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Abstract—Causality tracking among events is a fundamental challenge in distributed environments. Much previous work on this subject

has focused on designing an efficient and scalable protocol to represent logical time. Several implementations of logical clocks have been

proposed,most recently the Encoded Vector Clock (EVC), a protocol to encode Vector Clocks (VC) in scalar numbers through the use of

prime numbers, to improve performance and scalability.We propose and formalize the concept ofResettable Encoded Vector Clock

(REVC), a new logical clock implementation, which builds on the EVC to tackle its very high growth rate issue.We show howour REVCcan

be applied in both sharedmemory systems andmessage passing systems to achieve a consistent logical clock.We show, through

practical examples, the advantage of REVC’s growth rate with respect to EVC’s growth rate. Finally, we show a practical application of the

REVC to the dynamic race detection problem inmulti-threaded environments.We compare our tool to the currently existing VC-based tool

DJITþ to show how the REVC can help in achieving higher performancewith respect to the Vector Clock.

Index Terms—Causality, vector clock, prime numbers, encoding, dynamic race detection, clock reset protocol, performance
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1 INTRODUCTION

A FUNDAMENTAL concept in distributed systems is
that of tracking causality among events that occur at dif-

ferent processes in the system [1], [2]. The causality relation
between events is given by Lamport’s happens-before operator
[3] (represented as!). On a single-threaded process, causal-
ity can be tracked by means of attaching a timestamp to each
event, thus establishing a precedence relation among them.
However, this problem becomes much harder to solve in a
multi-threaded or multi-processor environment, as concur-
rency among threads and processes depends on their relative
speed and can therefore change at any different execution.
Consequently, a timestamp from a global clock is not suffi-
cient to correctly track causality relations among events. Fur-
thermore, in a multi-processor system, global time is not
even available unless processors’ clocks are tightly synchro-
nized (which is not achievable in real systems). Therefore, a
different notion of time and causality becomes necessary for
such environments. One solution to the problem is to substi-
tute the physical time with logical time [2], given by a logical
clock at each thread or process.

Several implementations of logical clocks have been pro-
posed, such as Scalar Clock [3], Vector Clock (VC) [4], [5], and
Encoded Vector Clock (EVC) [6], [7]. The scalar clock has the
drawback that causality between events cannot be inferred

from the timestamps of events. The vector clock allows such
inference, but it requires each process to maintain a vector
of size equal to the number of processes, and this has been
shown to be a lower bound [8]. The EVC is a technique to
represent a Vector Clock using a single scalar number, to
improve scalability of the VC and it is based on the use of
prime numbers to achieve such encoding. The main draw-
back of the EVC has been shown to be the extremely high
growth rate which quickly causes an overflow at the loca-
tions that are storing the EVC values [9].

In this paper, we propose and formalize the concept of
Resettable Encoded Vector Clock (REVC), a new logical clock
implementation, which builds on the EVC to reduce its
growth rate and, under given conditions, place an upper
bound on its storage requirements, while maintaining the
desirable properties of the EVC. The basic idea of the REVC
is that a process can unilaterally and asynchronously reset its
EVC when the EVC value overflows, i.e., reaches a predeter-
mined fixed number of bits in size. We give the basic opera-
tions of the REVC (tick, merge, and compare) and then we
show how our REVC can be applied in both shared memory
systems andmessage passing systems to achieve a consistent
logical clock. We prove that the REVC’s growth rate is linear
in the number of events executed, as opposed to the expo-
nential growth rate of the EVC. We show, through practical
examples, the advantage of REVC’s growth rate with respect
to EVC’s growth rate.We then give a bounded growth imple-
mentation of the REVC, called Fixed Size Frame Window
(FSFW), that is applicable whenever a contract between the
application and the system is satisfied. We then give the Dif-
ferential Merge Technique (DMT) optimization that further
reduces the cost of themerge operation of the REVC.

We then show a practical application of the REVC to
the dynamic race detection problem in multi-threaded
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environments using the RoadRunner [10] dynamic analysis
framework. We compare our tool to the currently existing
VC-based toolDJITþ [11] to show how the REVC can help in
achieving higher performance with respect to the VC. For
the range of applications tested, our REVC approach
achieves an average speedup of 1.6 over theDJITþ tool.

Our results show how the REVC is not just a theoretical
concept, but it is applicable to practical problems and can
compete in terms of both space and time requirements with
other known protocols. The REVC has been designed with
scalability and adaptability in mind. Its formulation con-
tains several intrinsic tradeoffs that can be easily tuned by
enabling or disabling optimization techniques, and choos-
ing between bounded and unbounded implementations.
These configurations provide the REVC with a much higher
adaptability to very different scenarios, which cannot be
found in other logical clock implementations.

In Section 2 we detail previous and related work that has
been carried out on logical clocks and on dynamic race detec-
tion. In Section 3 we present the models for the shared mem-
ory systems and message passing systems on which we
apply our Resettable Encoded Vector Clock. In Section 4 we
detail the components and rules for the REVC. In Section 5
we give an analysis of the growth rate of REVC alongwith its
evaluation with respect to the EVC. We also propose the
FSFW bounded growth rate framework and the DMT opti-
mization. Section 6 shows a practical application of the
REVC to the dynamic race detection problem and the perfor-
mance results. Finally, in Section 7, we conclude our work.

2 RELATED WORK

Several logical clock implementations have been proposed
in the literature such as Scalar Clock [3], Vector Clock [4],
[5] and the EVC [6], [7] on which our protocol is based. The
first is a lightweight, simple and efficient system to track
causality through the use of scalars, but it does not allow to
obtain the causality relation from the timestamps (no strong
consistency). The Vector Clock achieves the property of
strong consistency, at the expense of scalability and perfor-
mance. It is based on keeping at each process an array of
size equal to the number of processes in the system, and in
the general case, this is a lower bound [8]. The ith compo-
nent of such array at process x denotes the value of the sca-
lar clock of process i as known by process x at that time.
Several works in the literature attempted to reduce the size
of the Vector Clock [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], but they had to make some compro-
mises in accuracy, and/or had limited applicability, and/or
had to alter the system model, and in the worst-case, were
as lengthy as the Vector Clock. We review these next.

