) becomes true, the instant that an updatemw is
applied may violate causal consistency.

Practically, the meta-data entry whose cr is equal to zero
would be marked rather than deleted in line 32 (Algo-
rithm 1) and line 18 (MERGE, Algorithm 2). If AOPT (clockz

 Applyi[z]) becomes true and at least one o:cr
 0 (the
meta-entry is marked), this receiving operation applied
would violate causal consistency. We realize this verifica-
tion mechanism at the application level by counting the
number of messages applied by the remote replicated sites
with a violation of causal consistency, denoted as ne.

7 SIMULATION RESULTS

We present results of simulations performed to study the
trade-off among initial credits cr, message meta-data size
ms, and causal consistency accuracy rate in the empirical
evaluation. The performance metrics used are as follows:

� The causal consistency violation error rate, Re.
� The average size of the message meta-data transmit-

ted for different initial credits and write rates,mave.
� The message meta-data size saving rate, Rs.
In order to clarify the relative contribution of these met-

rics, multivariate analyses were conducted. Choosing a dif-
ferent set of parameters (rf , wrate, n, and cr) will result in a
different evaluation. Our evaluations realize four evaluation
loops, each of which corresponds to one parameter. The loop
structure is as follows: First, we select a rf . It was set to be 0.3,
0.2, and 0.5. The first loop evaluates the impact of rf . Second,
the wrate was set to be 0.2 (lower write rate), 0.5 (medium
write rate), and 0.8 (higher write rate), respectively. The sec-
ond loop evaluates the impact of different wrate: Third, nwas
varied from 5 up to 40. This tests the scalability of Approx-
Opt-Track. Finally, the innermost loop varied the initial hop
count credit cr. It was specified from one to a critical value
cr0, with which there is no message transmission violating
causal consistency in the corresponding simulation. Not only
does this illustrate how Approx-Opt-Track further reduces
the meta-data overheads but it also verifies the trade-off
betweenmeta-data saving rates and causal violation degrees.

Before running an evaluation (corresponding to a set of
parameters), we randomly generate a task schedule set Ts.
Because this is a simulation-based study, randomness is
introduced in the readings. For each experimental evaluation,

three runs were performed over the same Ts. The variations
for all the simulation results are less than 2 percent. Themean
of numerical results performed from three runs is repre-
sented for each combination of the four parameters. Each
simulation execution runs 600n operation events totally.
Experimental data was stored after the first 15 percent opera-
tion events to eliminate the side effect of startup.

7.1 Violation Error Rate (Re)

In Section 6.4, we defined ne as the number of messages
applied by the remote replicated sites with a violation of
causal consistency. We defineRe as the ratio of ne to the total
number of transmitted messages mc. The results for Re ver-
sus different initial hop count credits are shown in Figs. 3, 4,
and 5. Each of them corresponds to a differentwrate.

With increasing cr (less than 4), Re rapidly decreases. For
the same initial cr and wrate, the larger the n, the higher the
Re. The larger the wrate, the lower the Re. Table 2 highlights
the results for two types of critical initial credits (crc) when
Re is around 0.5 percent (exactly, 0:4% � 0:6%) and Re = 0
(no causal consistency violation). When n is larger, the criti-
cal initial cr is basically also larger.

7.2 Average Message Meta-Data Size (mave)

Figs. 6, 7, and 8 visualize the experimental data of mave.
With increasing initial credit cr, mave linearly increases. The
findings also indicate that mave becomes smaller with a

Fig. 3. The violation error rate for wrate = 0.2. Fig. 4. The violation error rate for wrate = 0.5.

Fig. 5. The violation error rate for wrate = 0.8.

220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

higher wrate in more peers. Table 3 lists the critical mave cor-
responding to the numerical data in Table 2.

7.3 Message Meta-Data Size Saving Rate (Rs)

Note that Approx-Opt-Track with cr = 1 is equivalent to
Opt-Track in [11]. We define Rs as follows:

Rs ¼ 1� msðcr 6¼ 1Þ
msðOpt� TrackÞ : (1)

Figs. 9, 10, and 11 reflect the results for Rs versus differ-
ent initial credits in different (low, medium, and high) write
rates, respectively. Note that although cr is unbounded in
Approx-Opt-Track, it does not make sense for simulation

with cr > crc, in which cases, there is no message delivery
violating causal consistency.

