1912

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

T-BASIR: Finding Shutdown Bugs for
Cloud-Based Applications in Cloud Spot Markets

Abdullah Alourani
Ajay D. Kshemkalyani

, Student Member, IEEE,
, Senior Member, IEEE, and Mark Grechanik

, Senior Member, IEEE

Abstract—One of the major advantages of cloud spot instances in cloud computing is to allow stakeholders to economically deploy
their applications at much lower costs than that of other types of cloud instances. In exchange, spot instances are often exposed to
revocations (i.e., terminations) by cloud providers. With spot instances becoming pervasive, terminations have become a part of the
normal behavior of cloud-based applications; thus, these applications may be left in an incorrect state leading to certain bugs.
Unfortunately, these applications are not designed or tested to deal with this behavior in the cloud environment, and as a result, the
advantages of cloud spot instances could be significantly minimized or even entirely negated. We propose a novel solution to
automatically find these bugs and locate their causes in the source code. We evaluate our solution using 10 popular open-source
applications. The results show that our solution not only finds more instances and different types of these bugs compared to the random
approach, but it also locates the causes of these bugs to help developers improve the design of the shutdown process and is more
efficient in finding instances of these bugs since it interposes at the system call layer.

Index Terms—Cloud computing, cloud spot markets, shutdown bugs of cloud-based applications, kernel modules, irregular terminations of

cloud-based applications, spot instance revocations

4

INTRODUCTION

1
CLOUD computing enables cloud customers to rent resour-
ces (e.g., virtual machines (VMs)) on as-needed basis to
run their applications. That is, cloud customers do not have to
buy and host expensive hardware to run their applications,
and instead they rent resources for their applications from
cloud computing facilities. This is an essential difference
between cloud computing systems and distributed systems,
which require application owners to buy and host expensive
hardware to run their applications. As the deployment cost is
an integral part of applications deployed on the cloud, the
cost-efficiency of provisioning resource to these applications
becomes a priority, and it is of growing significance, since the
total spending that will be affected by cloud computing is
over $1 trillion by 2020 [1].

Many cloud providers such as Amazon Web Services offer
four types of instances (i.e., VMs) [2]: on-demand, reserved,
dedicated, and spot (also known as preemptible). Cloud cus-
tomers can pay for renting on-demand instances per hour
without long-term commitments, and they cost the most.
Also, they can rent reserved instances for a long term by mak-
ing an upfront payment to cloud providers and thus pay a
much lower rate than on-demand instances. A variation of

o A. Alourani is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607, and also with Majmaah University,
Al Majma’ah 15341, Saudi Arabia. E-mail: aalour2@uic.edu.

A. D. Kshemkalyani and M. Grechanik are with the Department of Computer
Science, University of Illinois at Chicago, Chicago, IL 60607 .

E-mail: {ajay, drmark}@uic.edu.

Manuscript received 29 Oct. 2019; revised 19 Feb. 2020; accepted 7 Mar.
2020. Date of publication 13 Mar. 2020; date of current version 7 May 2020.
(Corresponding author: Abdullah Alourani.)

Recommended for acceptance by Q. Zheng.

Digital Object Identifier no. 10.1109/TPDS.2020.2980265

reserved instances is a dedicated host, which is a physical
server thatis assigned only to a specific customer, and nobody
besides this customer can use the resources of this host. Unlike
the fixed-cost paying schemes mentioned above, a variable-
cost paying scheme allows cloud customers to specify the
price they are willing to pay for renting a spot instance to run
their applications [2], and, depending on the varying demand
from cloud customers, the price of this spot instance can go
up if the demand increases and the number of available
instances that can be supported by a finite number of physical
resources in a data center of cloud providers decreases [3].
Conversely, the price of this spot instance can go down if the
demand decreases and the number of available instances
increases. If the customer’s price is greater than the cloud
provider’s price that depends on the demand, a spot instance
will be provisioned to customers’ applications at the custom-
er’s price. However, when spot instances are already provi-
sioned to customer applications and the cloud provider’s
price goes above the customer’s price, the cloud providers
will revoke those spot instances within two minutes by send-
ing termination signals, thus resulting in revocations of those
spot instances [3], whose occurrences are very difficult to pre-
dict [4]. As a result, even though cloud customers sometimes
rent spot instances at 90 percent lower costs compared to on-
demand [2], their applications that run in spot instances can
be terminated based on price fluctuations that happen fre-
quently, thus these applications may switch to an incorrect
state leading to certain bugs [5], [6].

In general, terminations could be seen as regular when an
application receives a termination signal in the context of pre-
defined protocols, or irregular when an application receives a
termination signal without using any context of predefined

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0003-2451-7306
https://orcid.org/0000-0002-8364-595X
https://orcid.org/0000-0002-8364-595X
https://orcid.org/0000-0002-8364-595X
https://orcid.org/0000-0002-8364-595X
https://orcid.org/0000-0002-8364-595X
mailto:aalour2@uic.edu
mailto:ajay@uic.edu
mailto:drmark@uic.edu

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

protocols. Hence, the revocations of spot instances often lead
to irregular terminations of cloud-based applications. Note
that an application can be irregularly terminated in two
modes. We assume that the reason for executing an applica-
tion is to run an algorithm that implements the requirements
of this application to provide the required results. First, an
application could be irregularly terminated during the execu-
tion of the application’s algorithm. Second, an application
could be irregularly terminated during the execution of the
shutdown sequence of the application when the execution of
the application’s algorithm is completed. Moreover, irregular
terminations do not affect stateless applications but often
affect stateful applications relying on the results of ongoing
calculation by applications under irregular terminations.
These stateful applications might change to incorrect states
when they are terminated before their shutdown sequences
are entirely executed. In general, resources utilized by an
application under irregular termination can be called Resour-
ces Affected by Termination (RAT). When an application (A)
encounters irregular terminations while interacting with
another application (B), B is considered RAT because it might
be left in an incorrect state until it identifies that A is already
terminated.

EC2 spot markets contain approximately 7,600 independent
spot prices for different types of instances among 44 availabil-
ity zones (i.e., data centers) in 16 regions [7]. With spot instan-
ces becoming pervasive, irregular terminations have become a
part of the normal behavior of cloud-based applications. Bugs
of cloud-based Applications resulting from Spot Instance Revocations
(BASIR) result from errors in the implementation of the shut-
down instructions of these applications that occur only during
spot instance revocations. When these applications are being
irregularly terminated, they might lose their states that lead to
BASIR, such as data loss, inconsistent states, performance bot-
tlenecks, hangs, crashes, deadlocks, locked resources, or these
applications that cannot restart/terminate. On top of poor user
experience from seeing these bugs, other bugs result in situa-
tions where cloud-based applications could not be restarted
without manual interventions. In finer detail, when an applica-
tion invokes synchronization system calls to lock a file and per-
form an update on the file inode’s field that specifies if the file
shall be persisted and this application is being irregularly ter-
minated before the update is completed, system calls (i.e.,
fsync) of this application that are responsible for synchronizing
the data of an open file to the storage device will become a “no-
op”, causing data loss of this file [8].

In general, heartbeat or timeout mechanisms might reduce
the number of BASIR that require interaction between exter-
nal processes (or threads) that run in different instances and
an application’s processes (or threads) run in a spot instance
under irregular terminations, i.e., deadlocks, hangs, and per-
formance bottlenecks. However, these mechanisms may not
be useful for other types of BASIR that solely depend on ongo-
ing calculations by applications deployed on a spot instance
under irregular terminations, i.e., data corruption, data loss,
crashes, and inconsistent states of shared data objects. Cloud-
based applications that run in spot instances are not designed
or tested to deal with this behavior in the cloud environ-
ment. The shutdown sequence of a cloud-based application
is often left untested because developers often assume that
a cloud-based application is properly terminated as long

1913

as its processes are terminated. It is very difficult to find
BASIR because a termination signal can be initiated at every
execution state of a cloud-based application, leading to a sig-
nificantly larger search space of application states. Unfortu-
nately, the absence of testing the effect of spot instance
revocations on cloud-based applications will likely lead to a
large number of BASIR. As a result, the advantages of cloud
spot instances could be significantly minimized or even
entirely negated.

