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Abstract—In large-scale systems where an on-going monitoring program is needed, the traditional predicate detection algorithms
become undesirable due to their high overhead and inability to do repeated detection and to resume the detection after a node failure.
This paper presents an on-line decentralized algorithm that detects strong conjunctive predicates in a large-scale system. Our algorithm
assumes a preconstructed spanning tree in the system, and detects all satisfactions of the predicate in a hierarchical manner. When
a node fails or moves and the structure of the spanning tree is changed, our algorithm is able to recover from this situation and continue
the detection of further occurrences of the predicate satisfactions. The hierarchical structure of our algorithm also provides a finer-grained
monitoring in those large-scale systems where grouping is established and the monitoring happens at the group level. Comparing
with other detection algorithms, our algorithm incurs a low space and time cost, which is distributed across all the nodes in the system,
and a low message complexity. Our algorithm is particularly beneficial to resource-constrained systems.
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1 INTRODUCTION

DETECTING predicates over a distributed execution is
important for various purposes such as data stream

processing, industrial process monitoring, synchronization,
coordination, and debugging. In recent years, predicate
detection has found applications in large-scale systems such
as WSNs [1] and modular robotics [2], [3], where individual
nodes have only limited computation and storage resources.
With these properties, new solutions that conserve the limited
resources and take into consideration the potential failures
of the nodes are needed.

There are several predicate classes [4]. Two main classes are:

1. A relational predicate is a predicate that is expressed
as an arbitrary relation on the variables in the system.
Let xi and yj be local variables at process Pi and
Pj, respectively. F ¼ ‘‘xi þ yj 9 40} is a relational
predicate.

2. A conjunctive predicate is a predicate that can be
expressed as the conjunction of local predicates.
Y ¼ ‘‘xi G 35 ^ yj 9 25} is a conjunctive predicate.

Due to the asynchrony in message transmissions and in
local executions, different executions of the same distrib-
uted program can generate different sequences of global
states. Therefore, whether a predicate gets satisfied within
all consistent observations of an execution or within some
consistent observation of an execution, can be different.

Thus, two modalities under which a predicate F can hold
have been defined [5].

1. PossiblyðFÞ: There exists a consistent observation of
the execution such that F holds in a global state of
the observation.

2. DefinitelyðFÞ: For every consistent observation of
the execution, there exists a global state of it in
which F holds. This type of predicates is also called
strong predicates in [6].

Algorithms to detect PossiblyðFÞ and DefinitelyðFÞ for
a conjunctive or relational predicate are given in [5].
However, it has been shown that detecting a relational
predicate is an NP-complete problem. Due to the exponential
complexity of detecting relational predicates, most work on
predicate detection is focused on conjunctive ones.

In [6], [7], Garg and Waldecker gave centralized algorithms
to detect DefinitelyðFÞ and PossiblyðFÞ, respectively. In [6],
they presented an interval-based approach to detect
DefinitelyðFÞ. In [8], an interval-based algorithm that adopts
a unified approach to detect both PossiblyðFÞ and
DefinitelyðFÞ was given. For a system of n processes and an
execution in which the local predicate becomes true at most
p times at a process, the detection algorithm in [8] has a
space and time complexity of Oðpn2Þ. It also generates
OðpnÞ messages, each of size OðnÞ.

Several distributed algorithms were also proposed. Garg
and Chase [9] and Hurfin et al. [10] presented distributed
algorithms to detect PossiblyðFÞ. Both algorithms have
space, time and message size complexities of Oðmn2Þ, where
m is the maximum number of messages sent by any process.
Chandra and Kshemkalyani [11] gave a distributed algorithm
for detecting DefinitelyðFÞ. Its space and time complexities
are Oðminðpn2;mn2ÞÞ and its message size complexity is
also Oðminðpn2;mn2ÞÞ. Although [11] is also a distributed
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algorithm for detecting DefinitelyðFÞ, compared with our
algorithm, it lacks the capability to do repeated detection
and hierarchical detection.

When detecting predicates in continuous monitoring pro-
grams, usually the application requires the monitoring program
to raise an alarm each time the predicate occurs. One example is
data stream processing [12], where persistent tracking of the
specified pattern, which can be expressed as predicates, is
required. Another example is the industrial process monitor-
ing program such as in the chemical manufacturing industry,
where the system is monitored for events of both temperature
and pressure exceeding certain thresholds. In such cases, the
corresponding predicates could become true multiple times,
and the monitoring program needs to detect all occurrences.
Thus, none of these algorithms [6], [7], [9], [10], [11] are
applicable. As shown in [13], these algorithms can detect
predicates only once and will hang after the initial detection.
They cannot detect multiple occurrences because detecting
subsequent occurrences is not simply rerunning those one-
time detection algorithms, but requires elaborate processing
to ensure safety and liveness. In [13], a centralized repeated
detection algorithm which can detect all occurrences of
DefinitelyðFÞ in Oðpn3Þ time is given. However, all the time
and space costs incurred by this algorithm are at the sink.

This paper presents a decentralized algorithm that detects
DefinitelyðFÞ in a large-scale system. This algorithm
assumes a pre-constructed spanning tree [8], [14] in the
system and detects the predicate in a hierarchical manner. By
establishing a hierarchy in the system, our algorithm divides
the task of detecting a predicate among different levels in
the hierarchy. Each node detects the predicate within the
subtree rooted at itself. The hierarchical structure of our
algorithm also provides a finer-grained monitoring in those
large-scale systems where grouping is established and the
monitoring is needed at the group level. In addition, our
algorithm detects the predicates in a repeated manner [13].
In long-running applications where continuous monitoring
is required, repeated detection is essential because manual
intervention after one detection of predicate satisfaction to
reset the detection algorithm is not practical or even possible.