With increasing n, Rs increases. Corresponding to the
same n and initial credit cr, the higher the wrate, the lower
the Rs seems to be. Table 4 lists the critical Rs corresponding
to the numerical data in Table 2. It can be seen that Rs is sig-
nificantly negatively related to wrate.

8 SIMULATION EVALUATION

We expect that if the initial allocation of hop count cr is a
small finite value but enough, it not only reduces message
meta-data size, but also maintains the desired causal consis-
tency accuracy. In other words, it is expected with very
high probability that when cr reaches zero so as to delete

TABLE 2
Critical Initial Credits for the Replica Factor Rate = 0.3

wrate
the number of processes

5 10 20 30 40

Re � 0.5%
0.2 3 3 3 4 4
0.5 3 3 3 3 3
0.8 3 3 4 4 4

Re = 0
0.2 5 6 7 8 8
0.5 3 5 7 7 9
0.8 4 5 7 8 8

Fig. 6. The average meta-data size (mave) for wrate = 0.2.

Fig. 7. The average meta-data size (mave) for wrate = 0.5.

Fig. 8. The Average Meta-Data Size (mave) for wrate = 0.8.

TABLE 3
Critical Average Message Meta-Data Sizemave (KB)

Re wrate
the number of processes

5 10 20 30 40

� 0:5%
0.2 0.277 0.330 0.430 0.820 1.037
0.5 0.345 0.425 0.495 0.562 0.720
0.8 0.401 0.445 0.640 0.759 0.840

0
0.2 0.312 0.481 0.927 1.566 2.146
0.5 0.345 0.524 0.899 1.190 1.572
0.8 0.426 0.558 0.864 1.140 1.361

Fig. 9. The Meta-Data Size Saving Rate (Rs) for wrate = 0.2.

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 221

the corresponding entry, the message associated with it has
reached its destination.

8.1 Impact of Initial cr on Re

With increasing the initial cr, Re rapidly decreases espe-
cially when cr < 4. The smaller the initial cr, the earlier the
meta-data entry is deleted. Thus, when an entry is removed
earlier, it is more likely that the message associated with
the deleted entry might not reach its destination. It causes
that the corresponding dependency may not be satisfied,
resulting in higher Re. Table 2 shows the major and minor
critical initial credits — cr0 (Re = 0) and cr�0:5% (Re =
0:4% � 0:6%) — for different numbers of processes.

For the minor critical initial credits, cr�0:5% seems not to
significantly increase as the number of processes n. It
implies that by setting initial credits to a small finite value
but enough value, most of the dependencies associated with
the meta-data will become aged and can be removed with-
out risking causal violations after being transmitted across a
few hops, even in a large number of processes. On the other
hand, in Re = 0 (no causal violations), the resulting correla-
tion coefficients of cr0 and n for different wrate are around
0.94 � 0.95. It means that the more the number of processes
n, the larger the initial cr is to avoid causal violations.

8.2 Impact of wrate on Re

This section evaluates how different write rates influence
the violation error rates Re across a variety of process num-
bers and initial credits. Figs. 3, 4, and 5 show the results of
Re among different wrate in smaller initial credits over differ-
ent process numbers. We observe that wrate does not have an
apparent impact on Re when cr > 4. However, we can see
the variation of Re with wrate when initial cr < 4. For cr >
1, the higher the wrate, the lower the Re. Causal consistency
follows read-from order �ro. Two operations o1 and o2 have
the relationship o1 �ro o2 if there exists o1 = wðxÞv (write a
value v into variable x) and o2 = rðxÞ (read the value from
variable x) such that operation o2 retrieves the value stored
by operation o1. When the initial cr is a smaller value,
dependencies might not be satisfied with higher probability.
The higher the read rate rrate (i.e., the lower the wrate), the
more likely read-from relation occurs and higher the Re.
Table 2 summarizes the critical values of cr0 and cr�0:5%

from the results of Re in Figs. 3, 4, and 5.