In this paper, we propose a novel solution to automati-
cally find BASIR and locate their causes in the source code
of cloud-based applications. We develop our solution for
Testing for BASIR (T-BASIR) that uses kernel modules
(KMs) [9] to find these bugs and generate traces of their
causes in the source code. T-BASIR is comprised of two
major components. (1) Automating BASIR detection using
KMs that contain the following main phases: (i) sending ter-
mination signals to certain system calls of a cloud-based
application, and (ii) measuring the impacts on the state of
RAT when the cloud-based application is irregularly termi-
nated during the execution of these system calls. (2) Identi-
fying the causes of BASIR using Tracer KM, which modifies
the flow of executions through intercepting a termination
signal to collect execution traces from the stack of a cloud-
based application before the application receives the termi-
nation signal. BASIR and the traces of BASIR can be ana-
lyzed during application testing by developers, who look
for fixes for BASIR to reduce or even eliminate the number
of these bugs when cloud-based applications encounter
irregular terminations. The motivation behind this work is
to design a technique enabling developers to test the effect
of spot instance revocations on cloud-based applications.
The main contributions of this research work are:

e Weaddress a new and challenging problem for cloud-
based applications that results from irregular termina-
tions due to spot instance revocations.

e To the best of our knowledge, T-BASIR is the first
automated solution to find bugs of applications
resulting from cloud spot instance revocations.

e We evaluate T-BASIR using 10 popular open-source
applications. Our results show that T-BASIR not only
finds more instances and different types of BASIR (e.g.,
performance bottlenecks, data loss, locked resources,
and applications that cannot restart) compared to the
random approach, but it also locates the causes of
BASIR to help developers improve the design of the
shutdown process for cloud-based applications during
their testing.

e T-BASIR’s code and our experimental results are
publicly available [10], [11].

A preliminary version of these results appears in [12].

2 RELATED WORK

In this section, we discuss the related work concerning spot
instance revocations and application bugs.

2.1 Spot Instance Revocations

To the best of our knowledge, T-BASIR is the first automated
solution for testing the effect of spot instance revocations on

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

1914

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

TABLE 1
Comparison of T-BASIR With the Related Work Concerning Spot Instance Revocations and Application Bugs

(a) Spot Instance Revocations

Modeling Spot Markets Employing Fault-tolerance Mechanisms Testing Impact on Applications
Bidding Strategies Prediction Schemes Replication Checkpointing Migration
PADB [13] DrAFTS [14] Multifaceted Policy [15] Spoton [16] Smart Spot Instances [17]
DBA [18] Calibration [19] Proteus [20] Checkpointing Schemes [21] Hotspot [22] T-BASIR
AMAZING [23] | Quantitative Models [24] Spotcheck [3] ExoSphere [25]
(b) Application Bugs
Buggy Templates Rules and Specifications Historical Bugs RAT
Metal Checkers [26] Alattin [27] HCM [28]
PMD [29] Pr-miner [30] FixCache [31] T-BASIR

FindBugs [32] AFG [33]

Bug Prediction [34]

The top part of Table (a) indicates existing works that aim to mitigate spot instance revocations. The following row designates the methodology of the proposed
solution, followed by a row that designates specific methods. The bottom part of Table (b) indicates existing works that aim to find application bugs. The next row
designates the methodology of the proposed solution and the cells contain the name of the proposed solutions.

cloud-based applications. Most of the prior works focused
on reducing the effect of spot instance revocations using fault-
tolerance methods, such as replication [3], [15], [20], check-
pointing [16], [21], [25], and VM migration [17], [22]. Voorsluys
et al. [15] proposed a fault-aware resource allocation approach
that applies the price of spot instances, runtime estimation of
applications, and task duplication mechanisms to economi-
cally run batch jobs in spot instances. Yi et al. [21] proposed
checkpointing schemes to reduce the computation price of
spot instances and the completion time of tasks. Shastri et al.
[22] proposed a resource container that enables applications
to self-migrate to new spot VMs in a way that optimizes cost-
efficiency as the spot prices change.

In addition, other researchers worked on modeling spot
markets to reduce the spot instance cost and the perfor-
mance penalty that results from a high number of revoca-
tions, by designing optimal bidding strategies [13], [18], [23]
and developing prediction schemes [14], [19], [24]. Song
et al. [13] proposed an adaptive bidding approach that lever-
ages the spot price history information to choose the bid
strategy that increases the profit for brokers of the cloud ser-
vice. Javadi et al. [19] proposed a statistical approach to ana-
lyze changes in spot price variations and the time between
price variations to explore characterization of spot instances
that are required to design fault-tolerant algorithms for
applications deployed on cloud spot instances.

2.2 Application Bugs

T-BASIR is the first automated solution to identify instan-
ces of BASIR. T-BASIR measures the impact on the state of
RAT when the application is irregularly terminated to iden-
tify BASIR, as discussed in Section 4.3. Existing bug finding
tools are not applicable to BASIR because they rely on
searching through the application’s execution paths for cer-
tain inputs to check if the state value of an application varies
from the expected value that represents the input value of
the next instruction in this execution path. However, a ter-
mination signal can be initiated at every execution state of
applications, leading to a significantly larger search space of
these states. Prior works required users to provide the
buggy templates in order to find application bugs [26], [29],
[32], whereas other works automatically inferred rules and

specifications by mining existing applications in order to
find application bugs [27], [30], [33]. Kermenek ef al. [33]
proposed a probabilistic approach that automatically infers
specifications from a source code of an application and uses
them to detect incorrect and missing properties in specifica-
tions. Other researchers focused on predicting application
bugs using historical data of reported bugs [28], [31], [34].
Giger et al. [34] proposed a bug prediction approach that
learns from source code and change metrics to predict
application bugs.

2.2.1 Critical Analysis

In summary, Table 1 briefly gives a comparison of T-BASIR
from different existing works that aim to mitigate spot
instance revocations and find application bugs. While many
of the prior works focused on reducing the effect of spot
instance revocations by modeling spot markets and using
fault-tolerance methods, these works are subject to altering
pricing algorithms and are exposed to incurring overhead
related to application completion time and deployment
cost, respectively. In contrast, T-BASIR focuses on testing
the effect of spot instance revocations on cloud-based appli-
cations. Also, although the other prior works focused on
finding application bugs using buggy templates, rules and
specifications, and historical bugs, these works are subject
to limited inputs. However, T-BASIR measures the impact
on the state of RAT when the application is irregularly ter-
minated to identify BASIR, as discussed in Section 4.3. As a
result, T-BASIR is the first tool that sheds light on the effect
of spot instance revocations on cloud-based applications.

3 PROBLEM STATEMENT

In this section, we provide a background on shutdown pro-
cesses and revocation notifications, discuss sources of BASIR,
illustrate the BASIR problem, and formulate the problem
statement.

3.1 Shutdown Processes and Revocation
Notifications

The shutdown process of an application is often initiated dur-
ing the execution of application instructions in response to

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

termination signals. This allows the application to switch its
execution control to execute predefined shutdown instruc-
tions that save the state of the application and the state of its
artifacts within a certain timeout before the operating system
removes the application process from the memory. It is very
difficult to specify in which sequence instructions should be
executed during the shutdown of an application. Doing so
requires the knowledge of the execution state of an applica-
tion at any point when this application receives a termination
signal. Also, specifications describing the shutdown process
of an application and which states are incorrect are rarely
documented. The shutdown process of an application is often
left untested because developers often assume that an applica-
tion is properly terminated as long as its processes are termi-
nated. As a result, the shutdown process of applications may
fail to be completed within a certain timeout, leading to an
incorrect state that affects the execution of subsequent instan-
ces of this application.

In general, cloud providers revoke (i.e., terminate) spot
instances after a brief two-minute notification. The revocation
notifications are often sent to spot instances when the demand
from cloud customers increases and the number of available
spot instances that can be supported by a finite number of
physical resources in a data center of cloud providers
decreases. If the customer’s price is greater than the cloud
provider’s price that depends on the demand, a spot instance
will be provisioned to customers’ applications at the custom-
er’s price. However, when spot instances are already provi-
sioned to customer applications and the cloud provider’s
price goes above the customer’s price, the cloud providers
will revoke those spot instances within two minutes by send-
ing termination signals [3]. The cloud providers give spot
instances two-minute revocation notifications to enable appli-
cations that run in spot instances to be gracefully shut down
within the two-minute revocation notice time. However, the
brief two-minute revocation notice is not often enough to com-
plete the shutdown process of applications, especially when
the applications” memory footprints are greater than 4 GB
[16]. As aresult, when these applications are being terminated
during the execution of the shutdown process of these appli-
cations, they might lose their states that lead to BASIR.

3.2 Sources of BASIR

There are two primary sources of BASIR. The first one is
spot instance revocations. The other one is shutdown bugs
of cloud-based applications.

3.2.1 Spot Instance Revocations

The revocations of spot instances are based on price fluctua-
tions that happen based on demand of spot instances from
many cloud customers. The cloud providers often revoke
spot instances when the demand increases and the number
of available spot instances that can be supported by a finite
number of physical resources in a data center of cloud pro-
viders decreases. It is very difficult to determine in advance
spot instance revocations that depend on the varying
demands of cloud customers [4]. Doing so requires cloud
customers (i.e., application’s owners) to understand how
the demands of the spot instances change, how the costs of
the allocated spot instances change, and how to make trade-

1915

offs between the demands and these costs [1]. As a result,
price fluctuations that depend on the demand have a high
influence on the number of spot instance revocations.