A mechanism to reduce the size of the vector timestamp
piggybacked on messages sent over FIFO channels was
given in [12]. The local storage for vector clocks is not
decreased. For applications where it is important to deter-
mine the causality between two messages sent to a common
destination, a mechanism to reduce the size of the vector
timestamp was given [13]. This mechanism cannot capture
causality between all possible pairs of events. Plausible
clocks are approximation clocks that use fewer entries in
their vector than vector clocks [14]. Plausible clocks show

false positives (but no false negatives) and thus compromise
accuracy. The scheme in [15], [16] requires processes to be
organized as a hierarchy of clusters. Two types of time-
stamps are maintained–short internal timestamps for (send)
events that occur from within the same cluster and longer
external timestamps for send events that occur from outside
the cluster. A receive event in a cluster corresponding to a
send event outside the cluster is termed a cluster-receive
event. This scheme allows a trade-off between the size of
the cluster, the number of cluster-receives, and the size of
the cluster-receive timestamp. This scheme has limited
applicability.

In data stores, dotted version vectors [17] improve on
version vectors (which are based on vector clocks) by using
size proportional to the number of servers rather than num-
ber of clients. This idea is orthogonal to our work and is
applicable to data storage systems. In dynamic settings
where the number of processes varies with time, interval
tree clocks [18] allow the size of the vector clock to also
dynamically adjust to the number of processes. This is an
orthogonal idea to our work.

Logical physical clocks combine physical clocks (such as
NTP) with logical clocks [19], [20]. This scheme deals only
with weak causality, i.e., a ! b ¼) Clocka < Clockb, and is
meant for applications where only weak causal relations in
the immediate past are relevant. In [21], a scheme to reduce
the size of vector timestamps is given; this scheme is appli-
cable when not all processes communicate to each other
and when the assignment of a timestamp to an event is
deferred for a suitably determined period of time. In multi-
threaded systems, the size of the vector clock is either the
number of threads or the number of objects. It was shown
that when the thread-object bipartite graph of an execution
has low density, a vector clock of size less than the number
of threads and less than the number of objects can be used
[22]. Bloom clocks which are based on Bloom filters reduce
the size of vector clocks but show false positives, and thus
compromise accuracy [23], [24].

The EVC is an encoding of the VC using prime numbers,
which results in the use of one single scalar number, thus
allowing for higher scalability while maintaining strong
consistency [6], [7], [25]. The EVC, initialized to 1 at each
process, is characterized by three main operations.

1) the first is the local tick (denoted T) and is used to
increment the value of the clock. This is achieved by
multiplying the current value by the current process’
unique prime number.

2) The second operation is used to merge (denoted M)
two clock values and requires to perform the least
common multiple operation (LCM) between the two
values.

3) Finally, the comparison operation (denoted C) allows
to establish the causal relation between events a and b
as given by Lamport’s happens-before operator [3] (rep-
resented as !). Such operation can be described as
½a ! b , EVCa < EVCb ^EVCb mod EVCa ¼¼ 0�.

The main drawback of the EVC has been shown to be the
extremely high growth rate which quickly causes an overflow
at the locations that are storing the EVC values [9]. By relying
on multiplications and least common multiple operations, EVC
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values grow at an exponential rate, which can quickly require
a very large number of bits in order to be able to represent it,
and therefore store it. Despite this, the EVChas found a practi-
cal application to detect memory consistency errors in MPI
one-sided applications [26], [27], due to the use of resets at
global barrier synchronizations. The EVC was also used to
detect weak conjunctive predicates in distributed systems
[25]. The idea of resetting the EVCwhen it overflowswas sug-
gested in [6], [7], [25] but the details were not given. Other
techniques to slow the growth of the EVC suggested in [6],
[7], [25] include: ticking only at relevant events, the use of
detection regions, and the use of logarithms of EVCs.

To address the problem of overflow in vector clocks, two
approaches have been explored. One approach to such reset
is to require that, when the first process overflows the avail-
able number of bits for storing the VC, the system is paused
and all processes synchronize to execute a local reset of their
VC. A practical way to achieve such result is to use a modi-
fied version of Lamport’s global snapshot algorithm [28],
which requires processes to exchange control messages to
achieve a global synchronization point. Such technique has
been studied and implemented as a protocol for resetting
Vector Clocks [29]. However, we note that such a technique
not only introduces a high overhead into the system caused
by the added synchronization, but would also break equiva-
lency of resettable VC and VC. We can in fact show that, if a
synchronization event c is added to the system to perform a
global reset, the underlying causal order is changed. Let us
take two concurrent events a and b and let us suppose that
after executing a but before executing b, an overflow occurs
and therefore a reset is required. Event c is now executed, as
the global synchronization event in which all processes per-
form the local reset. Given that c is a global synchronization
event executed by all processes, the intrinsic program order-
ing states that a ! c. After the reset, the system can restore
normal operations and event b is now executed. Again, given
that c is a global synchronization event, it follows that c ! b.
But because of the transitive property of Lamport’s hap-
pened-before relation, if a ! c and c ! b, we can state that
a ! b which is in contrast with the result that would be
obtained by the VC, in which a and b are two concurrent
events.

The second approach to address overflow of vector
clocks exploits asynchronous local resets at each process
[30]. The authors observed that many applications are struc-
tured in phases and track causality only within a bounded
number of adjacent phases [31], [32], [33], [34]. So they
reused timestamps by augmenting VC with a nonblocking
reset operation that allows a process to locally reset its own
local clock when it moves from one phase to another. Thus,
a bounded number of clock values suffice provided no two
timestamps of different incarnations exist. Applications that
use this bounded implementation of resettable VC need to
satisfy a contract having two parts: (i) a comparison predi-
cate over events whose causality needs to be tracked, and
(ii) a communication pattern between the processes. The
bounded space version of our solution of the REVC is
related to this latter approach and uses only a simple com-
parison predicate in the contract.