8.3 Impact of Initial cr onmave

Figs. 6, 7, and 8, each of which corresponds to a certain write
rate, illustrate experimental results for average message
meta-data size mave for different initial credits by varying n.
We can see that ms is linearly proportional to initial cr. That
is because we only carried out the experiments under initial
credits
 critical cr0. We call this situation Incomplete
causality (IC). Note that we only run the simulations in IC
with initial credits
 cr0. For example, in Fig. 6, the bars
start with five variants and end up, for the credits 8, with
only 2 (for n = 30 and 40). ‘8’ is larger than the critical
credits for n = 5 � 20. In other words, when the initial
credits is up to 8, it guarantees that there is no message
apply event violating causal consistency. It does not make
sense to run the simulation in this situation.

For any combination of n and initial cr, ms decreases as
wrate increases. This is due to fewer MERGE and more
PURGE operations in Opt-Track [11] or Approx-Opt-Track.
A read operation will invoke theMERGE function to merge
the piggybacked log of the corresponding write to that vari-
able with the local log LOG. Thus, a higher read rate may
increase the likelihood that the size of explicit information
becomes larger. Furthermore, although a write operation
results in the increase of explicit information, it comes with
the PURGE function to prune the redundant information, so
that the size of LOG could be decreased. Therefore, a higher
write rate with a corresponding lower read rate causes fewer
MERGE andmore PURGE operations generated.

Table 3 lists the analytic data about mave in cr0 and
cr�0:5%. For the case of 10 processes, ms(10) is around 0.48 �

Fig. 10. The Meta-Data Size Saving Rate (Rs) for wrate = 0.5. Fig. 11. The Meta-Data Size Saving Rate (Rs) for wrate = 0.8.

TABLE 4
Message Meta-Data Size Saving Rates Rs when Re

is Close to or Equal to Zero

Re wrate
the number of processes

5 10 20 30 40

� 0:5%
0.2 0.287 0.521 0.672 0.582 0.613
0.5 0.187 0.352 0.534 0.608 0.628
0.8 0.073 0.289 0.282 0.348 0.412

0
0.2 0.194 0.303 0.294 0.203 0.198
0.5 0.187 0.202 0.154 0.171 0.145
0.8 0.016 0.108 0.029 0.021 0.047

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

0.56 KB for Re = 0. For the case of 20 processes, ms(20) is
around 0.86 � 0.93 KB for Re = 0. For the case of 40 pro-
cesses, ms(40) is around 1.36 � 2.15 KB for Re = 0. Consider
wrate = 0.5 and wrate = 0.8. Using cross-comparison analyses,
ms(40)/ ms(20)/ ms(40) is less than ms (10) � 4/ ms(10) �
2/ ms(20) � 2. The results reflect the better scalability of
Approx-Opt-Track for higher wrate under no risk of violat-
ing causal consistency.

8.4 Impact of Initial cr on Rs

This section reports the effectiveness of Approx-Opt-Track
to reduce the meta-data overheads under causal consis-
tency. As mentioned before, the meta-data for dependencies
could be reduced at the cost of some violations of causal
consistency. We intend to study the exact nature of the
trade-off between Rs and Re in IC. We expect to find a sepa-
ration point, where the initial credits = cr0, with a finite ini-
tial cr small enough to separate IC from CC — Complete
Causality. It can not only reduce the meta-data size, but
also have the system fully follow causal consistency.

According to Equation (1), Rs depends on ms. Rs

decreases as ms increases, which positively depends on ini-
tial credits cr. Figs. 9, 10, and 11 present the linear relation-
ships between Rs and initial cr for different wrate.
Consistent with the results in Figs. 6, 7, and 8, with larger
initial credits, ms will increase (i.e., Rs will decrease). Fur-
thermore, the larger the value of n, the higher the Rs would
be. For example, when n = 5 with cr being 2, the values of
Rs are around 0.2 � 0.4 corresponding to different wrate. As
n increases, Rs increases, too. When n = 40 with cr still being
2, the values of Rs are close to 0.7 � 0.9. It shows that
Approx-Opt-Track can reduce more meta-data overheads
in a larger n under the IC state.