In addition, it is very difficult for cloud customers to
decide a price they are willing to pay for renting a spot
instance to run their applications in such a way that reduces
the deployment cost and the number of spot instance revo-
cations [35]. When spot instances are already provisioned to
cloud customer applications and the customer’s price is
close to zero, there is a high probability that those spot
instances will be revoked by cloud providers. Also, when a
cloud customer requests spot instances and the customer’s
price is close to zero, there is a very low probability that
those spot instances will be provisioned to cloud customer
applications. Conversely, if cloud customers set their prices
close to on-demand instances’ prices, cloud customers may
reduce the number of revocations of spot instances that are
provisioned to their applications, but cloud customers may
not benefit from a significant discount of spot instances that
is up to 90 percent compared to on-demand instances [2].
As a result, without knowing a demand from different
cloud customers in advance, the challenge for cloud cus-
tomers is to choose a price of spot instances that is both sig-
nificantly lower than the price of on-demand instances and
greater than the cloud provider’s price to minimize the cost
of the deployment and the number of spot instance
revocations.

3.2.2 Shutdown Bugs of Cloud-Based Applications

The shutdown bugs of applications often result from errors
in the implementation of a cleanup process of these applica-
tions that occurs only during their shutdowns. The shut-
down sequence of an application is often left untested
because developers often assume that an application is
properly terminated as long as its processes are terminated.
Developers often depend on the assumption that the operat-
ing system cleans the process space to a certain extent in any
case. Also, specifications describing the shutdown process
of an application and which states are incorrect are rarely
documented. Unfortunately, existing bug finding tools (e.g.,
PMD [29] and FindBugs [32]) are not applicable to BASIR
because they rely on searching through the application’s
execution paths for certain inputs to check if the state value
of an application varies from the expected value that repre-
sents the input value of the next instruction in this execution
path. However, a termination signal can be initiated at
every execution state of applications, leading to a signifi-
cantly larger search space of these states. On top of that, the
shutdown sequence of an application varies based on the
type of termination signals [9].

In addition, it is very difficult to analyze irregular termina-
tions, even for a single execution path of an application for cer-
tain inputs since termination signals can be initiated at every
point during the execution of the path resulting in deviations
from the execution path [36]. For example, termination signals
that are initiated during the execution of the third-party’s
instructions could change the application state, resulting in
BASIR. Also, it is very difficult to specify in which sequence
instructions should be executed during the shutdown of an
application. Doing so requires the knowledge of the execution

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

1916

Spot VM 1

A 0
%{ Lq SQL> connect /as sysdba
Shutdown script .
T

RROR: ORA-01089: immediate shutdown in
progress - no operations are permitted.

Spot VM 2

Transaction script

Process 1 l\ [E Process 2
\

A Transaction Information

[SHUTDOWN: waiting for active calls to complete.] Video size | Video file

¢ - - - -4
N

N 1068 | File
_’ m le—" Trans?ctlon status
Database .
Spot VM 3

Fig. 1. An illustrative example of BASIR.

state of an application at any point when this application
receives a termination signal. Furthermore, multiple termina-
tion signals can be initiated during the execution of the shut-
down instructions of an application, leading to a significantly
larger search space.

3.3 lllustrative Example
The BASIR problem with a cloud-based application is illus-
trated in Fig. 1. As discussed in Section 3.2, BASIR results
from two primary sources: shutdown bugs of applications
and spot instance revocations. We show an instance of
BASIR that arises from the interactions between a shutdown
bug of an application, which comes from a real shutdown
bug [5], and the revocation of a spot VM that represents the
normal behavior of spot VMs. Our illustrative example
shows a typical cloud-based application where a cloud-
based application and its artifacts are often replicated across
multiple VMs to improve its fault tolerance and reduce its
network latency. The cloud-based application and its arti-
facts are deployed on three spot VMs, where spot VM 1 con-
tains an Oracle shutdown script that reflects a routine script
for databases in production, spot VM 2 contains a trans-
action script that uploads a video file with a large size (e.g.,
10 GB), and spot VM 3 contains an Oracle database.
Suppose that the Oracle shutdown script in spot VM 1
that runs on a particular process (Process 1) is executed to
terminate the Oracle database that runs in spot VM 3 at the
same time another process (Process 2) in spot VM 2 is hold-
ing the lock on this Oracle database to perform the transac-
tion. Hence, Process 1 will be waiting until Process 2
releases the lock from the Oracle database. However, con-
sider what happens when spot VM 2 is revoked as a part of
the normal behavior of spot VMs while the transaction that
is executed by Process 2 is still ongoing. Since Process 2
does not release the lock before the revocation of spot VM 2,
the Oracle database will hang and consume needlessly
resources until Process 1 determines that Process 2 is gone.
The Oracle database prevents users from performing other
operations (see the error message in the middle of Fig. 1),
since the database is waiting for active calls to be finished
(see the log on the left side of Fig. 1). Furthermore, if the
spot VM 3 that contains the database is also revoked, this
revocation (i.e., an irregular termination of the database)
may not only produce an inconsistent state of various data
or an incorrect state of artifacts in the database but also may
affect the execution of subsequent instances of the database.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Additionally, we point out to multiple real-world bugs
resulting from irregular terminations to shed light on the
effect of spot instance revocations on applications. Irregular
revocations could cause severe bugs, such as EX file system
corruption [37], data loss on Atom editor [38], data loss on
XFS file system [39], data corruption on Docker container
[40], SQLite file corruption [41], database corruption on
Docker [42], and Leveldb database corruption [43]. Also, the
Linux documentations describe that although Linux can
often repair file system corruption due to a power failure,
some situations may require manual interventions to repair
non-recoverable file system issues [44].

3.4 The Problem Statement

With spot instances becoming pervasive, bugs of cloud-
based applications resulting from spot instance revocations
have become a very important concern for cloud customers
(i.e., application’s owners). In this paper, we address a new
and challenging problem of testing the effect of spot instance
revocations on cloud-based applications — how to find bugs of
cloud-based applications that result from spot instance revocations.
Also, Egs. (1) and (2) describe how to search through RAT for
certain execution points (i.e., system calls) to check if the
value t;; of RAT j during the execution of an execution point
1 when a cloud-based application is irregularly terminated
varies from the expected value ¢;; that represents the value of
RAT j during the execution of an execution point ¢ when a
cloud-based application is regularly terminated. Once a dif-
ference b;; is found, this difference is added to the matrix B
of potential BASIR

B:=T-T (1)

0 ty =t}
i = { (tj — b))ty # 1
Vie{l,...,n},Vje{l,...,m},
ty €T, t;eT, bj€B

(2)

Here, T is a matrix of size n x m, n and m designate the
total number of execution points (i.e., system calls) and
RAT, respectively, for regular terminations of a cloud-based
application, ¢;; is the value of RAT j during the execution of
an execution point (i.e., a system call) i when a cloud-based
application is regularly terminated. 7" is another matrix of
size n x m for irregular terminations of a cloud-based appli-
cation, tgj is the value of RAT j during the execution of an
execution point i when a cloud-based application is irregu-
larly terminated. Also, B is another matrix of size n x m for
potential BASIR, b;; is the difference between ¢;; and ¢ i

The root of this major problem is that cloud-based appli-
cations that are exposed to irregular terminations are not
designed or tested to deal with this behavior in the cloud
environment. Thus, when cloud-based applications are
being irregularly terminated, their current state might be
lost, which leads to certain bugs, such as data loss, inconsis-
tent states, performance bottlenecks, hangs, crashes, dead-
locks, or locked resources. On top of poor user experience
from seeing these bugs, other bugs result in situations
where cloud-based applications could not be restarted with-
out manual interventions. As a result, the advantages of

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

cloud spot instances could be significantly minimized or
even entirely negated. To the best of our knowledge,
T-BASIR is the first automated solution to identify instances
of BASIR. BASIR results from two primary sources: shutdown
bugs of applications and spot instance revocations. However,
since spot revocations are unpredictable and cloud-based
applications are not designed or tested to deal with cloud spot
revocations, BASIR is a critical problem for cloud customers,
and T-BASIR is an essential tool to shed light on the effect of
spot instance revocations on cloud-based applications. Thus,
when the number of spot instance revocations or the number
of shutdown bugs of applications increase, the number of
BASIR will likely increase, and vice versa.

Specifically, we use kernel modules to find these bugs
and generate traces of their causes in the source code. With
our solution, developers can analyze the found bugs and
their traces to improve the design of the shutdown process
for cloud-based applications during the testing of these
applications. Automatically finding these bugs is extremely
difficult, in general, especially since a termination signal
can be initiated at every execution state of applications,
leading to a significantly larger search space.

4 SOLUTION

In this section, we introduce KMs, explain why we use KMs,
describe how we utilize KMs in T-BASIR and outline the
architecture and workflow of T-BASIR.