We assume a degree-bounded spanning tree in the
system, where the maximum degree of all nodes is
bounded by the value d. For a spanning tree of height h
and maximum degree d, our hierarchical algorithm has a

global time complexity of Oðd2pn2Þ and a global space
complexity of Oðpn2Þ, distributed across all nodes in the
system. Comparing with the only algorithm capable of
doing repeated detection [13], which is centralized and
incurs an Oðpn3Þ time complexity and an Oðpn2Þ space
complexity, our algorithm is superior in performance since
d2 is less than n for any spanning tree with h 9 2 (es-
sentially any non-centralized configuration). Also, the
message count complexity of hierarchical detection is sig-
nificantly lower. A comparison between our hierarchical
algorithm and the centralized repeated algorithm is given
in Table 1. Specifically, in Fig. 1, we show more insights
towards the differences between the message count com-
plexities of the two algorithms. Here, � is the probability
that intervals from d children overlap at one higher level.
Notice that, for message size complexity, an additional
factor of n will be applied since vector clock is used (see
Table 1). This is the case for other predicate detection
algorithms, such as [6], [7], [8].

We build on our preliminary result [15] by showing how
our algorithm handles node failures and mobility in the
system and by giving an in-depth complexity analysis.

Contributions

1. We present the first decentralized hierarchical
algorithm to detect DefinitelyðFÞ in a large-scale
distributed system.

2. Hierarchical detection, which is also strongly desir-
able for large-scale systems, necessarily requires
detection of all occurrences of the predicate satis-
faction, which we do in our algorithm. None of the
existing detection algorithms for DefinitelyðFÞ
(except the recent centralized algorithm in [13])
can do such repeated detection of all occurrences of
F. They all hang if a node fails.

3. The hierarchical detection in our algorithm makes it
capable of handling node failures or mobility. In our
algorithm, each process detects the predicate in the
subtree rooted at itself. When a node fails or moves,
the detection of the predicate in the system can be
easily resumed because our algorithm has the ability
to detect a partial predicate of the global predicate
and deal with a reconfigured tree. The same cannot
be achieved by the existing centralized or distributed
detection algorithms.

4. We give a performance analysis of our hierarchical
detection algorithm for message, space and time

TABLE 1
Complexity Comparison between Hierarchical Detection and the

Centralized Repeated Detection Algorithm

Fig. 1. Message count complexity comparison between hierarchical and
centralized detection, with d ¼ 2, p ¼ 20.
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complexity. The result (summarized in Table 1)
shows that our algorithm is superior to the only
known algorithm for repeated detection [13], which
is centralized.

Section 2 gives the system model and background on
interval-based predicate detection. Section 3 presents the
hierarchical detection algorithm and its theoretical foun-
dation. Section 4 shows how our algorithm deals with node
failures and node mobility. Conclusions are given in
Section 5. The detailed complexity analysis is included in
the supplementary file which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.306

2 SYSTEM MODEL AND BACKGROUND

2.1 System Model
A distributed system is an undirected graph ðP; LÞ, where
P is the set of processes and L is the set of communication
links. Let n ¼ jP j. The n processes communicate asynchro-
nously with each other via the channels in L. We do not
assume FIFO channels, thus the messages may be delivered
out of order. The execution of process Pi produces a sequence
of events Ei ¼ he0

i ; e
1
i ; e

2
i ; . . .i, where eki is the kth event at

process Pi. An event at a process can be message receiving,
message sending, or an internal event. Let E ¼ [i2PEi

denote the set of events executed in a distributed execution.
The causal precedence relation between events induces an
irreflexive partial order on E. This relation is defined as
Lamport’s ‘‘happens before’’ relation [16], and denoted as
�. An execution of a distributed system is thus denoted
by the tuple ðE;�Þ.

If the network is a wireless network, each process can
communicate only with other processes within communi-
cation range. The topology of such a network is not a complete
graph, and messages transmitted within such a network
usually traverse multiple hops.

We also assume vector clocks [17], [18], [19], [20] are
available. Each process maintains a vector clock V of n
integers, which is updated by the following rules.

1. Before an internal event happens at process Pi, Vi½i� ¼
Vi½i� þ 1.

2. Before process Pi sends a message, it first executes
Vi½i� ¼ Vi½i� þ 1, then it sends the message piggybacked
with Vi.

3. When a process Pj receives a message with time-
stamp U from Pi, it executes 8k 2 ½1 . . .n�; Vj½k� ¼
maxðVj½k�; U ½k�Þ; Vj½j� ¼ Vj½j� þ 1; before delivering
the message.

The � relation between two events can be checked by
comparing their corresponding vector clock timestamps, i.e.,
ei � ej , Vei GVej , where Vei GVej means 8a 2 ½1; n�; Vei ½a� �
Vej ½a� and 9b 2 ½1; n� such that Vei ½b�GVej ½b�. Henceforth, we
use the notation � between two events and G between their
corresponding vector timestamps interchangeably.

2.2 Background on Interval-Based Detection
An interval at a process Pi is the time duration in which the
local predicate is true. Due to the lack of synchronized

physical clocks at each process, the start and end events of
an interval x, denoted as minðxÞ and maxðxÞ, respectively,
are identified by vector clocks [17], [18], [19], [20]. The
detection of either PossiblyðFÞ or DefinitelyðFÞ is to
identify a set of intervals, containing one interval per
process in which the local predicate is true, such that a
certain condition is satisfied within this set. In [7], [6], [21], it
was shown that the conditions to be satisfied forPossiblyðFÞ
or DefinitelyðFÞ to hold within a set X of intervals are as
follows:

PossiblyðFÞ : 8xi; xj 2 X;maxðxiÞ 6� minðxjÞ (1)

DefinitelyðFÞ : 8xi; xj 2 X;minðxiÞ � maxðxjÞ: (2)

Sink process P1 locally maintains n queues,Q1; Q2; . . . ; Qn.
Whenever a new interval x completes at some process Pi, Pi
sends the vector clock timestamps corresponding to minðxÞ
and maxðxÞ to P1 (This latency in detection is in all interval-
based predicate detection algorithms, except [22]. Note
that, some non-interval-based detection algorithms [7] or
some algorithms for weaker classes of predicates [2], [3] do
not incur such a delay). P1 then enqueues the interval x onto
queue Qi. By tracking the intervals from all n processes,
P1 checks the heads of all n queues using the condition in
Eq. (1) or (2) to see whether PossiblyðFÞ or DefinitelyðFÞ is
detected. If any interval is found to violate those conditions,
P1 deletes this interval from its corresponding queue.