For the same number of processes, the curves of Rs ver-
sus cr shift downward as wrate increases. It implies that, in
the IC state,ms increases more slowly thanms (cr =1) does
as rrate rises. This is because there are more MERGE opera-
tions to delete meta-data entries in higher rrate (lower wrate).

Table 4 summarizes the details of numerical data aboutRs

in the major and minor critical initial credits. For the case of
40 processes, Rs is around 40% � 60% at a very slight cost of
violation of causal consistency (Re � 0.5%). Rs reaches
around 5% � 20% without violating causality order in terms
of different write rates. This evidence proves that if the initial
allocation of cr is made as a small digit, the message about
which the corresponding meta-data entry is deleted would
already have reached its destinationwith very high probabil-
ity. On the other hand, the simulation results of Rs for Re

being zero in Table 4 reflect the effect of Approx-Opt-Track
in the real world on causal consistency. Although it reduces
4.7 percent of the total meta-data in a higher wrate, when n =
40, the values of Rs are around 14.5 and 19.8 percent in the
lower and medium wrate. From the above comprehensive
analyses, it can be concluded that Approx-Opt-Track pro-
vides a better network capacity utilization than Opt-Track
without causing additional causal violations.

8.5 Impact of Replica Factor Rate rf on crc
This section illustrates the impact of different replica factor
rates on cr0 and cr�0:5%. Tables 5 and 6 present the results of
cr0 and cr�0:5% for different numbers of processes on the
higher replica factor rate (rf = 0.5) and the lower replica factor
rate (rf = 0.2). The values of cr�0:5% for the lower rf and the
higher rf seem to be almost consistent with that of cr�0:5%

with rf being 0.3 for each process number for different wrate.
Again, as stated above,most of the dependencieswill become
aged after transmitting the associated meta-data across a few
hops. Comparing among the values of cr0 for the three rf
rates varied from 0.2 to 0.5, it is found that the larger the rf
rate, the smaller the value of cr0. We believe that the reason is
similar to that of the impact of wrate on Re, as described in
Section 8.2. The lower the value of rf , the fewer the write
operations, which means that the read rate is higher. This
makesRe higher. It implies that it requires a slightly larger cr
tomaintain causal consistencywith a lower rf .

9 CONCLUSION AND DISCUSSION

We considered the problem of providing causal consistency
protocols in partially replicated systems. In this paper, we
proposed algorithm Approx-Opt-Track and showed theo-
retically its potential to improve the meta-data size of Opt-
Track [11]. By controlling a parameter called credits, we can
trade-off the level of potential inaccuracy by the size of
meta-data. We then considered the performance of the
instantiation of the credits by hop count, in detail. There is a
trade-off between ms (or initial cr) and Re. This paper con-
ducted a performance trade-off analysis of Re, ms, and Rs

using multi-scale simulations.
The simulation results showed that by controlling initial

cr, we can leverage the potential causal consistency inaccu-
racy to further improve the meta-data overhead. By setting
a small finite initial cr, most of the dependencies turn out to
be aged after being transmitted across a few hops. For vari-
ous numbers of processes, varying from 5 to 40, the minor
critical initial credits (cr�0:5%) are around 3 � 4 with a very

TABLE 5
Critical Initial Credits for the Replica Factor Rate of 0.5

wrate
the number of processes

5 10 20 30 40

Re � 0.5%
0.2 3 3 3 4 4
0.5 3 3 3 3 3
0.8 2 2 3 3 4

Re = 0
0.2 4 5 6 7 7
0.5 3 5 6 7 7
0.8 3 4 5 6 7

TABLE 6
Critical Initial Credits for the Replica Factor Rate of 0.2

wrate
the number of processes

5 10 20 30 40

Re � 0.5%
0.2 1 3 4 4 4
0.5 3 3 3 4 4
0.8 3 3 3 3 3

Re = 0
0.2 5 6 8 9 9
0.5 5 6 7 8 8
0.8 4 6 7 8 9

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 223

low Re, which is close to 0.5 percent. It concludes that if the
initial allocation of cr is made as a finite single-digit, by
the time the cr reaches zero, the message corresponding to
the meta-data would reach its destination with very high
probability.