Dynamic race detection in multi-threaded environments
has been a topic of interest for multiple works. Our protocol

for dynamic race detection that adopts our REVC is a modifi-
cation ofDJITþ [11] which is a dynamic race detection proto-
col that exploits vector clocks to track memory accesses. The
state-of-the-art dynamic race detection protocol is FastTrack
[35], which is an optimization over DJITþ that is able to
exploit primarily a Scalar Clock representation, switching to
Vector Clock only in the few instances in which the informa-
tion stored by the Scalar Clock is not enough.

RoadRunner [10] is the dynamic analysis framework that
was used to develop FastTrack and that we used to imple-
ment our modified version of DJITþ exploiting the REVC.
It is made up by a Java bytecode instrumenter which modi-
fies Java code to create a stream of events during program
execution, which is consumed by a backend tool imple-
menting the dynamic analysis protocol.

3 SYSTEM MODEL

Distributed systems are usually divided into two categories:
shared memory systems and message passing systems [2]. As
the names suggest, this division is based on the type of com-
munication that the different components of the distributed
system use to synchronize.

A shared memory system is composed of several threads
that execute concurrently and communicate via shared
memory. The execution is assumed to be asynchronous,
therefore the relative speed among the threads is not fixed.
The threads can synchronize using the operating system pro-
vided operations lock, unlock, fork and join. Other more com-
plicatedmeans of synchronization are not analyzed here, but
themodel can be easily extended to include themby building
on these basic primitives. The execution of each thread con-
sists in a series of events that can be either one of the opera-
tions previously presented or what here is called an internal
event. Internal events can be any type of action that is per-
formed by a thread, which does not require any synchroniza-
tionwith other threads, and can therefore be seen as an event
local to the thread itself. A partial order on this set of actions
can be induced by Lamport’s happened-before relation [3],
which can characterize causality among such events. In this
context, such relation is characterized by the following rules:

� Program order: if a and b are two events that are exe-
cuted by the same thread, and a is executed before b,
then a! b

� Lock synchronization: if u is an unlock operation and l
is a lock operation on the same lock object, then u! l

� Thread creation: if a is a fork operation and b is an
event executed by the thread that is created by a,
then a! b

� Thread termination: if j is a join operation and a is an
event executed by the thread that will terminate at j,
then a! j

� Transitive property: if a ! b and b ! c, then a ! c
A message passing system, on the other hand, is com-

posed of several processes that execute concurrently and
communicate via message passing. We assume the presence
of a logical communication channel among each pair of pro-
cesses, although we do not require that such channels be
physically present in the system. The execution is again
assumed to be asynchronous, therefore no fixed relative
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speed among the processes exists. Each process can synchro-
nize with the others by means of the communication primi-
tives send and receive. The fence operation is also available,
which allows to create barrier synchronizations among mul-
tiple processes. The execution can again be characterized as a
sequence of events. In message passing systems, four types
of events can be distinguished: send events, receive events,
fence events and internal events. The first three correspond to
the execution of the basic communication that have been just
described, while an internal event is defined equivalently as
in a shared memory environment. Lamport’s happened-before
relation [3] can be used to induce a partial order on this set of
events to characterize causality among them. In message
passing systems the following rules apply:

� Program order: if a and b are two events that are exe-
cuted by the same process, and a is executed before
b, then a! b

� Message synchronization: if s is a send operation for
message and r is the receive operation for the same
message, then s ! r

� Barrier synchronization: if bi and bj are two corre-
sponding fence operations executed by two processes
and a is an event executed by any of the two pro-
cesses before reaching the barrier, then a ! bi ^ a !
bj. Also if a0 is an event executed by any of the two
processes after executing the fence operation, then
bi ! a0 ^ bj ! a0

� Transitive property: if a ! b and b ! c, then a ! c
If :ða ! bÞ ^ :ðb ! aÞ then a and b are said to be concur-

rent events. It can be intuitively understood that if a ! b
then in any execution of the program, a will always be exe-
cuted before b as b is causally dependent on a. On the other
hand, if a and b are concurrent, they can be executed in any
order on a given execution of the program.

4 THE RESETTABLE ENCODED VECTOR CLOCK

The Resettable Encoded Vector Clock’s core idea is that of
performing a reset operation at the EVC location every time
such value overflows a predefined number of bits n. The
reset operation brings the EVC value back to the initial one,
allowing the system to restart its operations until the follow-
ing overflow event.

4.1 Components of the REVC

To maintain the consistency of the logical clock through the
use of the reset operation, new components need to be added.

� The first additional component we introduce is the
concept of frame. The frame is a counter that keeps
track of the number of local resets that have been
performed at each process. Each REVC instance con-
tains an integer variable, which defines its current
frame. By using the frame, a more precise comparison
between two REVC timestamps is possible. In fact, it
allows to understand whether one of the two is
directly comparable with the other through the stan-
dard EVC comparison operation, by checking
whether they are part of the same execution frame.

� The second component that we introduce is the frame
history. Each REVC instance needs to be comparable

with any other REVC instance, irrespective of whether
the other instance is in the same execution frame or
not. In order to achieve that, each REVC instance
needs to keep track of the EVC values of previous
frames before the local resets. The frame history compo-
nent, therefore, achieves this objective by storing a
structure that can map a given frame to a given EVC
value.

Based on the components that we have detailed, we can
represent an instance of the Resettable Encoded Vector
Clock as the tuple ðf; e;mÞ where f is the current frame, e is
the current EVC value and m the map containing the frame
history. Finally, given that the REVC is built on the Encoded
Vector Clock, each process needs to be assigned a unique
prime number that is used by the EVC to encode the time-
stamp of the process itself.