4.1 Why we use Kernel Modules in T-BASIR

A KM is a mechanism for (un)loading some codes into an
operating system at runtime without rebooting the operat-
ing system to extend its functionalities [9]. KMs facilitate
modifying the flow of executions, handling the interruption
of termination signals, and accessing the information of ker-
nel space functions. There are three main reasons for using
KMs rather than modules in the user space. First, using
modules in the user space, it is very difficult to synchronize
between a process of a cloud-based application that per-
forms a specific operation (e.g., write) on certain resources
and a process that sends a termination signal to this applica-
tion. Second, it is very difficult to time the execution of a
particular instruction of a cloud-based application in the
user space because an operating system that runs in the ker-
nel space determines the schedule of executing this instruc-
tion. Third, some termination signals (e.g., SIGKILL) often
invoke the signal handlers in the kernel space instead of the
signal handler in the user space (i.e., a signal handler that is
defined in the source code of a cloud-based application) [9].
In contrast, KMs have complete control over the execution
in the kernel space at runtime. As a result, T-BASIR uses
KMs to ensure termination signals are sent to certain points
in the execution of a cloud-based application and to mea-
sure the impact on the state of RAT at these points of the
execution in order to find BASIR.

4.2 Why we use Synchronization System Calls

in T-BASIR
In general, the synchronization system calls are responsible
for managing the access of shared data objects among
multiple processes (or threads). T-BASIR focuses on the

1917

synchronization system calls since the irregular terminations
of synchronization system calls may negatively affect not only
the state of shared data objects causing bugs (e.g., data loss,
data corruption) but also the state of external processes (or
threads) that run on different instances and interact with the
process of terminated system calls, causing bugs (e.g., dead-
locks and performance bottlenecks). However, although a
write system call is another important type of system call that
is responsible for modifying the value of data objects, the
irregular termination of write system calls may negatively
affect only the modified data objects, causing bugs (e.g., data
loss, data corruption). Thus, the irregular termination of syn-
chronization system calls may cause more bugs that are
related to data objects and processes (or threads) within the
critical section of synchronization system calls, compared to
the irregular termination of the write system calls that may
cause bugs related to only the modified data objects.

4.3 Automating BASIR Detection Using KMs

In T-BASIR, our terminator KM specifies when we send a ter-
mination signal during the execution of cloud-based applica-
tions that mimics the irregular terminations, as discussed in
Section 1. An essential goal is to identify which instructions of
applications are more likely to lead to BASIR in order to send
termination signals during the executions of these instruc-
tions. Given that BASIRs are more likely to be exposed when
instructions use resources to perform certain operations (e.g.,
write) that are often accessed when specific system calls [9]
(e.g., acquire-lock) are invoked, we favor instructions whose
executions access these resources. Our terminator KM sends a
termination signal during the execution of these system calls,
which correspond to specific instructions in the source code.
Our terminator KM uses the number of a system call with
KProbe and JProbe interfaces [9] to intercept the execution of
these system calls and, hence, ensures that a termination sig-
nal is sent to certain points of the execution. In summary, our
terminator KM sends termination signals only during the exe-
cution of these instructions to increase the degree of precision
for finding BASIR. In the RANDOM approach, a termination
signal is sent to any point in the execution of a cloud-based
application. Our hypothesis is that our terminator KM is more
effective than randomly sending termination signals to any
instructions because determining to which instruction a ter-
mination signal should be sent is highly correlated to the
probability of finding BASIR. We verify our hypothesis with
the experimental data in Section 6

n m
B(T,T) = z Z D(tij,tj;) where t € T, t' € T' 3)
=1 =1
0 t;=t.
Y _) 1]

Here, T is a matrix of size n x m, n and m designate the
total number of system calls and RAT, respectively, for reg-
ular terminations of a cloud-based application, ¢;; is the
value of RAT j during the execution of a system call ¢ when
a cloud-based application is regularly terminated. 7" is
another matrix of size n x m for irregular terminations of a
cloud-based application, #;; is the value of RAT j during the
execution of a system call i when a cloud-based application

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

1918

is irregularly terminated. D is the delta function that evalu-
ates the presence of BASIR by comparing the difference
between the value of RAT when a cloud-based application
is regularly terminated and the value of the same RAT
when this application is irregularly terminated during the
execution of the same system call. B is the summation func-
tion that computes the total number of BASIR by analyzing
executions between irregular and regular terminations of a
cloud-based application for m RAT and n system calls.

In T-BASIR, our detector KM determines when irregular
terminations lead to BASIR. We use the values of RAT (e.g.,
variables and artifacts) for cloud-based applications to iden-
tify the presence of BASIR. Initially, we randomly select a set
of system calls of a cloud-based application. Then, we use our
identifier KM to record the values of RAT that are used by
these system calls when a cloud-based application is regularly
terminated. For each system call, we run this application to
collect the values of the RAT when this application is irregu-
larly terminated. Our detector KM uses Eq. (4) to measure the
difference between the value of RAT when the cloud-based
application is regularly terminated and the value of the same
RAT when the cloud-based application is irregularly termi-
nated during the execution of the same system call. We use
the difference operation to evaluate the presence of BASIR by
analyzing executions between irregular and regular termina-
tions, since we assume that running a single execution path of
a cloud-based application for certain inputs multiple times
leads to the same values of the RAT in different runs. When
the value of the RAT after irregular terminations varies from
the expected value of the RAT at the same point in the execu-
tion after regular terminations, it indicates a potential instance
of BASIR. Hence, once a difference is found, the detector KM
uses Eq. (3) to add this difference to the total number of poten-
tial BASIR and collects the traces of this BASIR, as discussed
in Section 4.4. As a result, with T-BASIR, developers can ana-
lyze the found instances of BASIR and their traces to improve
the design of the shutdown process for cloud-based applica-
tions during the testing of these applications.

Algorithm 1. T-BASIR’s Algorithm for Finding BASIR
and Locating Their Causes

1: Inputs: KM Configuration (), Application A
: LoadIdentifierkKMs (())
while A — Terminate do

7T «+— IdentifySyscallRAT(A, ())
end while
: UnloadIdentifierKMs (())
LoadTerminatorDetectorKMs (())
: for each system calliin 7 do

9: foreachRATjin7 do
10: t';; < MeasureSyscallRAT(A, (1)
11: if t” # t,” then

PN TN

12: B—B+1

13: C < collectTraces(t’;;)

14: end if

15: RestoreAppInitialState(A)
16: end for

17: end for

18: UnloadTerminatorDetectorKMs ({))
19: return 5, C

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

T-BASIR is illustrated in Algorithm 1 that contains the
following main phases: (i) send termination signals to cer-
tain system calls of a cloud-based application, and (ii) mea-
sure the impacts on the state of RAT when the cloud-based
application is irregularly terminated during the execution
of these system calls. The algorithm for T-BASIR takes
in the entire set of inputs for the cloud-based application,
its snapshot, and the KM configurations (), containing
the identifier, terminator and detector KMs. Starting from
Step 2, the algorithm loads the identifier KM into an operat-
ing system. In T-BASIR, we use lock system calls, where a
thread locks certain resources to perform read or write oper-
ations. In Steps 3-5, the identifier KM randomly selects a
set of system calls and records the values of RAT that are
used by these system calls when the cloud-based applica-
tion is regularly terminated. In Step 6, the identifier KM is
unloaded from the operating system. In Step 7, the termi-
nator and the detector KMs are loaded into the operating
system. In Steps 8-17, for each system call and RAT, the
algorithm repeatedly runs the snapshot of the cloud-based
application, and then the terminator KM sends a termina-
tion signal to the cloud-based application during the execu-
tion of this system call. For each run, the detector KM uses
Eq. (4) to measure the difference between the value of RAT
when the cloud-based application is regularly terminated
and the value of the same RAT when this application is
irregularly terminated during the execution of the same sys-
tem call. Once a difference is found, the detector KM uses
Eq. (3) to add this difference to the total number of potential
BASIR and collects its traces, as discussed in Section 4.4.
The cycle of Steps 8-17 repeats until the set of system calls is
completed. Finally, in Step 18, the terminator and the detec-
tor KMs are unloaded from the operating system. The found
instances of BASIR and their traces are returned in Step 19
as the algorithm ends.

4.4 Identifying the Causes of BASIR

Tracer KM is at the core of the T-BASIR tracer to identify
the causes of BASIR. We provide an overview and describe
the implementation design of the T-BASIR tracer.

4.4.1 Overview of T-BASIR Tracer

Our goal is to automatically determine specific instructions
in the source code of cloud-based applications that lead to
BASIR when these applications encounter irregular termi-
nations. In order to contrast instructions that lead to BASIR,
we rely on the stack trace approach [45] that can be used to
collect execution traces from the stack in the memory when
a cloud-based application is irregularly terminated. The
stack traces contain a sequence of method calls with corre-
sponding instructions, which often represents the current
point in the execution path. These traces are often difficult
to capture because termination signals can be initiated at
every point in the execution of a cloud-based application,
leading to a significantly larger search space. Hence, exist-
ing tracing tools [45] are not applicable to BASIR because
the stack traces of applications are gone as soon as these
applications are terminated. However, our tracer KM in
T-BASIR can intercept a termination signal before this sig-
nal is delivered to a cloud-based application, as discussed

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

Kernel Space
Tracer KM

Terminator KM
@ deliver signal 1

@ intercept signal
@ send signal |
1

I
@collect stack traces

Traces
Pa rAt 1

[1
_pthread_cond_broadcast+0x2be (ip=00007fb443b0a85e)
_os_event_setP8os_event+0x41 (ip=0000000000f84361)
_srv_release_threads15srv_thread_typem+0x17a (ip=000000000102b95a)
(i
(i

Termination Signal Application

Child Process €

Process A

Parent Process B

Part 2

_logs_empty_and_mark_files_at_shutdownv+0xaeb ip=0000000000f5943b)
_innobase_shutdown_for_mysqlv+0x977 ip=00000000010369f7)

An example of stack traces

Fig. 2. The implementation design of T-BASIR tracer.

in Section 4.4.2. As a result, during application testing,
developers can use these traces to identify corresponding
instructions in the source code that lead to instances of
BASIR.