With a finite initial cr small enough, Approx-Opt-Track
was also seen to show significant gains over Opt-Track. In
particular, as for 40 processes, Approx-Opt-Track can lower
the meta-data size by around 5% � 20% without causal vio-
lations and from 40% � 60% for upto 0.5 percent causal vio-
lations. Thus, we showed that Approx-Opt-Track can
provide less overhead than Opt-Track at little or no cost of
violating causal consistency.

The introduction of the concept of credits and their
manipulation in the algorithm Approx-Opt-Track does not
increase the complexity measures beyond the correspond-
ing values of Opt-Track (see Table 1). The notion of credits
can also be used in conjunction with other causal consis-
tency algorithms, including full replication and partial repli-
cation algorithms, besides Opt-Track.

In real systems, failures may happen often. Failures/par-
titions would result in different impacts on violation errors
for Approx-Opt-Track in different conditions compared to
the “no failure” situations. Table 7 summarizes the impacts
of failures/partitions for four different cases for Approx-
Opt-Track. First, cases (A) and (B) illustrate the impacts
when the initial hop count credits are enough (i.e., Approx-
Opt-Track is identical to Opt-Track here). Second, cases (C)
and (D) clarify the impacts when the initial hop count
credits are not enough.

Case (A). Fig. 12a shows a partition failure under which
S2 splits into an isolated subnetwork from t to t0. A multicast
message M2 cannot be delivered to the destinations. When
S1 receives M3, M3 can be immediately applied at S1 with-
out a causal violation for Approx-Opt-Track (because
send2ðM1Þ and send3ðM3Þ become concurrent). Fig. 12b
presents a message loss case where S1 fails to receive M2

from S2. Even if S1 receives M3, M3 will not be applied at S1

until M2 is received and applied at S1 (because sending M2

causally happens before sending M3, applying M3 should
causally happen after applyingM2). However, without fault
tolerance, S1 does not receive M2. Thus, M3 cannot be
applied in S1 (forever). In case (A), Re will be zero (i.e., fail-
ures will not lead to higher violation errors, compared to
the same situation without failure). However, some scenar-
ios cause system hangs.

Case (B). With fault tolerance, if any message loss occurs,
it will be resent. In Fig. 12a, S2 will resend the multicast
message M2 after t0. Based on when M2 is received at S3,
Approx-Opt-Track can guarantee that there is no violation

error for applyingM3 at S1, by using activation predicate. In
Fig. 12b, M3 will be applied causally after receiving M2 for
the same reason as in Fig. 12a. In case (B), Re is still zero
(i.e., failures will not lead to higher violation errors, com-
pared to the same situation without failure).

Case (C). Without fault tolerance, Re may decrease. In
Fig. 12b, if the credits of the meta-data “M2 is sent to S1”
(md) become zero, md will be removed at S3. Thus, M3 does
not piggyback md. Because S1 does not receive M2 and M3

will be applied when receiving M3, this will not lead to a
violation error. However, if no failure, the above violation
error might be possible. Therefore, case (C) causes Re to
decrease.

Case (D). With fault tolerance, Re may increase. In
Fig. 12b, if M2 sent to S1 at t fails, it will be resent at t00.
Because M3 does not piggyback the meta-data md, M3 will
be applied immediately when receiving M3. The condition
of violating causal consistency for applying M3 depends on
whether apply1ðM3Þ happens causally before apply1ðM2Þ.
Without loss of generality, sending M2 at t00 to S1 has a
higher probability of receiving it causally after applying M3

compared to sending M2 at t. Thus, fault tolerance may
cause Re to increase.