We have detailed in Section 2 the three basic operations
characterizing the EVC: the local tick operation T, the merge
operation M and the comparison operation C. In the follow-
ing, we analyze and detail the three corresponding opera-
tions for the Resettable Encoded Vector Clock.

4.1.1 Local Tick Operation

The local tick operation is used to increment the local clock of
a process to create a new fresh timestamp value that can be
assigned to label any new event. This operation, performed
on the standard EVC, can cause the current value to overflow
the given n bits threshold. In the REVC, the overflow event
constitutes the trigger that requires a local reset and a transi-
tion to the following frame, saving the old EVC value in the
history map. If T is the operation that performs the local tick
on an EVC, Algorithm 1 shows the pseudocode of the corre-
sponding operation for the REVC, while Algorithm 2 shows
the pseudocode for the reset function.

Algorithm 1. Local Tick Operation

Input: An REVC instance (f , e,m) and a prime number p
Output: The updated REVC instance

1: temp = T(e);
2: if overflow (temp) then
3: (f , e,m) = reset (f , e,m, p);
4: else
5: e = temp;
6: end
7: return (f , e,m);

Algorithm 2. reset Function

Input: An REVC instance (f , e,m) and a number q
Output: The reset REVC instance

1: m.put(f , e);
2: f = f + 1;
3: e = q;
4: return (f , e,m);

4.1.2 Merge Operation

The merge operation is used to generate a new clock value
that acknowledges two previous values. Just like the local
tick operation, this operation performed on two EVC values
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can lead to overflow. Furthermore, new complications arise
when performing such operation on a REVC. Clearly, it
only makes sense to perform the EVC merge operation
between two EVCs that belong to the same execution frame.
Furthermore, given that the REVC also contains a history of
previous frames, it is not sufficient to merge the current
frame’s EVCs, but it is also necessary to merge the corre-
sponding previous EVCs. Therefore, different scenarios can
arise depending on whether the two instances are on the
same execution frame.

It should be noted that, while merging the history maps’
EVCs, overflow could occur again. However, we assume
that the data structures for the history maps allow for a suf-
ficiently high number of bits such that these overflows can
never happen. Let there be k processes in the system. Given
a n bit threshold for overflow of an EVC, it is in fact possible
to place an upper bound on the maximum number of bits
required to store any possible result of all merge operations
for any frame of a history map as n � k.

Supposing that ðf2; e2;m2Þ is the REVC that needs to be
merged into ðf1; e1;m1Þ and that M represents the merge
operation for EVCs, Algorithm 3 shows the pseudocode of
the corresponding operation for REVCs while Algorithm 4
shows the pseudocode of the function that performs the
merge of the two history maps.

Algorithm 3.Merge Operation

Input: Two REVC instances (f1, e1,m1) and (f2, e2,m2)
Output: The updated REVC instance
1: if f1 > f2 then
2: m1.put(f2, M(m1.get(f2), e2));
3: m1 = historyMerge(m1,m2);
4: else if f2 > f1 then
5: m1.put(f1, e1);
6: f1 = f2;
7: e1 = e2;
8: m1 = historyMerge(m1,m2);
9: else
10: temp = M(e1, e2);
11: if overflow(temp) then
12: (f1, e1,m1) = reset(f1, temp,m1, 1);
13: else
14: e1 = temp;
15: end
16: m1 = historyMerge(m1,m2);
17: end
18: return (f1, e1,m1);

Algorithm 4. historyMerge Function

Input: Two history mapsm1 andm2

Output: The merged history map
1: foreach (f , e) inm2 do
2: ifm1.contains(f) then
3: m1.put(f , M(m1.get(f), e));
4: else
5: m1.put(f , e);
6: end
7: end
8: returnm1;

4.1.3 Comparison Operation

Given two timestamped events, the main purpose of a logical
clock is to be able to determine their relationship according to
the Lamport’s happened-before relation. This is the aim of
the comparison operation. Given any two events a1 and a2,
with their respective REVC timestamps ðf1; e1;m1Þ and
ðf2; e2;m2Þ, we again distinguish different scenarios based on
whether the two instances are on the same execution frame.

Supposing that C is the EVC comparison operation
returning true if the event passed as first parameter happens
before the event passed as second parameter or false other-
wise, Algorithm 5 contains the pseudocode for the corre-
sponding REVC operation that tests whether the relation
a1 ! a2 is true or false.

Algorithm 5. Comparison Operation

Input: Two REVC instances (f1, e1,m1) and (f2, e2,m2)
Output: true if (f1, e1,m1)! (f2, e2,m2), false otherwise

1: if f1 > f2 then
2: return false;
3: else if f2 > f1 then
4: return (C(e1,m2.get(f1)) or e1 =m2.get(f1));
5: else
6: return C(e1, e2);
7: end

4.2 REVC for Shared Memory Systems

In Section 3 we described the system model for a shared
memory environment in which several threads run in paral-
lel and synchronize by means of a set of operations. We
now show how the three basic operations of the REVC can
be applied to the system’s events to obtain the causality
relations that describe the system model.

The events that are present in the shared memory system
have been shown to be either internal events or one of the fol-
lowing synchronization operations: lock, unlock, fork, join. In
the following, we detail the behavior of the REVC for each
of those operations, to ensure that the causality relation that
is obtained is consistent with the one that has been
described. If such behavior is implemented correctly, taken
any two events a and b that have been labeled with time-
stamps, it will be possible to apply the comparison operation
on their REVCs to establish their relationship.

The initialization of the system provides each thread with
a unique prime number p, each REVC is initialized so that
f ¼ 1, e ¼ 1 and m is an empty map, and each lock object is
initialized so that f ¼ 1, e ¼ 1 andm is an emptymap.

� Internal events happen locally at a single thread and
require a fresh new timestamp that can uniquely
identify them. When a thread executes an internal
event, it (i) performs a local tick operation to update
its current REVC with a fresh new value, and labels
the event with the current value of its REVC.