3 HIERARCHICAL DETECTION

3.1 Basic Idea and Challenges
Our hierarchical detection algorithm works as follows. We
assume a spanning tree is already constructed in the
system [8], [14]. The algorithm utilizes this spanning tree to
establish a hierarchy for detectingDefinitelyðFÞ. Each non-
leaf node in the tree only maintains queues to track
intervals that are sent by its children or that occur locally.
Whenever a new interval occurs at a leaf node, it is
transmitted to the leaf node’s parent which tries to detect
the predicate within the subtree rooted at itself. If the
predicate is detected in the subtree, the root of the subtree
aggregates the set of intervals within which the predicate is
detected, and transmits this aggregated interval to its
parent. The aggregated interval is treated as a normal
interval at the higher levels in the hierarchy, and is used for
detecting the predicate within an even larger subtree. Once
an aggregated interval is sent to the parent (higher level
process), the parent detects occurrences of the predicate
within the larger subtree rooted at itself using aggregated
intervals received from its children, and generates the
aggregated intervals for its level once a satisfaction of the
predicate is detected. Whenever the predicate is detected at
some subtree, the root of that subtree will perform the
operations necessary for doing repeated detection within
that subtree. The same procedure repeats at each level of
the hierarchy. At the root of the spanning tree, the predicate
is detected for the entire system.

Thus, the difficulties in realizing this algorithm are: (1) how
to aggregate a set of intervals, and (2) how to do repeated
detection of DefinitelyðFÞ using aggregated intervals from a
lower level in the hierarchy.

SHEN AND KSHEMKALYANI: DETECTION OF STRONG UNSTABLE CONJUNCTIVE PREDICATES IN LARGE-SCALE SYSTEMS 2901



In [6], the authors outlined an approach for hierarchical
detection of DefinitelyðFÞ by trying to address (i) above.
But their approach lacks in the following aspects.

1. In [6], the authors assumed a specific partial order in a
set of intervals where DefinitelyðFÞ is detected. This
partial order requires that the intervals in the set can
be ordered into x1; x2; . . . ; xk such that 8i; j 2 ½1; k�, if
i G j then minðxiÞ � minðxjÞ ^maxðxjÞ � maxðxiÞ. So
their approach requires the set of intervals within
whichDefinitelyðFÞ is detected to be nested as shown
in Fig. 2. However, such a relation need not always
hold when DefinitelyðFÞ is satisfied.

2. The approach in [6] does not do repeated detection.
Being able to detect all occurrences of the predicate
at each level is essential to hierarchical detection.

We assume the hierarchy is formed as shown in Fig. 3a.
From Fig. 3b, observe that the first set of intervals detected
at P2 satisfying DefinitelyðFÞ consists of x1 and x2, and its
aggregation will be sent to the process in the higher level, i.e.,
P3. In addition to receiving this solution set, after P3 receives
interval x5 from P4 and interval x4 occurs at P3, P3 will start
the detection at the higher level. However, DefinitelyðFÞ
cannot be detected in the set fx1; x2; x4; x5g. If only a one-
time detection algorithm runs at P2, which is the case in the
approach in [6], then the only set of intervals P2 ever reports
to P3 is fx1; x2g and the later occurrence of the predicate for
P1 and P2 in the set fx1; x3g will remain undetected.
Therefore, the set fx1; x3; x4; x5g within which the predicate
could be detected for all 4 processes will never be detected by
P3. Notice that, in this example, no single process is detecting
the predicate for the entire system. Only hierarchical
detection is performed. This example shows that being
able to find all occurrences of the predicate at each level is
necessary to the hierarchical detection algorithm.

Without a proper way to aggregate intervals and without
a way to repeatedly detect predicates, the approach given
in [6] will fail to detect the predicates at the intermediate
nodes as well as at the top of the hierarchy.

3.2 Example Scenario of Our Algorithm
In this subsection, still using Fig. 3, we show how our
algorithm handles an example scenario where the user
wants to monitor the system for a certain event ‘‘F ¼
^iTempi 9 50deg’’, where Tempi is the temperature reading
at process Pi.

When DefinitelyðFÞ is first detected in fx1; x2g at P2 for
processes P1 and P2, our algorithm will identify one interval
from this set such that it will never form part of a future
solution set detected by P2. After identifying such an interval,
in this case x2, P2 will remove it from its corresponding queue

after sending the aggregated interval of set fx1; x2g to P3. P2

then continues the detection for later occurrences of the
predicate. When interval x3 finishes, P2 will detect a second
occurrence of the predicate in the set fx1; x3g and send
another aggregated interval to P3. At process P3, after local
interval x4 finishes and P3 receives intervals from both its
children, P2 and P4, P3 will attempt to detect the predicate
within the tree rooted at itself. The first attempt will fail, since
the set fx1; x2; x4; x5g does not satisfy DefinitelyðFÞ. As part
of this failed attempt, P3 will remove the aggregation of
fx1; x2g from its queue. When P3 receives the aggregation of
fx1; x3g from P2, a second attempt to detect the predicate
begins. This time, the predicate is detected in the set
fx1; x3; x4; x5g. Thus the predicate is detected for all 4
processes. After the first detection at P3, the algorithm will
not hang. Another interval from the solution set will be
identified for removal, and the detection will continue running.

From this example, we can observe that the key aspects
of our hierarchical detection algorithm lie in

1. the way to aggregate a solution set, and
2. the way to identify at least one interval from a solu-

tion set for removal to ensure progress for repeated
detection

at each level in the hierarchy. In the rest of this section, we
will show how we solve these problems.

3.3 Aggregation of Intervals to Detect DefinitelyðFÞ
In [6], [21], it was shown that for DefinitelyðFÞ to hold in a
set X of intervals, the following needs to be true

8xi; xj 2 X;minðxiÞ G maxðxjÞ:

This property was named as overlapðXÞ. Our objective is to
decentralize the detection of DefinitelyðFÞ. We first consider
the scenario where DefinitelyðFÞ has been detected in each
of the two sets of intervals X and Y and we want to detect
DefinitelyðFÞ in X [ Y .