Our final discussion studies the characteristics of viola-
tion errors when a node becomes partitioned ‘forever’ after
sending messages to a subset of destinations. See Fig. 12b,
S2 becomes partitioned forever after sending M2 to (S1 and)
S3. In case (B), M3 cannot be applied after receiving M3,
although M2 sent to S1 is missed, and M2 will not be resent
in future. This does not lead to a violation error. Because S2

becomes partitioned forever, ‘with fault tolerance’ is equiva-
lent to ‘without fault tolerance’. Therefore, case (B) degener-
ates to case (A). In case (D), M3 will be applied when
receiving M3, since the dependency on M2 sent to S1 is for-
gotten. This does not lead to a violation error, either. Based
on the same reason above, case (D) degenerates to case (C).
Although they both do not lead to violation errors in this
partition issue, case (A) is not fully equivalent to case (C). In
case (A), it is impossible to applyM3 after receivingM3. The
thread for applying M3 will hang. However, M3 will be
applied after receiving M3 (no thread hangs) in case (C).
Therefore, long-lasting network partitions make case (B)
and (D) degenerate to case (A) and case (C), respectively.

REFERENCES

[1] G. DeCandia, et al., “Dynamo: Amazon’s highly available key-
value store,” SIGOPS Operating Syst. Rev., vol. 41, no. 6, pp. 205–
220, Oct. 2007.

[2] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” SIGOPS Operating Syst. Rev., vol. 44, no. 2,
pp. 35–40, Apr. 2010.

TABLE 7
Impacts of Failures/Partitions Compared to the “no Failure” Case

Without Fault Tolerance With Fault Tolerance

enough (A); Re is the same (B); Re is the same
credits as no failures as no failures

(Re = 0; system hangs) (Re = 0; no system hangs)

not enough (C); Re decreases (D); Re increases
credits compared to no failures compared to no failures

Fig. 12. Examples of failures (a) partition (b) message loss.

224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 1, JANUARY 2018

[3] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2011, pp. 401–416.

[4] A. D. Kshemkalyani and M. Singhal,Distributed Computing: Princi-
ples, Algorithms, and Systems, 1st ed. New York, NY, USA:
Cambridge Univ. Press, 2011.

[5] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51–59, Jun. 2002.

[6] S. Almeida, J. A. Leit~ao, and L. Rodrigues, “ChainReaction:
A causal+ consistent datastore based on chain replication,” in
Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 85–98.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in
Proc. 10th USENIX Conf. Netw. Syst. Des. Implementation, 2013,
pp. 313–328.

[8] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable
causal consistency using dependency matrices and physical
clocks,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, pp. 11:1–
11:14.

[9] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “GentleRain:
Cheap and scalable causal consistency with physical clocks,” in
Proc. ACM Symp. Cloud Comput., 2014, pp. 4:1–4:13.

[10] P. Mahajan, L. Alvisi, and M. Dahlin, “Consistency, availability,
convergence,” Comput. Sci. Dept., Univ. Texas at Austin, Austin,
TX, USA, Tech. Rep. TR-11–22, May 2011.

[11] M. Shen, A. D. Kshemkalyani, and T. Y. Hsu, “Causal consistency
for geo-replicated cloud storage under partial replication,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2015,
pp. 509–518.

[12] A. D. Kshemkalyani and M. Singhal, “An optimal algorithm for
generalized causal message ordering,” in Proc. 15th Annu. ACM
Symp. Principles Distrib. Comput., 1996, p. 87.

[13] A. D. Kshemkalyani and M. Singhal, “Necessary and sufficient
conditions on information for causal message ordering and their
optimal implementation,” Distrib. Comput., vol. 11, no. 2, pp. 91–
111, 1998.

[14] T. Y. Hsu and A. D. Kshemkalyani, “Performance of causal consis-
tency algorithms for partially replicated systems,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops, 2016, pp. 525–534.

[15] R. Baldoni, A. Milani, and S. T. Piergiovanni, “Optimal propaga-
tion-based protocols implementing causal memories,” Distrib.
Comput., vol. 18, no. 6, pp. 461–474, 2006.

[16] A. D. Kshemkalyani and T.-Y. Hsu, “Approximate causal consis-
tency for partially replicated geo-replicated cloud storage,” in
Proc. 5th Int. Workshop Netw.-Aware Data Manage., 2015, pp. 3:1–
3:8.