� Unlock events are executed when a thread needs to
release a given lock object that it has previously
acquired. The lock-unlock pattern introduces a
causal relationship among events executed at differ-
ent threads before and after the synchronization
event. In order to correctly represent such relations
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using the REVC, the thread performing the unlock
operation needs to (i) perform a local tick operation
to update its current REVC with a fresh new value,
and (ii) label the lock object with its current clock
value.

� Lock events can happen whenever no thread is hold-
ing the lock of a specific lock object. In such case, any
thread can perform a lock operation to acquire such
lock. This event, and any local event that follows in
the locking thread, must happen after the previous
unlock event. This property can be realized by ensur-
ing that the thread performing the lock operation (i)
merges the REVC value, that has been stored on the
lock object during the previous unlock operation,
into its own current REVC instance, and (ii) performs
a local tick operation to update its current REVC with
a fresh new value.

� Fork events are executed when a new thread is started.
The fork-join pattern, similarly to the lock-unlock pat-
tern, introduces new causality relations. To acknowl-
edge them, when the new thread is created, (i) the
thread executing the fork performs a local tick opera-
tion to update its current REVC with a fresh new
value. Furthermore, (ii) a new unique prime number
p should be assigned to the new thread, (iii) the new
thread’s REVC’s e variable should be initialized to 1,
(iv) the frame of the REVC of the new thread should
be set to the frame of the forking thread, and (v)
finally, the forking thread should merge its REVC
into the one of the new thread.

� Join events happen whenever a thread needs to wait
for the termination of another thread before resum-
ing its execution. When such operation terminates,
the thread issuing the join should (i) set its own
REVC as the result of performing a merge operation
between its own REVC value and the terminating
thread’s REVC value, and (ii) perform a local tick
operation to update its current REVC with a fresh
new value.

For the dynamic race detection [11], [35] application con-
sidered in Section 6, the above rules are adapted as follows.

� Internal events: no local tick.
� Lock, and join events: no local tick if no reset is

invoked by the merge invocation.
� Unlock and fork events: The local tick is executed as

the last action (not the first).
� Initialization: The vector time frame (which is different

from our frame f) initialization requires us to initial-
ize e of the thread’s REVC to p, both at startup and
for a newly forked thread.

4.3 REVC for Message Passing Systems

In Section 3 we described the system model for a message
passing environment in which several processes run con-
currently and asynchronously and communicate by means
of exchanging messages. We will now detail how the three
basic operations that have been presented for a REVC can
be applied to the events that can be executed in such envi-
ronment, in order to implement the causality relations of
this model.

Four types of events have been presented in relation to
a message passing environment: internal events, send
events, receive events and fence events. We notice that inter-
nal events follow the same rules in both environments,
therefore in the following we will detail the behavior of
the REVC for send, receive and fence events. The objective
is that, by following the presented rules, the causality
relation that is obtained through the application of the
comparison operation of the REVC to two timestamped
events is consistent with the one that has been described
for this model.

The initialization of the system provides each process
with a unique prime number p and each REVC instance is
initialized so that f ¼ 1, e ¼ 1 and m is an empty map.

� Send events are executed to initiate a communication
with another process. Similarly to the lock-unlock
pattern for shared memory systems, the send-receive
pattern introduces causality relations among the
events that happen before and after such operations.
In order to consistently represent such relations with
the REVC, the sending process needs to (i) perform a
local tick operation to update its current REVC with a
fresh new value, and (ii) attach to the message its
own current REVC timestamp.

� Receive events are executed when a process is expect-
ing to receive a message from another process. To
correctly acknowledge the causal chain that is cre-
ated by such event, the receiving process (i) extracts
the REVC timestamp that has been attached to the
message and merges it into its own current REVC
instance, and (ii) performs a local tick operation to
update its current REVC with a fresh new value.

� Fence events are executed when a process needs to
synchronize with several other processes at a bar-
rier, to pause the execution until all participating
processes have reached the same barrier. Since it is
a synchronization operation, it introduces causality
relations among the events happening before and
after reaching the barrier at the various participat-
ing processes. To correctly represent such relations
using the REVC, each participating process needs
to (i) perform a local tick operation to update its cur-
rent REVC with a fresh new value, and (ii) merge
into its own REVC instance all the REVC time-
stamps of the other participants, thus aligning the
clocks of all processes at the barrier to the same
timestamp.

5 ANALYSIS AND EVALUATION

5.1 Growth Rate

The REVC is built on the EVC and internally makes use of
EVC values and operations to implement the logical clock.
The EVC has been shown to have exponential growth, due
to its use of multiplication and least common multiple opera-
tions [7], [9]. However, the REVC introduces the use of a
reset operation that does not allow the EVC value to grow
past a certain number of bits. The consequence of the appli-
cation of the reset technique on the number of bits used by
the EVC value is that such number fluctuates between a
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minimum given by the number of bits required to represent
the process’ prime number, and a maximum of n bits, where
n represents the threshold that has been chosen as the over-
flow value that triggers the reset operation.

We have however showed that keeping only the EVC
value along with the reset operation is not enough to ensure
a consistent logical clock implementation. Therefore, the
REVC also stores a history map containing old EVC values
for past execution frames. Every time a reset operation is
performed, the old EVC value is added to the history map.
The practical implication of this operation on the number of
bits needed to represent an REVC instance is the following:
when the fluctuation of the current EVC value reaches its
peak, the reset brings it back to the minimum number of
bits, moving the old value to the history, thus linearly incre-
menting the total number of bits that are needed. Therefore,
intuitively, the growth rate of an REVC instance will present
a linear behavior with respect to the total number of events
being executed in the system. We now present this analysis
more formally.

Theorem 1. The size of the REVC is linearly proportional to the
number of events in the system.

Proof. At a receive event, on average, the EVC value of the
current frame may double in bit size assuming a worst-
case scenario that the LCM operation for the merge opera-
tion is performed over relatively prime numbers. And at
a tick operation, the EVC value of the current frame may
increase by log p bits.