4.4.2 Implementation Design of the T-BASIR Tracer

The implementation design of the T-BASIR tracer in the
kernel space is illustrated in Fig. 2. The rectangles denote
Terminator KM, Tracer KM, and a cloud-based application
with their processes. The arrows indicate the actions
between these KMs and the cloud-based application, and
the numbers in the circles show the sequence of operations
in the T-BASIR tracer.

Our tracer KM can intercept a termination signal before
this signal is delivered to the cloud-based application
because this application runs inside our tracer KM, as illus-
trated on the right side of Fig. 2 (i.e., this application runs
on a child process of the tracer/parent process). In particu-
lar, when a termination signal is sent (1) to the cloud-based
application, our tracer KM first intercepts (2) this signal to
collect and store (3) the execution traces of the cloud-based
application in files (e.g., text files) and then delivers (4) this
signal to terminate this application.

In general, it is very difficult to time the execution of a
particular instruction of a cloud-based application in the
user space because an operating system that runs in the ker-
nel space determines the schedule of executing this instruc-
tion. Conversely, KMs have complete control over the
execution in the kernel space at runtime. Hence, our tracer
KM modifies the flow of executions through intercepting a
termination signal to collect execution traces from the stack
of a cloud-based application before the application receives
the termination signal. In particular, our tracer KM uses
Libunwind interfaces [46] to generate execution traces from
the stack memory of the cloud-based application. An exam-
ple of stack traces for a cloud-based application (e.g.,
MySQL) is illustrated in the bottom of Fig. 2. The first part
of these traces refers to the sequence of method calls with
corresponding instructions that represents the current point
in the execution path when the cloud-based application is
being irregularly terminated, and the second part of these
traces refers to the methods’ instruction pointers. As a
result, the traces of BASIR can be reviewed by developers
during application testing to identify which instructions in
the execution path may lead to instances of BASIR.

1919
dentifier km 2| Systemcalll | & - G>[BASKR
Systemcall2 [«— <— Traces
—
RAT of regular > a
terminations
| Application |‘&|Terminator KM| @ |Tracerkm
®
RAT of irregular
terminations
Detector KM ® BASIR

Fig. 3. The architecture and workflow of T-BASIR.

4.5 T-BASIR’s Architecture and Workflow

The architecture of T-BASIR is illustrated in Fig. 3. The rec-
tangles indicate components of T-BASIR, the arrows denote
the data flow between components, and the numbers in the
circles show the sequence of processes in the workflow.

The input to T-BASIR is the entire set of inputs for a cloud-
based application that performs specific operations (e.g.,
write) on certain resources (i.e., RAT), which often invoke par-
ticular system calls (e.g., acquire-lock) to use these resources.
Initially, a set of system calls of the cloud-based application is
chosen at random (1). For each system call, RATs are identified
(2), and Identifier KM records (3) the values of RAT that are
used by this system call when the cloud-based application is
regularly terminated. These values of RAT that represent the
expected values of the RAT, as discussed in Section 4.3, are
passed (4) to Detector KM. Terminator KM sends (5) a termina-
tion signal to the cloud-based application during the execution
of each system call. The values of RAT that are used by these
system calls when the cloud-based application is irregularly
terminated are collected (6). The evaluation is evolved using
Terminator KM until the set of system calls is completed (7).

When the values of RAT for all system calls are collected,
these values of RAT are passed (8) to Detector KM. Detector
KM uses Eq. (4) to measure the difference between the value
of RAT when the cloud-based application is irregularly termi-
nated and the expected value of the same RAT when the
cloud-based application is regularly terminated during the
execution of the same system call. When the value of the RAT
after irregular terminations varies from the expected value of
the RAT at the same point in the execution after regular termi-
nations, it indicates a potential instance of BASIR. Then, when
a difference is found, Detector KM uses Eq. (3) to add this dif-
ference to the list of potential BASIR (9). Once the list of poten-
tial BASIR is obtained (10), Tracer KM collects (11) the traces of
BASIR that contain a sequence of method calls with corre-
sponding instructions, as discussed in Section 4.4. The found
instances of BASIR and their traces are given to the developers
for further evaluation (12).

5 EMPIRICAL EVALUATION

In this evaluation section, we state our Research Questions
(RQs), illustrate subject applications, describe our methodol-
ogy to evaluate T-BASIR, and outline threats to its validity.

RQ,: How effective is T-BASIR compared to the random
approach in finding more instances of BASIR?

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

1920

TABLE 2
Overview of the Applications: Their Names Followed by the
Versions of the Applications, and the Total Number of Accessed
Futexes and Their System Calls When These Applications
Restart After Regular Terminations

Application Version Futexes Syscalls
MySQL v5.7.25 58 132
Cassandra v3.0.17 35 138
PostgreSQL v10.6 3 5
CouchDB 02.3.0 25 11920
MongoDB v3.0.6 61 1201
Hbase 0v2.1.2 53 808
Docker v18.09.0 45 1583
Hadoop v3.0.3 34 1716
ZooKeeper v3.4.12 35 910
Hive 02.1.1 32 874

RQ;: How effective is T-BASIR in finding different types of
BASIR?

RQj: Is T-BASIR more effective than the random approach
in causing more impacts on the application behaviors?

5.1 Subject Applications

We evaluated T-BASIR on 10 open-source subject applica-
tions. An overview of the subject applications is shown in
Table 2. These applications are multithreaded, have high pop-
ularity indexes, come from different domains, and are written
by different programmers. The synchronization mechanism
of these applications relies on a futex system call [47], which is
a fast user-space synchronization method that puts specific
threads to sleep/wait or wakes waiting threads when specific
conditions become true. Each critical section in these applica-
tions often uses certain futex variables that are stored in par-
ticular memory addresses and are used by multiple threads to
access this critical section through futex system calls [47].

5.2 Methodology

For each application, we first use the Strace tool [9] to ensure
that its synchronization mechanism relies on futex system
calls. As discussed in Section 4.3, T-BASIR analyzes the val-
ues of the RAT between regular and irregular terminations
at the same point in the execution to identify BASIR. RATs
are the logs of the subject applications, the logs of the Linux
kernel, the number of accessed futexes, and the number of
futex system calls. An application is irregularly terminated
using the RANDOM approach, where a termination signal
is sent to any point in the execution of this application, and
in T-BASIR, where a termination signal is sent to specific
points in the execution of this application (i.e., during the
executions of futex system calls). T-BASIR uses the logs to
identify different types of BASIRs that lead to different
effects on the behaviors of applications to answer RQ; and
RQ,. T-BASIR also identifies other cases of BASIR when
the logs do not contain error messages. For example, T-
BASIR identifies when applications cannot restart without
manual interventions using the process status tool [9]. Also,
we measure the impacts on the behaviors of the subject
applications to answer RQs;. When an application restarts
after irregular terminations, we check if values for the total
number of accessed futexes and their system calls vary from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

TABLE 3
The Comparison of the Results of BASIR for
T-BASIR and RANDOM

Application T-BASIR RANDOM

MySQL
Cassandra
PostgreSQL
CouchDB
MongoDB
Hbase
Docker
Hadoop
ZooKeeper
Hive

X X X X X X <X X X

X SO X SO0 X X

the expected values when this application restarts after reg-
ular terminations for 20 seconds, which is set experimen-
tally. Once a significant change is identified, as discussed in
Section 4.3, T-BASIR adds this change to the total number
of potential BASIR and collects its traces. T-BASIR is imple-
mented using KMs, KProbe, and JProbe interfaces [9]. The
experiments for the subject applications were carried out
using 10 virtual machines. Each subject application was
deployed on Ubuntu 18.04 LTS VM with 4 GB of memory
and 4 GHz CPU. For each application, we created a snap-
shot to ensure a similar state of the test environment after
irregular terminations.

5.3 Threats to Validity

Our implementation of T-BASIR deals with only futex sys-
tem calls, whereas other applications may use different syn-
chronization mechanisms (e.g., semaphore system calls [9]).
While this is a potential threat, it is unlikely a major threat,
since T-BASIR can be adjusted to support other types of syn-
chronization mechanisms. In order to use T-BASIR with
other applications, the developer can change only the system
call type in the KMs so that T-BASIR identifies other types of
system calls.

We experimented with only synchronization system calls,
whereas other types of system calls (e.g., information flow,
creation, preparatory, and termination) could also result in
different effects on the behaviors of applications when these
applications are terminated during the execution of other
types of system calls. In contrast, understanding the effect of
different types of system calls on the behavior of the applica-
tions is beyond the scope of this empirical study and shall be
considered in future studies.