[17] T. Y. Hsu and A. D. Kshemkalyani, “Performance of approximate
causal consistency for partially replicated systems,” in Proc. Work-
shop Adaptive Resource Manage. Scheduling Cloud Comput., 2016,
pp. 7–13.

[18] K. P. Birman and T. A. Joseph, “Reliable communication in the
presence of failures,” ACM Trans. Comput. Syst., vol. 5, no. 1,
pp. 47–76, Jan. 1987.

[19] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm to imple-
ment causal ordering,” in Proc. 3rd Int. Workshop Distrib. Algo-
rithms, 1989, pp. 219–232.

[20] M. Raynal, A. Schiper, and S. Toueg, “The causal ordering abstrac-
tion and a simple way to implement it,” Inf. Process. Lett., vol. 39,
no. 6, pp. 343–350, Oct. 1991.

[21] P. Chandra, P. Gambhire, and A. D. Kshemkalyani, “Performance
of the optimal causal multicast algorithm: A statistical analysis,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 1, pp. 40–52,
Jan. 2004.

[22] P. Chandra and A. D. Kshemkalyani, “Causal multicast in mobile
networks,” in Proc. 12th Int. Workshop Model. Anal. Simul. Comput.
Telecommun. Syst., 2004, pp. 213–220.

[23] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, “Causal
memory: Definitions, implementation and programming,” Distrib.
Comput., vol. 9, no. 1, pp. 37–49, 1995.

[24] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal, “Efficient
delta-causal broadcasting,” Int. J. Comput. Syst. Sci. Eng., vol. 13,
pp. 263–271, 1998.

[25] R. Baldoni, A. Mostefaoui, and M. Raynal, “Causal delivery of
messages with real-time data in unreliable networks,” Real-Time
Syst., vol. 10, no. 3, pp. 245–262, May 1996.

[26] F. Adelstein and M. Singhal, “Realtime causal message ordering
in multimedia systems,” Telecommun. Syst., vol. 7, no. 1, pp. 59–74,
1997.

[27] F. J. Torres-Rojas, M. Ahamad, and M. Raynal, “Lifetime based
consistency protocols for distributed objects,” in Proc. 12th Int.
Symp. Distrib. Comput., 1998, pp. 378–392.

[28] T. Crain and M. Shapiro, “Designing a causally consistent proto-
col for geo-distributed partial replication,” in Proc. 1st Workshop
Principles Practice Consistency Distrib. Data, 2015, pp. 6:1–6:4.

[29] M. Shen, A. D. Kshemkalyani, and T. Y. Hsu, “OPCAM: Optimal
algorithms implementing causal memories in shared memory sys-
tems,” in Proc. Int. Conf. Distrib. Comput. Networking, 2015,
pp. 16:1–16:4.

[30] L. Lamport, “Time, clocks, and the ordering of events in a distrib-
uted system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

Ta-Yuan Hsu is working toward the PhD degree
in the Department of Electrical and Computer
Engineering, University of Illinois at Chicago. His
research interests include distributed algorithms,
social networks, and causal memory. He is a stu-
dent member of the IEEE.

Ajay D. Kshemkalyani received the BTech
degree in computer science from the Indian Insti-
tute of Technology, Bombay, in 1987, and the
PhD degree in computer science from the Ohio
State University, in 1991, respectively. He is cur-
rently a professor with the Department of Com-
puter Science, University of Illinois at Chicago.
His research interests include distributed comput-
ing, computer networks, and concurrent systems.
In 1999, he received the US National Science
Foundation Career Award. He has served on the

editorial board of the Elsevier journal Computer Networks, and the IEEE
Transactions on Parallel and Distributed Systems. He has coauthored
a book entitled Distributed Computing: Principles, Algorithms, and Sys-
tems (Cambridge University Press, 2011). He is a distinguished scientist
of the ACM and a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HSU AND KSHEMKALYANI: VALUE THE RECENT PAST: APPROXIMATE CAUSALCONSISTENCY FOR PARTIALLY REPLICATED SYSTEMS 225

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