We first consider a particular case where we focus on
the execution at one process and assume that at a receive
event when ðf2; e2;m2Þ is being merged into ðf1; e1;m1Þ,
f2 � f1. LetN denote the total size of the REVC including
the history map size, let v denote the count of the number
of (local) events after the last (local) reset, and let V
denote the total count of the number of (local) events
since the start. Let gðvÞ be the function for the size of the
current EVC value since the last (local) reset. When
gðvÞ ¼ n or v ¼ g�1ðnÞ, overflow and hence a reset occurs;
and V becomes V þ v while N becomes N þ n. After x
(local) resets, V ¼ x� v and N ¼ x� n. In the history
merge, EVC values in older frames may increase in size,
but in Section 4.1 we showed that the bit size of the EVC
value is bounded by n� k. Hence, N is proportional to
x� n� k = x� gðvÞ � k. Here, the nature of the function
g over the incremental d-range v is not important, and
can be replaced by a linear function of v. Hence N is pro-
portional to the number of events x � v ¼ V .

In the general case, multiple new frames may be
added at a receive event in the history merge (when
ðf2; e2;m2Þ is being merged into ðf1; e1;m1Þ, f2 may be
greater than f1), thus increasing N by the size of multiple
frames. Hence x (the number of resets) needs to be con-
sidered along the longest (global) causal path in the exe-
cution up to the present event. So v (respectively, V )
needs to be defined as the count of the number of events
since the last reset along such a longest causal path (total
count of events over such a longest causal path). Hence
and as for the particular case, N will still be a linear func-
tion of x � v ¼ V as defined here. V is bounded by the
number of events in the execution. tu

The experimental data that we collected confirm Theo-
rem 1. The applications that were chosen for evaluation
are a subset of the applications that are found in the
DaCapo Benchmarking Suite [36] and the Java Grande
Benchmarking Suite [37]. Those two suites are composed
of Java programs that have been designed to emulate non-
trivial loads and be representative of intensive calcula-
tions. The applications that have been chosen exhibit
multi-threaded behaviour and very diverse semantics, in
order to be able to test the system on a relatively complete
set of programs ranging from a very high usage of syn-
chronization to a high parallelization of the workload. In
Section 6.2 we present these benchmark suites that we
have used for evaluation of the dynamic race detection
application. We have exploited this practical application
of the REVC to track its growth in an actual real-world
scenario rather than using a less realistic random simula-
tion. Fig. 1 shows the results of the experiments per-
formed using an REVC-based application run on several
benchmark programs. The behavior of the growth rate is
linear in the number of executed events as predicted, con-
firming how the use of a reset operation can consistently
reduce the exponential explosion of the EVC values. As
some applications require a small number of events and
terminate, Fig. 2 shows the results zoomed in for the first
200 events.

The varying behavior of the different benchmark pro-
grams that have been used is clearly visible in the different
lines. A subset of such applications, such as avrora, fop, h2
and luindex, shows a high utilization of synchronization
operations, therefore executing a high number of events,
which surpasses our analysis window of 5000 system
events. On the other hand, the other applications require a
smaller number of events to be executed before the program
is terminated. This can be linked to a lower utilization of
synchronization operations, therefore higher parallelization
of the workload, and it results in the lines terminating after
less than 500 events have been executed in the system. The
varying slopes of the lines can be related to the number of
threads that are present in the system. A bigger number of
threads is related to a greater slope, while a lower number
of threads leads to a less steep line.

The linear growth rate achievement of the REVC is
obtained at the expense of performance, introducing a trade-
off between the two. In fact, the merge operation requires to

Fig. 1. Growth rate for the resettable encoded vector clock.

778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021



execute the EVC merge operation for f times, where f is the
current number of frames, which can grow unboundedly,
therefore its complexity is not constant. This is not acceptable
in practical applications that require a high number of events
to be executed, as the performance of the merge operations
consistently degrades as the number of execution frames
stored in the historymap increases.

We note, however, that the time complexity of merge for
REVC is lower than that of EVC. The LCM computation of
merge is a function h that is super-linear in the number of
bits of the operands, (using the logarithmic cost model) [6],
[7]. For REVC, the time cost of the merge for f frames would
be Oðf � hð64ÞÞ. In EVC, the LCM computation of merge is
done on big integers. As the operand sizes would be linearly
proportional to f , a super-linear function h of this size
would cost more time Oðhð64fÞÞ than the Oðf � hð64ÞÞ for
REVC.

5.2 Bounded Growth

We have discussed how, despite achieving a reduction of
the growth rate with respect to the EVC, the REVC still
presents the issue of unbounded growth. It is immediate to
see that the current EVC value will never overflow the given
threshold of n bits, however the problem has been moved to
the history map, as the structure can now grow unbound-
edly. Furthermore, this solution has also introduced a new
tradeoff with performance, given by the new merge opera-
tion, whose time requirements are now dependent on the
number of frames stored in the history map.

We note that the current formulation, which is not space
and time bounded, is necessary because the general use case
of the REVC requires to be able to perform the comparison
operation between any two events of a given program execu-
tion.We observe, however, that this requirement can be safely
relaxed in many real-world applications, where constraints
can be added to reduce the required comparisons, without
changing at all the semantics of the applications. We observe
that many applications are structured as phases and track
causality only within a bounded number of adjacent phases
[31], [32], [33], [34]. Other examples are the following. In fair
mutual exclusion which requires requests to be satisfied in
their “happened before” timestamped order, processes com-
pare their requests’ timestamps only within a bounded num-
ber of requests of other processes [2]. In race detection, the
racing instructions are executed in the temporal locality of

one another. And in checkpointing, processes need to track
causality only between a pair of consecutive checkpoints [2].
Many applications of logical clocks, in fact, require to perform
causality analysis only on a subset of all events.