6 EMPIRICAL RESULTS

In this section, we discuss the experimental results to
answer the RQs listed in Section 5.

6.1 Finding More Instances of BASIR

The experimental results to answer RQ; are shown in Table 3
and summarize the found instances of BASIR when the
subject applications encounter irregular terminations using
T-BASIR and RANDOM approaches. We focus on determin-
ing whether these applications restart without manual inter-
ventions after they are irregularly terminated using T-BASIR

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

and RANDOM. The experimental results show that T-BASIR
causes MySQL, CouchDB, MongoDB, HBase, Hadoop, and
ZooKeeper not to restart without manual interventions,
whereas the RANDOM approach causes only CouchDB to
not restart without manual interventions. Our explanation is
that the RANDOM approach was able to cause CouchDB not
to restart without manual interventions, since CouchDB uses
an extremely high number of futex system calls, as shown in
Table 2. Hence, the RANDOM approach may accidentally hit
these futex system calls, resulting in an instance of BASIR.

On the other hand, T-BASIR was not able to cause Post-
greSQL, Cassandra, Docker, and Hive not to restart without
manual interventions. Our explanation is that PostgreSQL uses
an extremely low number of futex system calls as shown in
Table 2. This situation puts T-BASIR at a disadvantage to find
BASIRs since causing BASIR often requires more interactions
among threads that often occur when a large number of futex
system calls are executed. Cassandra runs on Java processes
using a Java Virtual Machine (JVM), and T-BASIR uses Java
processes instead of the application name processes (i.e., Cas-
sandra) to specify the desired process of an application for
receiving termination signals. Subsequently, JVM may play
some roles in reducing the effect on Cassandra since Cassandra
receives termination signals through the JVM. Docker uses the
resource isolation features for the kernel. T-BASIR uses KMs
to send termination signals to the process of the subject applica-
tions. Hence, these features may play some roles in reducing
the effect on Docker when Docker receives termination signals.
Even though the Hive server restarts after irregular termina-
tions using T-BASIR, its HCatalog component fails to restart.
This observation allows us to conclude that even though irreg-
ular terminations may not show an impact on the restart state
of an application, it does not mean that the other components
of this application have no impacts too. In summary, our
results show that T-BASIR causes six subject applications not
to restart without manual intervention, whereas the RANDOM
approach causes only one subject application not to restart
without manual intervention, thus positively addressing RQ; .

6.2 Finding Different Types of BASIR

When we investigate RQ,, we observe that unlike the RAN-
DOM approach, T-BASIR leads to other types of BASIR. Since
we are more familiar with the MySQL components, we further
analyze and discuss the effects of other types of BASIR for
MySQL. We observe that the logs of MySQL report the follow-
ing message. [Note] InnoDB: page_cleaner: 1000 ms
intended loop took 848417ms [11]. The message shows
that the page_cleaner method that is responsible for
writing data from memory into the disk takes a very long
time from 1 second, which is expected, to 848 seconds
(~14 minutes). This result demonstrates a major problem,
since it results in not only performance bottlenecks but also
data loss. We analyze the effect of data loss by creating a vir-
tual machine with 1 GB of memory, and we use MySQLlap
client to perform large write operations (e.g., inserting
hundreds of records) using multiple threads. We then load
T-BASIR into the operating system to send the termination
signals during the execution of these system calls. Interest-
ingly, we observed that once MySQL restarts, the recently
written data is lost. This bug is also reported on the following

1921
- B REGULAR RANDOM E T-BASIR
60 H \
-]
8 s0 EN
3 N
2 40 H :
% £\
8 3 =N\
£ =N\
=] M
Z 20 BN
=\
0 =\
EN
0 =] =\
o o % K & @&
g & & O L& & P P &
& (o) S RY o X @)) @ N
- Oo‘? Qoé [ox V‘\o(\ R oo Fa ,\95" X

Fig. 4. The comparison of the total number of accessed futexes for regu-
lar and irregular terminations.

web page [6]. Also, we observed the following error message:
[ERROR] InnoDB: Unable to lock ./ibdatal error:
1 [11]. The error message shows that T-BASIR prevents
MySQL from performing a clean shutdown and hence results
in locked ibdatal, which is a file that includes the shared table-
space containing the internal data of InnoDB. Unlike the RAN-
DOM approach, T-BASIR also leads to other types of BASIR,
such as performance bottlenecks, data loss, and locked resour-
ces. This result confirms that T-BASIR also results in different
types of BASIR, compared to the RANDOM approach, thus
positively addressing RQ5. As a result, when irregular termina-
tions result in BASIR, T-BASIR collects the traces that contain
a sequence of method calls with corresponding instructions,
as discussed in Section 4.4. Hence, developers can use these
traces to improve the design of the shutdown process for the
subject applications during the testing of these applications.

6.3 Impact of T-BASIR on the Behaviors

of Applications

The results of the experiments are presented in the histogram
plotin Fig. 4 that summarizes the number of accessed futexes
for the subject applications when these applications restart
after regular and irregular terminations using T-BASIR and
RANDOM approaches. These futexes often control the
access of shared resources in critical sections across various
threads/processes of an application. Different futexes often
correspond to different execution paths since these futexes
control the access of critical sections in different methods of
an application. We observe that the number of accessed
futexes varies between regular and irregular terminations
using T-BASIR and RANDOM approaches. This observa-
tion suggests that the execution paths between regular and
irregular terminations of an application change where newly
accessed futexes (i.e., extra futexes) may have been accessed
in the recovery execution paths, or other futexes that are
often used during the execution of the application startup
may not have been accessed (i.e., missing futexes) [36]. We
observe that, except for Docker, most numbers of accessed
futexes when applications are irregularly terminated using
T-BASIR are lower than the number of accessed futexes
when applications are regularly terminated or irregularly
terminated using the RANDOM approach. A higher change
in the number of accessed futexes often indicates a higher
change in the execution paths when an application restarts

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

S5 o
0

o
nns
Y72 7777777777777777]

o

PostgreSQL| CouchDB | MongoDB HIVE

Fig. 5. The horizontal stripes, diagonal stripes, and dotted bars represent
the change of accessed futexes between RANDOM and REGULAR, T-
BASIR and REGULAR, and T-BASIR and RANDOM approaches,
respectively. The plus and minus symbols specify extra and missing
futexes, respectively.

after regular and irregular terminations. Further details
about the results for all applications are shown in Fig. 5,
where the number of extra and missing futexes are provided.
Interestingly, we observe that there is a change in the number
of accessed futexes between T-BASIR and RANDOM
approaches, which suggests when an application encounters
irregular terminations using different approaches, it often
leads to different execution paths for the application. Hence,
this observation confirms that the change in the execution
paths not only indicates the recovery execution paths but
also indicates other execution paths that may result in instan-
ces of BASIR [36]. As a result, these experimental results
demonstrate that when applications encounter irregular ter-
minations using different approaches, it often leads to differ-
ent execution paths, which result in different impacts on the
behaviors of these applications.

To investigate RQ; further, we present the change in the
number of futex system calls for CouchDB in Table 4 when
this application restarts after regular and irregular termina-
tions using T-BASIR and RANDOM. The experimental
results for other applications can be found in appendix (see
the supplemental file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2020.2980265). We assume that running
recovery execution paths of an application multiple times
leads to the same values of the futex system calls for certain
futexes in different runs. Hence, when the number of these
futex system calls of an application after irregular termina-
tion using T-BASIR varies from the number of these futex
system calls of this application after irregular termination
using the RANDOM approach, it suggests the former recov-
ery execution paths deviate from the latter recovery execu-
tion paths, which often indicates different impacts on the
behaviors of this application. In particular, we observe that
the number of futex system calls when CouchDB is irregu-
larly terminated using T-BASIR, except for a few futexes, is
often greater than the number of futex system calls when
CouchDB is regularly terminated or irregularly terminated
using the RANDOM approach. This result suggests that
irregular terminations that are initiated by T-BASIR often
lead to more impacts on the behaviors of applications com-
pared to the RANDOM approach, since the higher number
of futex system calls indicates not only more thread

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

TABLE 4
The Comparison of the Total Number of Futex System Calls for
CouchDB After Regular and Irregular Terminations

Address REGULAR RANDOM T-BASIR
0x12c8 3 0 0
0x0190 400 512 522
0x01d0 417 516 528
0x0210 396 518 526
0x0250 409 506 518
0x0290 414 522 530
0x02d0 412 512 528
0x0310 397 526 534
0x0350 402 518 528
0x0390 449 578 584
0x03d0 403 520 532
0x0410 405 522 538
0x0450 392 523 530
0x0490 563 705 686
0x04d0 396 520 528
0x0510 391 506 507
0x0550 382 514 522
0x0590 6 8 10
0x05d0 11 15 13
0x0610 5245 3402 3315
0xdf78 3 3 0
0xf7£8 3 6 3
0x95c8 19 5 9
0x95c¢c 1 1 1
0x9660 1 1 1

contentions but also a higher chance of locked resources.
Interestingly, we observe that a futex with the last four dig-
its of the memory address 020610 for CouchDB has a signifi-
cant decrease in the number of its futex system calls
between regular and irregular terminations, which suggests
some threads that use this futex may be prevented (.e.,
locked) from reaching this point in the execution.