Assume now, we have 4 processes in the system with their
timing diagram shown in Fig. 4a. The intervals occurring at
each process are shaded. The vector clock timestamps
identifying the lower and higher bound of each interval are
also illustrated in the figure. Intervals x1 from process P1 and
x2 from process P3 form set X, while intervals y1 and y2 from
process P2 and P4, respectively, form set Y . It can be checked
that both overlapðXÞ and overlapðY Þ are true.

Fig. 2. Approach in [6] works only if the intervals are nested.

Fig. 3. (a) Spanning tree consists of 4 processes. (b) Timing diagram
showing the relation between intervals.
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To show that DefinitelyðFÞ is also detected in all 4
processes, equivalently overlapðX [ Y Þ, we need to show

8i; j 2 f1; 2g;minðxiÞ G maxðyjÞ ^minðyjÞ G maxðxiÞ: (3)

From Fig. 4b, we can observe that, if we take the component-
wise maximum of minðx1Þ and minðx2Þ (illustrated in bold)
to form a new vector u, then the first conjunct in Eq. (3) is
equivalent to

8j 2 f1; 2g; u G maxðyjÞ: (4)

Likewise, taking the component-wise minimum of maxðy1Þ
and maxðy2Þ (illustrated in underline) to form another new
vector r, Eq. (4) is equivalent to u G r. The same operations
can also be applied to show the second conjunct of Eq. (3)
using aggregated vectors q and v.

This gives the inspiration to aggregate a set of intervals into
a single one to detectDefinitelyðFÞ in a larger set of intervals.
For sets X and Y in Fig. 4, their aggregated intervals are
denoted asuðXÞ anduðY Þ, respectively. The way to aggregate
those two sets using component-wise minimum or maximum
is shown in Fig. 4b.

Formally, for an arbitrary set X of intervals, satisfying
overlapðXÞ, we define an aggregation function uðXÞ of
intervals in X, in terms of vector timestamps, as:

8i 2 ½1; n�;min uðXÞð Þ½i� ¼ max
x2X

minðxÞ½i�ð Þ (5)

8i 2 ½1; n�;max uðXÞð Þ½i� ¼ min
x2X

maxðxÞ½i�ð Þ: (6)

With this formal definition of the aggregation function u,
we show the following theorem.

Theorem 1. Let X, Y and Z be sets of intervals, such that
Z ¼ X [ Y . Then overlapðZÞ iff overlapðXÞ^ overlapðY Þ ^
overlapðuðXÞ;uðY ÞÞ.

Proof. ð)Þ overlapðXÞ and overlapðY Þ are clearly true since
X,Y � Z. Now consider an interval y 2 Y . Since overlapðZÞ,

8x 2 X;minðxÞ G maxðyÞ. Thus minðuðXÞÞ GmaxðyÞ. Since
this is true for all y 2 Y , minðuðXÞÞ G maxðuðY ÞÞ. The same
deduction applies to minðuðY ÞÞ G maxðuðXÞÞ. So, we have
overlapðuðXÞ;uðY ÞÞ.
ð(Þ From overlapðuðXÞ;uðY ÞÞ we have minðuðXÞÞ G

maxðuðY ÞÞ ^minðuðY ÞÞ G maxðuðXÞÞ. For any interval
x 2 X, we have minðxÞ G minðuðXÞÞ. For any interval
y 2 Y , we have maxðuðY ÞÞ G maxðyÞ. Since minðuðXÞÞ G
maxðuðY ÞÞ, we have for any x 2 X and any y 2 Y ,
minðxÞ G maxðyÞ. Similarly, we can deduce that for any
x 2 X and any y 2 Y , minðyÞ G maxðxÞ. Since we already
have overlapðXÞ and overlapðY Þ, now we have
overlapðZÞ. Ì

Theorem 1 shows that we can aggregate a set of intervals
X into a single interval uðXÞwhich can represent the entire
set in detecting DefinitelyðFÞ within an even larger set of
intervals. uðXÞ is uniquely identified by minðuðXÞÞ and
maxðuðXÞÞ. These are not events but cuts in execution
ðE;�Þ, identified by their vector timestamps.

Theorem 1 only covers the union of two sets of intervals.
In the spanning tree, some processes may have more than
2 children. Below, we extend Theorem 1 to scenarios involving
more than two sets of intervals.

Lemma 1. LetX1; X2; . . . ; Xd be d sets of intervals, and Z be the
union of all d sets. Thus Z ¼ [di¼1Xi. Then overlapðZÞ iff
^di¼1overlapðXiÞ ^ overlapðuðX1Þ;uðX2Þ; . . . ;uðXdÞÞ.

Proof. ð)Þ ^di¼1 overlapðXiÞis clearly true since Xi � Z.
Since overlapðZÞ, we have 8i; j 2 ½1; d�; overlapðXi [XjÞ.
Thus, according to Theorem 1, we have 8i; j 2 ½1; d�;
overlapðuðXiÞ;uðXjÞÞ. This means, 8i; j2½1; d�;min
ðuðXiÞÞ Gmax ðuðXjÞÞ. Thus, we have overlapðuðX1Þ;
uðX2Þ; . . . ;uðXdÞÞ.
ð(Þ Since ^di¼1overlapðXiÞ ^ overlapðuðX1Þ;uðX2Þ; . . . ;

uðXdÞÞ, we have 8i; j 2 ½1; d�; overlapðXi [XjÞ. This
means, by picking any two intervals y1, y2 from Z, it is
always true that minðy1Þ G maxðy2Þ. This is because there

Fig. 4. Example showing the aggregation of intervals for detectingDefinitelyðFÞ. (a) The timing diagram of the system is given. An interval from each
process is marked in shade along with the vector clock timestamps identifying the lower and higher bounds. (b) The two sets of intervals X and Y
consisting of intervals from (a) are shown. The way to aggregate each set is also illustrated. Component-wise maximums among all lower bounds in
the same set are marked in bold while the component-wise minimums among all higher bounds in the same set are marked in underline.
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will always be a pair of i; j 2 ½1; d�, such that y1 2 Xi and
y2 2 Xj. So, we have overlapðZÞ. Ì