Thus, if this constraint to reduce the number of compari-
sons can be expressed as a maximum number of frames F in
the REVC framework, the presented solution is immediately
transformed into a bounded one both in time and in space.
Each instance of an REVC ðf; e;mÞ, in fact, does not need to
store any information about frames that are older than f � F .
Therefore, an upper bound can be placed on the size of the m
data structure, and the merge operations will only merge up
to F EVC pairs in the worst-case scenario. We call this optimi-
zation technique Fixed Size Frame Window (FSFW).

We can stipulate a contract with the application that
exploits the REVC, under which the FSFW REVC has an
equivalent behavior to the Unbounded REVC. This contract
can be formalized and expressed as a predicate that estab-
lishes whether two timestamped events, a1 and a2, with
respective timestamps ðf1; e1;m1Þ and ðf2; e2;m2Þ, can be
compared under the FSFW REVC, given a maximum
amount of stored frames F

a1 comparable a2 , jf1 � f2j � F: (1)

Given that F can be arbitrarily chosen, based on the perfor-
mance requirements of the REVC implementation, this
constraint is likely easily satisfiable by most real-world
applications.

Note that unlike the resettable VC [30] which uses a two-
part contract – a comparison predicate and a communica-
tion pattern requirement – our design of the REVC based on
which the bounded space implementation is designed uses
the above simple comparison predicate based on the frame
count difference F.

The reason that the authors of [30] present an additional
communication pattern contract is that they make the
domain of the phase (their equivalent to our frame)
bounded and equal to F. (As an example, if F = 3, then the
phase will be 1, 2 or 3 and then will reset to 1.) Because of
this, messages need to be received within the F window or
their timestamp will collide with an equal timestamp of a
previous window. This is a problem we are not concerned
with as our REVC does not address the case of overflow in
the frame number. We do not make the frame number
bounded in the FSFW, we only make the amount of infor-
mation in the history map bounded to F frames; the frame
does not rollover after F numbers, therefore it can still func-
tion correctly even if a message from a frame previous to F
frames is received. This older message will however not
contain any new information to be stored in the current
timestamp, as all events previous to F frames are no longer
important to track because they become incomparable as
given by Predicate 1. This older message will not be misin-
terpreted by our framework as a newer message, creating
an inconsistency for new events, but rather correctly dis-
carded as an old message. A problem would occur if we
actually were to reach overflow of the frame, which (if we
suppose f to be stored in a 64 bit unsigned integer number)
would happen after 264 � 1 frames. Therefore if we were to
address this concern practically, we would also need a

Fig. 2. Growth rate for the resettable encoded vector clock, zoomed-in
results.
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similar communication predicate, stating that all messages
need to be received within 264 � 1 frames, so no message
can be received after 264 � 1 frames from when it is sent.
This is a very particular case, which is comparable to what
would happen if the vector clock were to overflow, which
we do not concern ourselves with in our presentation of the
REVC, as we assume that the system will not run for so
long for that to be a real problem.

We have again gathered experimental data to support
our claim that our formulation leads to a bounded imple-
mentation of the REVC. We show here the results that dem-
onstrate the bounded growth in terms of space of the FSFW
REVC. Furthermore, in Section 6.2 we show the results of
our dynamic race detection application exploiting the FSFW
REVC, evaluated in terms of time performance.

Fig. 3 shows the same benchmark programs that have
been evaluated in Section 5.1, run using the new REVC for-
mulation with F ¼ 5. The bounded growth is clearly visible
as the linear increase in size of the REVC instance reaches a
plateau when the maximum number of stored frames
reaches F. The growth rate is then reduced to an average of
0, as the actual size of the REVC instance fluctuates around
the plateau. This fluctuation is caused by the EVC value of
the current execution frame, whose size in bits oscillates
between a minimum given by the number of bits needed to
represent its prime number, and a maximum given by the
chosen threshold of n bits which triggers the reset operation.
Fig. 2 shows a zoomed-in view for the first 200 events; this
does not change from the zoomed-in view for Fig. 1 as the
plateau, as shown in Fig. 3, is not yet reached.

We note again the importance of the number of threads
in the height of the plateaus. This is easily explained as we
have stated in Section 4.1.2 that the upper bound for one
entry in the history map is directly proportional to the num-
ber of threads. Therefore, the same must be for the upper
bound on the total size of the history map when the plateau
is reached, which will be equal to the upper bound for one
entry multiplied by F.

We have showed how the formulation of the REVC allows
to easily achieve a bounded solution both in time and space
requirements, which can also be easily configured tomeet the
performance requirements of the application. This is of para-
mount importance to present the Resettable Encoded Vector
Clock as a practically usable and scalable logical clock imple-
mentation in real-world applications. This achievement has
been obtained at the expense of precision in the general case,

as not all events are comparable under a FSFW REVC imple-
mentation.However, aswewill show in our practical applica-
tion detailed in Section 6, there are real-world scenarios in
which the implementation can be tuned to eliminate the loss
in precisionwhilemaintaining a high scalability.

5.3 Differential Merge Technique

We have stated how the merge operation’s performance is
related to the number of stored frames in the history map,
and therefore it degrades as such number increases. We pro-
pose now a further optimization to the REVC which we call
the Differential Merge Technique (DMT). This optimization
aims at reducing the impact that a high number of stored
frames has on the merge operation. It derives from the obser-
vation that, based on the standard definition of the merge
operation for the REVC, each time an instance is merged into
another, all the frames that are stored in the first timestamp’s
history map need to be merged with the corresponding
frames in the second timestamp’s history map. Merging
such frames practically translates to performing the EVC
merge operation, which is nothing more than finding the least
common multiple between the two numbers. However, if the
two values to be merged are e1 and e2, and e2 is already a
multiple of e1, then merging e1 into e2 will not actually
change the value of e2, as the result of lcmðe1; e2Þ ¼ e2. Next,
we explain how to exploit this observation.