Finally, we also observe that a futex with the last four digits
of the memory address of 020020 appears in extra futexes
across different applications, such as Hadoop, HBase, and
Hive, when they are restarted after irregular terminations.
This observation suggests that this futex is invoked by recov-
ery instructions of JVM, which is also reported on the collected
traces of these applications [11]. Hence, fixing these recovery
instructions of JVM will reduce or even eliminate the number
of BASIR for all applications that rely on JVM. In summary,
these experimental results demonstrate that T-BASIR not
only results in different impacts on the behaviors of these
applications but also leads to more impacts on the behaviors
of these applications compared to the RANDOM approach,
thus positively addressing RQs. As a result, when certain futexes
result in significant changes in the behavior of applications,
the traces of these futexes can be reviewed by developers to
analyze how the changes of these futexes and their traces may
lead to instances of BASIR.

7 CONCLUSION AND FUTURE WORK

We addressed a new and challenging problem for cloud-
based applications that results from spot instance revoca-
tions. We proposed a novel solution to automatically find
Bugs of cloud-based Applications that result from Spot

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2980265
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2980265

ALOURANI ET AL.: T-BASIR: FINDING SHUTDOWN BUGS FOR CLOUD-BASED APPLICATIONS IN CLOUD SPOT MARKETS

instance Revocations (BASIR) and to locate their causes in
the source code. We developed our solution for Testing the
BASIR (T-BASIR), and we evaluated it using 10 popular
open-source applications. The results show that T-BASIR
finds more instances of BASIR and different types of BASIR,
such as performance bottlenecks, data loss and locked
resources, and applications that cannot restart, compared to
the Random approach. With T-BASIR, developers can ana-
lyze the traces of BASIR to improve the design of the shut-
down process for cloud-based applications during their
testing and, hence, to gain the advantage of cloud spot
instances in the cloud. This enables stakeholders to economi-
cally deploy their applications on the cloud spot instances.
To the best of our knowledge, T-BASIR is the first auto-
mated solution to find bugs of cloud-based applications
resulting from spot instance revocations.

In the future, we plan to investigate the following research
directions to extend our work.

e Exploring the Impact of other Types of System Calls. We
plan to study the effect of I/O system calls that are
responsible for reading/writing data from/to stor-
age on applications when these applications are
irregularly terminated during the execution of 1/O
system calls. For example, we will test the irregular
termination of sync system calls that are responsible
for synchronizing cached writes from volatile buffers
to non-volatile buffers (i.e.,, persistent storage) to
ensure that changes on volatile buffers are success-
fully flushed and committed to persistent storages
on an irregular revocation. When sync system calls
(i.e., fsync) are interrupted, due to irregular termina-
tion, we expect that cached writes in volatile buffers
will likely not be committed to non-volatile storage,
causing data loss. Another example of I/O system
calls is write system calls. Let us suppose that con-
current write system calls are executed by separate
processes/threads writing into a single buffer. How-
ever, consider what happens when one of these write
system calls is interrupted by irregular termination.
These processes/threads may not put all the data in
a row, which causes data corruption.

e Building Reliable Applications against Revocations. We
plan to build revocation-robust applications in cloud
spot markets to reduce the number of BASIR when
these applications encounter irregular terminations.
In particular, our goal is to optimize the design of
the shutdown sequence for these applications using
certain specifications that describe the shutdown
sequence. These specifications can be defined based
on the developers’ recommendations of the found
instances of BASIR or common design flaws in the
applications” shutdown process (i.e., bug reports in
code repositories, as discussed in Section 3.3). For
example, applications should make their buffered
writes short (i.e., reducing the dirty data buffer
time), and applications should first flush the primary
data of applications in volatile buffers and then flush
the secondary data of these applications (e.g., log
files) in volatile buffers. Also, partitions used in
applications should be mounted as read-only and

1923

temporary remounted as read and write during the
write operations. However, if an irregular termina-
tion occurs during the write operations, partitions
should be remounted as read-only, which will likely
force flushing volatile-buffers faster, and additional
writes to volatile buffers should be blocked. Hence,
closing files that are opened for writing may reduce
the negative effect on these files due to irregular ter-
minations, whereas files that are open for reading
will likely not be affected by irregular terminations.
In general, applications should operate based on the
magnitude of the termination interval to determine
whether buffered writes can be stored in permanent
stores, and they should also indicate whether the
shutdown process is completed successfully. Finally,
although such specifications cannot guarantee
BASIR-free applications, they will likely reduce the
number of BASIR when these applications encounter
irregular terminations.

o Comparing the Execution Time for Different Approaches.
We plan to present the comparison results of the exe-
cution time for T-BASIR and RANDOM approaches
in future works. The comparison results of the execu-
tion time require us to set up 10 virtual machines for
10 subject applications and rerun all experiments for
both approaches.

REFERENCES

[1] A. Alourani, M. A. N. Bikas, and M. Grechanik, “Search-based
stress testing the elastic resource provisioning for cloud-based
applications,” in Proc. 10th Int. Symp. Search-Based Softw. Eng.,
2018, pp. 149-165. [Online]. Available: https://doi.org/10.1007/
978-3-319-99241-9 7

[2] AWS, “Amazon EC2 spot instances,” 2020. [Online]. Available:
https:/ /aws.amazon.com/ec2/spot/

[3] P.Sharma,S. Lee, T. Guo, D. E. Irwin, and P. J. Shenoy, “SpotCheck:
Designing a derivative laaS cloud on the spot market,” in Proc. 10th
Eur. Conf. Comput. Syst., 2015, pp. 16:1-16:15. [Online]. Available:
https:/ /doi.org/10.1145/2741948.2741953

[4] B. Sharma, R. K. Thulasiram, P. Thulasiraman, and R. Buyya,
“Clabacus: A risk-adjusted cloud resources pricing model using
financial option theory,” IEEE Trans. Cloud Comput., vol. 3, no. 3,
pp- 332-344, Third Quarter 2015.

[5] D. Burleson, “Fix hanging shutdown: Waiting for active calls to
complete,” 2020. [Online]. Available: http:/ /www.dba-oracle.com/
t_hanging shutdown_waiting for_active tasks to_complete.htm

[6] M.Maikeld, “Move the InnoDB doublewrite buffer to flat files,” 2020.
[Online]. Available: https:/ /jira.mariadb.org /browse/MDEV-11659

[7] S. Shastri and D. E. Irwin, “Cloud index tracking: Enabling pre-
dictable costs in cloud spot markets,” in Proc. ACM Symp. Cloud
Comput., 2018, pp. 451-463. [Online]. Available: https://doi.org/
10.1145/3267809.3267821

[8] J.Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram,
“Finding crash-consistency bugs with bounded black-box crash
testing,” in Proc. 13th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2018, pp. 33-50. [Online]. Available: https://www.usenix.
org/conference/o0sdil8/presentation/mohan

[9] . Keniston, “The Linux kernel documentation,” 2020. [Online].
Available: https:/ /www.kernel.org/

[10] T-basir code on github, 2020. [Online]. Available: https://github.
com/Abdullah-687/T-BASIR

[11] Our source code and experimental data, 2020. [Online]. Available:
https:/ /www.dropbox.com/s/0z4qndkvbdwkzhu/T-BASIR zip?dl=0

[12] A. Alourani, A. D. Kshemkalyani, and M. Grechanik, “Testing for
bugs of cloud-based applications resulting from spot instance revoca-
tions,” in Proc. 12th IEEE Int. Conf. Cloud Comput., 2019, pp. 243-250.
[Online]. Available: https://doi.org/10.1109/CLOUD.2019.00050

[13] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot
instance market,” in Proc. IEEE INFOCOM, 2012, pp. 190-198.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978-3-319-99241-9_7
https://doi.org/10.1007/978-3-319-99241-9_7
https://aws.amazon.com/ec2/spot/
https://doi.org/10.1145/2741948.2741953
http://www.dba-oracle.com/t_hanging_shutdown_waiting_for_active_tasks_to_complete.htm
http://www.dba-oracle.com/t_hanging_shutdown_waiting_for_active_tasks_to_complete.htm
https://jira.mariadb.org/browse/MDEV-11659
https://doi.org/10.1145/3267809.3267821
https://doi.org/10.1145/3267809.3267821
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.kernel.org/
https://github.com/Abdullah-687/T-BASIR
https://github.com/Abdullah-687/T-BASIR
https://www.dropbox.com/s/0z4qndkv6dwkzhu/T-BASIR.zip?dl=0
https://doi.org/10.1109/CLOUD.2019.00050

1924

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

R. Wolski, J. Brevik, R. Chard, and K. Chard, “Probabilistic guaran-
tees of execution duration for amazon spot instances,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2017, Art. no. 18.