For our hierarchical detection algorithm, each process Pi
in the spanning tree detects DefinitelyðFÞ within the
subtree rooted at itself. Once the predicate is detected, Pi
aggregates the set of intervals within which the predicate is
detected using u and sends the aggregated interval to its
parent. At higher levels in the spanning tree, the predicate
within the subtree will be detected based on aggregated
intervals received from child processes. Lemma 1 ensures
that, by testing the overlap property on the aggregated
intervals, the predicate can be detected within a larger set
of intervals. At higher levels, the aggregation function will
also be applied to the aggregated intervals. However, we
notice that, for two sets of intervals X and Y ,

u uðXÞ;uðY Þð Þ ¼ uðX [ Y Þ: (7)

So, applying the aggregation function on aggregated
intervals is equivalent to applying it on the union of all sets.

3.4 Repeated Detection
In [13], the author showed how repeated detection can be
done in the centralized DefinitelyðFÞ detection algorithm.
Basically, repeated detection requires identifying a certain
interval from a solution set such that this single interval
cannot be part of a future solution set.

Doing the same in the hierarchical detection algorithm is
more complex. In the hierarchical algorithm, the detection
takes place at each level. At higher levels, the solution set
consists of both aggregated intervals and non-aggregated
intervals. Each aggregated interval represents a solution set
at the lower level. Identifying a certain interval for removal
now is to identify a solution set that cannot be part of a future
solution at a higher level, and removing an aggregated in-
terval x in the solution set will remove all the intervals ag-
gregated by x. This is very different from the situation in the
centralized algorithm in which the sink only needs to con-
sider non-aggregated intervals. Below, we show how repeated
detection can be done in the hierarchical detection algorithm.

First, for aggregated intervals generated at the same
process, we have

Theorem 2. For an aggregated interval uðXÞ generated at
process Pa and a later aggregated interval uðX0Þ generated at
the same process, minðuðXÞÞ G maxðuðXÞÞ G minðuðX0ÞÞ G
maxðuðX0ÞÞ.

Proof. Since uðXÞ is an aggregated interval, the set of inter-
vals X it aggregates satisfy the condition overlapðXÞ. Thus
8xi; xj 2 X;minðxiÞ G maxðxjÞ. Also, according to the
definition in (Eqs. (5), (6)), we know that the elements in
minðuðXÞÞ and maxðuðXÞÞ are equal to the component-
wise maximum or minimum among all minðxiÞ or maxðxiÞ,
respectively. Since 8xi; xj 2 X;minðxiÞ G maxðxjÞ, we
have 8xi;xj 2 X; 8l 2 ½1; n�;minðxiÞ½l� � maxðxjÞ½l�. Thus,
8l 2 ½1; n�;minðuðXÞÞ½l� � maxðuðXÞÞ½l�. So, minðuðXÞÞ G
maxðuðXÞÞ. The same can also be shown for uðX0Þ.

Since uðX0Þ is generated after uðXÞ, it means X0 is a
solution set within the subtree rooted at Pa that occurs
after the solution set X. Thus, there exists at least one
interval x0b in X0, such that x0b occurs after the corre-

sponding interval xb in X which comes from the same
process. So, we have maxðxbÞ G minðx0bÞ. Also, according
to the definition in (Eqs. (5), (6)), we know that 8xi 2 X;
8x0i 2 X0;maxðuðXÞÞ GmaxðxiÞ^minðx0iÞ G minðuðX0ÞÞ.
Thus, maxðuðXÞÞG minðuðX0ÞÞ. Ì

For any two intervals x and x0 that occur (local intervals) or
are generated (aggregated intervals) at the same process, if
maxðxÞ G minðx0Þ, we call x0 a successor of x and denote it as
succðxÞ. Theorems 1 and 2 prove that the aggregated intervals
are treated just as the non-aggregated intervals at the higher
levels in the hierarchy. Now we show how we can identify
an interval, aggregated or not, from a solution set such that
it can be safely removed.

In order for an interval xi in a solution set to be part of a
future solution set, there needs to be at least one interval xj
from the same solution set, such that overlapðxi; succðxjÞÞ is
true. From [13], we know that this is equivalent to

min succðxjÞ
� �

G maxðxiÞ: (8)

Then, if for all intervals xjðj 6¼ iÞ from the solution set X,
Eq. (8) is false, we have that overlapðxi; succðxjÞÞ is false for
all xjðj 6¼ iÞ from the solution set. Thus xi can be safely
removed from the head of the queue. So, we have:

remove xi iff

8xj 2 Xðj 6¼ iÞ;min succðxjÞ
� �

6 GmaxðxiÞ: (9)

Since maxðxjÞ G minðsuccðxjÞÞ, from [13], we know the test
condition in Eq. (9) can be approximated to

remove xi iff 8xj 2 Xðj 6¼ iÞ;maxðxjÞ 6 GmaxðxiÞ: (10)

Since we do not know the values in minðsuccðxjÞÞ until
that interval gets reported from the lower level, in order
to identify the interval for removal as soon as possible, the
approximated condition in Eq. (10) is what we use to prune
the queues. Although it is only an approximation, we now
show that it is actually correct and capable of always
identifying at least one interval for removal.

Theorem 3 (Safety). Once a solution set X is detected at any
process in the hierarchy, only intervals xi 2 X (xi may be
aggregated or not) that cannot be part of another solution are
removed from their queues.

Proof. Since Eq. (10)) Eq. (9), any interval removed using
the condition in Eq. (10) will also satisfy the condition in
Eq. (9). Thus, those intervals cannot be part of any future
solution set. Therefore, even if Eq. (10) is only an
approximation, it still guarantees safety. Ì

Theorem 4 (Liveness). For any solution set X detected at any
process in the hierarchy, at least one interval (aggregated or not)
gets removed from its queue.

Proof. Assume that the condition in Eq. (10) cannot be satis-
fied by some solution set X. Then, it means that for any
intervals xi 2 X, aggregated or not, there exists another
interval xj 2 X, such that maxðxjÞ G maxðxiÞ. This condi-
tion will eventually cause one interval xk to satisfy
maxðxkÞ G maxðxkÞ, which is impossible. So the assump-
tion is false, and thus the condition in Eq. (10) holds for
any solution set. Thus, Eq. (10) guarantees liveness.
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With the safety and liveness of the condition in Eq. (10)
proved, we can safely use it to prune the queues so that
future occurrences of the predicate at each level in the
hierarchy can be repeatedly detected. Ì

3.5 Hierarchical Detection Algorithm
With Theorems 1, 3 and 4, we have the theoretical foundation
for the hierarchical detection algorithm outlined in Section 3.1.
The algorithm is listed in Algorithm 1. Each process in the
spanning tree tracks the intervals occurring locally and
those sent from its children. The intervals sent from a child
process can be non-aggregated intervals or aggregated ones,
depending on whether the child is a leaf node. By checking
the intervals received in the queues (Lines (1)-(17)), each
process attempts to detect the predicate within the subtree
rooted at itself. Once a solution set is found (Line (18)), the

root of the subtree aggregates the set and sends it to its parent
(Lines (19)-(20)). At the higher level in the hierarchy, the
parent determines if the predicate can be detected in an even
larger subtree rooted at itself by repeating the same detection
procedure (Lines (1)-(17)). When the root of the spanning
detects a solution set, a satisfaction of the predicate is detected
within the whole system (Lines (21)-(22)).

Each time the predicate is detected at some process,
Lines (23)-(33) prune the heads of the queues so that future
occurrences of the predicate at the same level can be
repeatedly detected. For each interval xi in the solution set
X, this procedure checks xi against all other intervals xj in
X to see if 8xj 2 Xðj 6¼ iÞ;maxðxjÞ 6 GmaxðxiÞ. Each time an
interval xi is to be checked, a counter is initialized to 0. For
each interval xjðj 6¼ iÞ, if maxðxjÞ 6 GmaxðxiÞ then the
counter is increased by 1. After xi is checked against all
other intervals xj, if the counter equals l, which is the total
number of intervals in the solution setXminus 1, then interval
xi satisfies the condition in Eq. (10). Thus, we can safely
remove xi from the corresponding queue. In Algorithm 1,
the intervals to be processed can be aggregated intervals.
Thus when comparing the vector timestamps of two intervals
(Lines (12), (14), (26)-(27)), we cannot compare them in Oð1Þ
time as we can do with the normal intervals. This will affect
the time complexity of this algorithm. For details, please
refer to the supplementary file which is available online.

Although Algorithm 1 has the same basic structure as the
centralized algorithm given in [13], it is essentially different.
Algorithm 1 detects DefinitelyðFÞ in a hierarchical manner
and performs tests on aggregated intervals. Instead of one
central server process maintaining n queues, each process in
Algorithm 1 maintains queues only for itself and its children
in the spanning tree. When the predicate is detected at non-
root processes, the solution set is aggregated for processes in
the higher level to detect the predicate in a larger area.

To summarize, Theorems 1, 3, and 4 together guarantee that
Algorithm 1 is correct, meaningthat all the predicate occurrences
in the system are detected and there are no false alarms.

4 FAULT-TOLERANCE

4.1 Potential Failures In the System
In a large-scale wireless network, the following situations could
result in changes to the spanning tree. 1) A node crashes and

Fig. 5. (a) Initial topology of the spanning tree. Bold lines indicate tree
edges, while dashed lines indicate disconnected tree edges due to
either (b) node crash, (c) decreasing power, or (d) node mobility. In order
to reconstruct the spanning tree, new tree edges are added.
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loses all the communication link with its previous neighbors. 2)
A node moves out of the communication range of some or all of
its previous neighbors. 3) A node reduces communication
range due to loss of power. These situations are illustrated in
Fig. 5. In a large-scale wireless network, these situations can be
common, especially if individual node only has limited power
and is prone to crash failures. To handle these situations, a
mechanism to reconstruct the spanning tree after the node
failures is required. In this paper, we do not consider the
problem of reconstructing the degree-bounded spanning tree
after node failures. We expect some spanning tree reestab-
lishment mechanism at a lower layer to handle the recon-
struction of the degree-bounded spanning tree. This problem
is universal, ranging from electric power transmission grids to
LAN configurations to higher-layer tree overlays. Readers are
referred to the reconstruction approaches by Yang and Fei [23]
and Jeon et al. [24]. We instead focus on how the hierarchical
detection algorithm should behave to seamlessly transition
across the changes in the underlying spanning tree caused by
the reconstruction mechanism. We assume that failures do not
occur during message transmissions. This assumption is
reasonable because, compared with the duration of intervals,
the time to transmit a message is usually much less.

No matter which of the above listed three situations
happens, their effects to individual nodes in the spanning
tree after the reconstruction mechanism takes place can be
categorized into one or more of the following three changes:

1. The node loses one child.
2. The node gains an additional child.
3. The node’s parent gets switched.

Thus in order for our algorithm to correctly resume the
detection, meaning no missed predicate occurrences, it
needs to be able to handle these listed changes at all the
nodes that are affected by the reconstruction mechanism.

4.2 Dealing with Changes in the Spanning Tree
The main challenge is to prevent missed predicate occur-
rences. It is possible to miss a predicate occurrence in 2 ways:
when the changes to a node happen before the node’s local

interval finishes and when the changes happen after the local
interval finishes.

Take the example in Fig. 6 as an illustration. The messages
are not drawn in the timing-diagram for clarity. If two
intervals satisfy the overlap relation, they appear as overlapped
in the horizontal direction in Fig. 6c. The spanning tree is
initially constructed as shown in Fig. 6a. The failure happens,
say for instance, when process P5 moves away to become P3’s
child. This triggers the spanning tree reconstruction mecha-
nism and the reconstructed spanning tree is shown in Fig. 6b.