W. Voorsluys and R. Buyya, “Reliable provisioning of spot instan-
ces for compute-intensive applications,” in Proc. IEEE 26th Int.
Conf. Adv. Inf. Netw. Appl., 2012, pp. 542-549.

S. Subramanya, T. Guo, P. Sharma, D. E. Irwin, and P. J. Shenoy,
“Spoton: A batch computing service for the spot market,” in Proc.
6th ACM Symp. Cloud Comput., 2015, pp. 329-341. [Online]. Avail-
able: https://doi.org/10.1145/2806777.2806851

Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon,
“Smart spot instances for the supercloud,” in Proc. 3rd Workshop
CrossCloud Infrastructures Platforms, 2016, Art. no. 5.

M. Zafer, Y. Song, and K.-W. Lee, “Optimal bids for spot VMs in a
cloud for deadline constrained jobs,” in Proc. IEEE 5th Int. Conf.
Cloud Comput., 2012, pp. 75-82.

B. Javadi, R. K. Thulasiramy, and R. Buyya, “Statistical modeling
of spot instance prices in public cloud environments,” in Proc. 4th
IEEE Int. Conf. Utility Cloud Comput., 2011, pp. 219-228.

A.Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ML elasticity through tiered reliability in dynamic
resource markets,” in Proc. 12th Eur. Conf. Comput. Syst., 2017,
pp- 589-604.

S.Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instan-
ces via checkpointing in the amazon elastic compute cloud,” in
Proc. IEEE 3rd Int. Conf. Cloud Comput., 2010, pp. 236-243.

S. Shastri and D. Irwin, “HotSpot: Automated server hopping in
cloud spot markets,” in Proc. Symp. Cloud Comput., 2017, pp. 493-505.
S. Tang, J. Yuan, and X.-Y. Li, “Towards optimal bidding strategy
for amazon EC2 cloud spot instance,” in Proc. IEEE 5th Int. Conf.
Cloud Comput., 2012, pp. 91-98.

C. Wang, Q. Liang, and B. Urgaonkar, “An empirical analysis of
amazon EC2 spot instance features affecting cost-effective reso-
urce procurement,” ACM Trans. Model. Perform. Eval. Comput.
Syst., vol. 3, no. 2, 2018, Art. no. 6.

P.Sharma, D. E. Irwin, and P. J. Shenoy, “Portfolio-driven resource
management for transient cloud servers,” in Proc. ACM SIGMET-
RICS | Int. Conf. Meas. Model. Comput. Syst., 2017, Art. no. 59.
[Online]. Available: https:/ /doi.org/10.1145/3078505.3078511

B. Chelf, D. R. Engler, and S. Hallem, “How to write system-specific,
static checkers in metal,” in Proc. ACM SIGPLAN-SIGSOFT Workshop
Program Anal. Softw. Tools Eng., 2002, pp. 51-60.

S. Thummalapenta and T. Xie, “Alattin: Mining alternative pat-
terns for detecting neglected conditions,” in Proc. IEEE/ACM Int.
Conf. Automated Softw. Eng., 2009, pp. 283-294.

A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 78-88.

PMD, “An extensible cross-language static code analyzer,” 2020.
[Online]. Available: http://pmd.sourceforge.net

Z.Liand Y. Zhou, “PR-Miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code,”
ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 306-315, 2005.

S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller,
“Predicting faults from cached history,” in Proc. 29th Int. Conf.
Softw. Eng., 2007, pp. 489-498.

FindBugs, “Findbugs documents and publications,” 2020. [Online].
Auvailable: http:/ /findbugs.sourceforge.net/ publications.html

T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler, “From
uncertainty to belief: Inferring the specification within,” in Proc.
7th Symp. Operating Syst. Des. Implementation, 2006, pp. 161-176.

E. Giger, M. D’ Ambros, M. Pinzger, and H. C. Gall, “Method-level
bug prediction,” in Proc. ACM-IEEE Int. Symp. Empir. Softw. Eng.
Meas., 2012, pp. 171-180.

Q. Liang, C. Wang, and B. Urgaonkar, “Spot characterization:
What are the right features to model,” in Proc. Int. Workshop Syst.
Analytics Characterization, 2016. [Online]. Available: https:/ /sites.
google.com/site/sacconference2016/submission

D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt, “Wrong path
events: Exploiting unusual and illegal program behavior for early
misprediction detection and recovery,” in Proc. 37th Annu. Int.
Symp. Microarchit., 2004, pp. 119-128.

Juniper, “Ex file system corruption,” 2020. [Online]. Available:
https:/ /kb.juniper.net/InfoCenter/index?page=content&id=KB20570
P. Musubi, “Data loss on atom editor,” 2020. [Online]. Available:
https://github.com/atom/atom/issues/11406

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

D. Lebedev, “Data loss on XFS file system,” 2020. [Online]. Available:
https:/ /superuser.com/questions /84257 /xfs-and-loss-of-data-when-
power-goes-down

C. Patry, “Data corruption on docker container,” 2020. [Online].
Available: https:/ /github.com/scality /cloudserver/issues /662

B. Duddridge, “SQLite file corruption,” 2020. [Online]. Available:
https://github.com/couchbase/couchbase-lite-ios /issues /1482
R. Fay, “Database corruption on docker,” 2020. [Online]. Avail-
able: https:/ /github.com/drud/ddev/issues /748

Benny, “LevelDB database corruption,” 2020. [Online]. Available:
https://github.com/google/leveldb/issues/733.

S. Frampton, “File system corruption after power outage or sys-
tem crash,” 2020. [Online]. Available: https://www.tldp.org/
LDP/lame/LAME/linux-admin-made-easy/crash-repair.html

L. Moreno, J.]. Treadway, A. Marcus, and W. Shen, “On the use of
stack traces to improve text retrieval-based bug localization,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2014, pp. 151-160.

D. Watson, “Libunwind documentation,” 2020. [Online]. Avail-
able: https://www.nongnu.org/libunwind /docs.html

H. Franke, R. Russell, and M. Kirkwood, “Fuss, futexes and fur-
wocks: Fast userlevel locking in Linux,” in Proc. AUUG Conf., 2002,
pp- 479-495.

Abdullah Alourani (Student Member, |EEE)
received the bachelor's degree in computer sci-
ence from Qassim University, Buraydah, Saudi
Arabia, and the master’'s degree in computer sci-
ence from DePaul University, Chicago, lllinois. He
is currently working toward the PhD degree in the
Department of Computer Science, University of Illi-
nois at Chicago, Chicago, lllinois. His current
research interests include the areas of cloud com-
puting, distributed systems, and software engineer-
ing. He is a student member of the ACM.

Ajay D. Kshemkalyani (Senior Member, IEEE)
received the BTech degree in computer science
from the Indian Institute of Technology, Bombay,
Mumbai, Maharashtra, India, in 1987, and the PhD
degree in computer science from the Ohio State
University, Columbus, Ohio, in 1991, respectively.
He is currently a professor with the Department of
Computer Science, University of lllinois at Chicago.
His research interests include distributed comput-
ing, computer networks, and concurrent systems.
In 1999, he received the US National Science

Foundation Career Award. He has served on the editorial board of the
Elsevier Journal Computer Networks, and the IEEE Transactions on Paral-
lel and Distributed Systems. He has coauthored a book entitled Distributed
Computing: Principles, Algorithms, and Systems (Cambridge University
Press, 2011). He is a distinguished scientist of the ACM.

Mark Grechanik (Senior Member, IEEE) received
the PhD degree in computer sciences from the Uni-
versity of Texas at Austin, Austin, Texas. He is
currently an associate professor with the Depart-
ment of Computer Science, University of lllinois at
Chicago. He has served as a member of ACM
SigSoft Executive Committee since 2009. His
research area is software engineering in general,
with particular interests in software testing, evolu-
tion, and reuse. He is also interested in problems
that lie at the intersection of software engineering

and data privacy. He has a unique blend of strong academic background
and long-term industry experience. He is a senior member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 23:06:52 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/2806777.2806851
https://doi.org/10.1145/3078505.3078511
http://pmd.sourceforge.net
http://findbugs.sourceforge.net/publications.html
https://sites.google.com/site/sacconference2016/submission
https://sites.google.com/site/sacconference2016/submission
https://kb.juniper.net/InfoCenter/index?page=content&id=KB20570
https://github.com/atom/atom/issues/11406
https://superuser.com/questions/84257/xfs-and-loss-of-data-when-power-goes-down
https://superuser.com/questions/84257/xfs-and-loss-of-data-when-power-goes-down
https://github.com/scality/cloudserver/issues/662
https://github.com/couchbase/couchbase-lite-ios/issues/1482
https://github.com/drud/ddev/issues/748
https://github.com/google/leveldb/issues/733.
https://www.tldp.org/LDP/lame/LAME/linux-admin-made-easy/crash-repair.html
https://www.tldp.org/LDP/lame/LAME/linux-admin-made-easy/crash-repair.html
https://www.nongnu.org/libunwind/docs.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