If this change happens after interval x5 finishes, the
reconstruction affects processes P2, P3, and P5. For P2, it
loses one child, and the interval x5 received by P2 now has
no corresponding child process. For P3, it gains a new child.
However, there is no corresponding interval queue in P3 to
accept intervals from P5. In addition, the intervals P3 later
reports to P1 is the aggregation of intervals from both P3 and
P5. Compared with the intervals P1 receives from P3 before
the spanning tree changes, the new intervals from P3 now
represent a different set of processes: fP3; P5g. For P5, it now
has a different parent process. Thus, it needs to report its
intervals to the new parent. These effects on processes P2, P3

and P5 resulting from the spanning tree reconstruction could
all potentially cause missed predicate occurrences.

On the other hand, P5 and P2 could be disconnected
before interval x5 finishes. In this scenario, the aggregated
intervals reported by P2 do not contain interval x5. If P3

reports interval x3 to P1 before P5 becomes P3’s child, then
it is possible that P1 will not receive interval x5 as part of
any aggregated intervals and thus miss the detection of the
predicate in the set fx1; x2; x3; x5; x6g.

With the above two possible ways in which the changes
in the spanning tree can affect the detection algorithm, we
observe that our algorithm’s hierarchical detection manner
can help to seamlessly transition across the changes and
guarantee the correctness.

Our proposed solution works as follows:

1. Whenever a process Pi loses a child Pj, Pi flags the
queue corresponding to Pj as lost. However, Pi does

Fig. 6. (a) Spanning tree consists of 5 processes. (b) Due to either node
mobility or decreasing power of process P5, the structure of the span-
ning tree is changed. (c) Intervals on each process are represented by
line segments.
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not remove this queue until all the remaining
intervals in the queue are processed and the queue
becomes empty. If Pj once again becomes Pi’s child
before the queue turns empty, Pi removes the flag.

2. When Pi gains a new child Pk, Pi needs to create a
new queue to process intervals from Pk. Also, when
Pi receives the first interval from Pk, it needs to check
whether this interval overlaps with the most recent
interval reported by Pi to its parent. If so, Pi needs to
send a new aggregated interval to its parent.

3. When Pi switches parent, Pi reports subsequent
intervals to the new parent.

4. When Pi’s child Pj sends intervals that represent a
different set of processes,Pi appends the new intervals
into the same queue corresponding to Pj.

4.3 Algorithm Augmentation for Fault-Tolerance
The addition of fault-tolerance to the hierarchical detection
algorithm is listed in Algorithm 2. After the spanning tree
is changed, each process that has its parent or children
changed in the reconstructed spanning tree needs to update
its local queues accordingly (Lines 1-7). Each process also
needs to remember the most recent reported interval in order
to guarantee all predicate occurrences are detected (Line 8).

Although the structure of the spanning tree changes,
due to the fact that the hierarchical manner of the algorithm
stays the same, it will not affect the detection of the future
occurrences of the predicate within the system. Further-
more, Theorems 1, 3, and 4 still ensure the correctness of
further detections of the predicate.

Even if multiple occurrences of the failures in Section 4.1
happen concurrently, our algorithm is capable of resuming
the detection after the spanning tree is locally reconstructed
for each such failure. This is because, in Algorithm 2, each
process Pi only needs to check the changes in its children
and parent after the spanning tree reconstruction. Thus,
each process Pi only needs to react to local changes.

Below, we show that Algorithm 2 guarantees all predicate
occurrences are detected with the presence of potential
failures happening during the detection. Notice that, we only
show that this statement is guaranteed for the entire system,
not for every subset of processes grouped by a subtree in the
system. This is because, with fault-tolerance considerations,
the spanning tree may keep changing. Thus, any subtree in
the system may exist only temporarily. Requiring the detection
of all occurrences of the predicate within any subtree while the
subtree itself could change at any time is thus impractical.

Theorem 5 (Completeness). Any occurrence of the predicate
for the entire system will be detected by some solution setX at
the root process.

Proof. With fault-tolerance handling, Theorem 1 is not im-
pacted because the logic to aggregate intervals stays the
same. Theorem 2 will also not be affected because we do
not remove intervals even if the corresponding process
disconnects. Thus, even with potential nodes leaving and
joining, it is always true that for an aggregated interval
uðXÞ and a later aggregated interval uðX0Þ generated at
the same process, we can find a interval x0b in X0 and the

corresponding entry xb in X such that maxðxbÞ G
minðx0bÞ. With Theorem 2 not affected, Theorems 3 and
4 will also hold.

Furthermore, if process Pi switches parent before its
local interval finishes, we also make sure Pi’s new parent
will process this local interval if it can be part of a global
solution set. Thus, if interval xi from Pi is part of a global
solution set, xi will become part of an aggregated interval
and eventually reach the root process where the oc-
currence of the predicate will be detected. Ì

With Theorems 1, 3, 4, and 5, it is guaranteed that our
proposed fault-tolerance handling will ensure the correctness
of the detection algorithm when transitioning across changes
of the underlying spanning tree.

5 DISCUSSION

In this paper, we proposed the first decentralized hierar-
chical algorithm that repeatedly detects all occurrences
of DefinitelyðFÞ for a conjunctive predicate F. Such an
algorithm is essential for large-scale systems, particularly
when the system is subject to node crashes. Our algorithm
detects the predicate at each level in the hierarchy, and thus
is able to detect a partial predicate of the global predicate.
This enables our algorithm to easily resume the detection
after a node crashes or moves. Compared with the only
other algorithm capable of doing repeated detection [13],
our algorithm distributes a lower time cost, and the same
space cost, across all processes in the network, and reduces
the number of control messages significantly. A detailed
complexity analysis is given in the supplementary file
which is available online and [15].

REFERENCES

[1] M. Shen, A.D. Kshemkalyani, and A. Khokhar, ‘‘Detecting Stable
Locality-Aware Predicates,’’ J. Parallel Distrib. Comput., vol. 74,
no. 1, pp. 1971-1983, Jan. 2014.

[2] M. De-Rosa, S. Goldstein, P. Lee, P. Pillai, and J. Campbell,
‘‘Programming Modular Robots with Locally Distributed
Predicates,’’ in Proc. IEEE ICRA, 2008, pp. 3156-3162.

[3] M. De-Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai,
‘‘Detecting Locally Distributed Predicates,’’ ACM Trans. Autonom.
Adapt. Syst., vol. 6, no. 2, p. 13, June 2011.

[4] C.M. Chase and V.K. Garg, ‘‘Detection of Global Predicates:
Techniques and Their Limitations,’’ Distrib. Comput., vol. 11, no. 4,
pp. 191-201, Oct. 1998.

[5] R. Cooper and K. Marzullo, ‘‘Consistent Detection of Global
Predicates,’’ in Proc. ACM/ONR Workshop Parallel Distrib. Debugging,
1991, pp. 167-174.

[6] V.K. Garg and B. Waldecker, ‘‘Detection of Strong Unstable
Predicates in Distributed Programs,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 7, no. 12, pp. 1323-1333, Dec. 1996.

[7] V.K. Garg and B. Waldecker, ‘‘Detection of Weak Unstable
Predicates in Distributed Programs,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 3, pp. 299-307, Mar. 1994.

[8] A. Kshemkalyani and M. Singhal, Distributed Computing: Principles,
Algorithms, Systems. Cambridge, U.K.: Cambridge Univ. Press,
2008.

[9] V. Garg and C. Chase, ‘‘Distributed Algorithms for Detecting
Conjunctive Predicates,’’ in Proc. 15th IEEE ICDCS, 1995, pp. 423-430.

[10] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, ‘‘Efficient
Distributed Detection of Conjunctions of Local Predicates,’’ IEEE
Trans. Softw. Eng., vol. 24, no. 8, pp. 664-677, Aug. 1998.

[11] P. Chandra and A. Kshemkalyani, ‘‘Distributed Algorithm to
Detect Strong Conjunctive Predicates,’’ Inf. Process. Lett., vol. 87,
no. 5, pp. 243-249, Sept. 2003.

SHEN AND KSHEMKALYANI: DETECTION OF STRONG UNSTABLE CONJUNCTIVE PREDICATES IN LARGE-SCALE SYSTEMS 2907



[12] P. Chandra and A. Kshemkalyani, ‘‘Data Stream Based Global
Event Monitoring Using Pairwise Interactions,’’ J. Parallel Distrib.
Comput., vol. 68, no. 6, pp. 729-751, June 2008.

[13] A.D. Kshemkalyani, ‘‘Repeated Detection of Conjunctive Predicates
in Distributed Executions,’’ Inf. Process. Lett., vol. 111, no. 9,
pp. 447-452, Apr. 2011.

[14] F. Gärtner, A Survey of Self-Stabilizing Spanning-Tree Construc-
tion Algorithms, Swiss Federal Inst. Technol.(EPFL), Lausanne,
Switzerland, 2003.

[15] M. Shen and A. Kshemkalyani, ‘‘A Fault-Tolerant Strong Conjunc-
tive Predicate Detection Algorithm for Large-Scale Networks,’’ in
Proc. 27th IEEE IPDPS Workshops, 2013, pp. 1460-1469.

[16] L. Lamport, ‘‘Time, Clocks, the Ordering of Events in a
Distributed System,’’ Commun. ACM, vol. 21, no. 7, pp. 558-565,
July 1978.

[17] M. Raynal and M. Singhal, ‘‘Logical Time: Capturing Causality in
Distributed Systems,’’ Computer, vol. 29, no. 2, pp. 49-56, Feb. 1996.

[18] F. Mattern, ‘‘Virtual Time and Global States of Distributed
Systems,’’ in Proc. Parallel Distrib. Algorithms Conf., 1988, pp. 215-226.

[19] C. Fidge, ‘‘Logical Time in Distributed Computing Systems,’’
Computer, vol. 24, no. 8, pp. 28-33, Aug. 1991.

[20] R. Baldoni and M. Raynal, ‘‘Fundamentals of Distributed
Computing: A Practical Tour of Vector Clock Systems,’’ IEEE
Distrib. Syst. Online, vol. 3, no. 2, pp. 1-17, Feb. 2002.

[21] A. Kshemkalyani, ‘‘Temporal Interactions of Intervals in Distributed
Systems,’’ J. Comput. Syst. Sci., vol. 52, no. 2, pp. 287-298, Apr. 1996.

[22] A. Kshemkalyani, ‘‘Immediate Detection of Predicates in Pervasive
Environments,’’ J. Parallel Distrib. Comput., vol. 72, no. 2, pp. 219-230,
Feb. 2012.

[23] M. Yang and Z. Fei, ‘‘A Proactive Approach to Reconstructing
Overlay Multicast Trees,’’ in Proc. 23rd INFOCOM, 2004,
pp. 2743-2753.

[24] J. Jeon, S. Son, and J. Nam, ‘‘Overlay Multicast Tree Recovery
Scheme Using a Proactive Approach,’’ Comput. Commun., vol. 31,
no. 14, pp. 3163-3168, Sept. 2008.

Min Shen holds a BS in computer science from
Nanjing University. He is currently a PhD student
at the Department of Computer Science at the
University of Illinois at Chicago, USA. His research
interests include distributed algorithms, predicate
detection and wireless sensor networks. He is a
Student Member of the IEEE.

Ajay D. Kshemkalyani received the BTech
degree in computer science and engineering
from the Indian Institute of Technology, Bombay,
in 1987, and the MS and PhD degrees in
computer and information science from The
Ohio State University, USA in 1988 and 1991,
respectively. He spent six years at IBM Re-
search Triangle Park working on various aspects
of computer networks before joining academia.
He is currently a professor at the Department of
Computer Science at the University of Illinois at

Chicago, USA. His research interests are in distributed computing,
distributed algorithms, computer networks, and concurrent systems. In
1999, he received the US National Science Foundation Career Award.
He previously served on the editorial board of the Elsevier journal
Computer Networks, and is currently an editor of the IEEE Transactions
on Parallel and Distributed Systems. He has coauthored a book entitled
Distributed Computing: Principles, Algorithms, and Systems (Cam-
bridge University Press, 2008). He is a distinguished scientist of the
ACM and a Senior Member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 11, NOVEMBER 20142908



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