Let us analyze the following scenario: suppose that
REVC ðf2; e2;m2Þ is merged into REVC ðf1; e1;m1Þ, then a
number of instructions are executed and finally ðf2; e2;m2Þ
needs to be merged again into ðf1; e1;m1Þ. When the merge
operation addresses the history maps, most likely only a
subset of the frames of m2 actually needs to be considered
for merging. This is because, as stated, only the frames of
m2 for which the EVC values have changed since the previ-
ous merge will produce a new result. For all other frames,
however, the EVC values contained inm1 are already multi-
ples of the corresponding values contained inm2. Therefore,
performing the least common multiple operation at every
merge for all frames introduces an unnecessary overhead,
that can be avoided by defining a smarter merge operation.
Clearly, however, each thread t would also need to keep
track of whether each frame f inside its history map has
been modified since the last merge operation with each other
thread t0, which would result in a higher storage require-
ment. Once again, this optimization technique presents a
tradeoff between space and performance. Let it be noted,
however, that this optimization does not affect the precision
of the protocol, as no assumptions are made on the events
that can be compared, and therefore we claim that the
results of using a REVC with DMT are always equivalent to
those of a traditional REVC.

We now define an enhanced version of the REVC, ready
to be employed with the Differential Merge Technique. This
extended REVC is defined as the tuple ðf; e;m; dÞ where f is
the current frame, e is the current EVC value, m is the his-
tory map of past frames and corresponding EVC values and
finally d is a difference map, containing for each other thread
a list of frames whose EVC value contained in m has been
modified since the last merge into the REVC of that other
thread. The difference map is a hash map that is imple-
mented as a collection of lists. Therefore, a thread needs a

Fig. 3. Growth rate for the bounded REVC with F ¼ 5.
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collection of lists to keep track of merges associated with k
number of threads that communicate.

Supposing that REVC ðf2; e2;m2; d2Þ is to be merged into
REVC ðf1; e1;m1; d1Þ, p represents the prime number of the
current thread (corresponding to ðf1; e1;m1; d1Þ) and its
unique identifier, and M represents the merge operation for
EVCs, Algorithms 6 and 7 define the pseudocode for the new
merge operation. (In Algorithm 7, we consider each frame of
the second thread that corresponds to ðf2; e2;m2; d2Þ that has
been updated since the last merge with the first thread.) The
reset function remains unchanged and its pseudocode was
defined in Algorithm 2. Let it be noted how, when the DMT
is used (Algorithm 7), the number of lcm operations depends
only on the number of items present in the difference map
for the merging thread, i.e., the frames updated after the last
merge between the two threads. Such number is expected to
remain constant as the program progresses and older frames
do not get updated anymore, in contrast with the number of
lcm operations performed by the pseudocode shown inAlgo-
rithm 4, which depends on the total number of frames stored
in the historymap.

Algorithm 6. Merge Operation With Differential Merge
Technique

Input: Two REVC instances (f1, e1,m1, d1) and (f2, e2,m2, d2),
and a prime number p

Output: The updated REVC instance
1: if f1 > f2 then
2: m1.put(f2, M(m1.get(f2), e2));
3: m1 = historyMerge(m1,m2, d2, p);
4: else if f2 > f1 then
5: m1.put(f1, e1);
6: f1 = f2;
7: e1 = e2;
8: m1 = historyMerge(m1,m2, d2, p);
9: else
10: temp = M(e1, e2);
11: if overflow(temp) then
12: (f1, e1,m1) = reset(f1, temp,m1, 1);
13: else
14: e1 = temp;
15: end
16: m1 = historyMerge(m1,m2, d2, p);
17: end
18: return (f1, e1,m1, d1);

Algorithm 7. historyMerge Function With Differential
Merge Technique

Input: Two history maps m1 and m2, a difference map d and
a unique id p

Output: The merged history map
1: foreach f in d.get(p) do
2: ifm1.contains(f) then
3: m1.put(f , M(m1.get(f),m2.get(f)));
4: else
5: m1.put(f ,m2.get(f));
6: end
7: end
8: d.get (p).empty();
9: returnm1;

Finally, to complete the formulation of the Differential
Merge Technique, the rules to update the difference maps
need to be detailed. In practice, to maintain such maps con-
sistent, it is sufficient that at each modification of an entry in
the history map of a thread’s REVC, that thread adds that
frame to all lists that are present in the differencemap. In this
way, the thread is marking that frame as an updated one and
therefore that frame will be picked up by any subsequent
merge before being cleared again in the differencemap.

6 REVC FOR DYNAMIC RACE DETECTION

We now explore a practical application of logical clocks,
dynamic race detection, with the objective of showing an
application of our REVC and evaluating its performance with
respect to traditional logical clock implementations. We pres-
ent a modified version of theDJITþ protocol that exploits the
REVC in place of the VC to track causality relations among
events. Finally, we analyze the impact of the optimization
techniques and show that they can achieve significant perfor-
mance gain, aswill be presented in the analysis of the results.

Our work on dynamic race detection is carried out on a
shared memory system. In order to apply the REVC to the
DJITþ protocol, instead of using vector clocks, each thread
maintains an instance of the REVC and is assigned a unique
prime number that will be used for operations on it. Further-
more, each lock object is assigned an instance of the REVC as
well, which is initialized as f ¼ 1, e ¼ 1 and m as an empty
map. The rules for updating and propagating the values of
the Resettable Encoded Vector Clock in a multi-threaded
environment on a shared memory model were presented in
Section 4.2.

Each memory location is labeled with a status which can
be either READ, WRITE or READ-SHARED. Such status
traces the latest access operation which has been performed
on the memory location. When the status is READ-SHARED,
multiple concurrent read operations have been performed
on the memory location, and as such they are all being
tracked to ensure that no subsequent write operation can
happen concurrently to any of those read operations.

Given the semantics of the status label, when the mem-
ory location is labeled with either READ or WRITE, the lat-
est operation performed on it has been found to have
happened-after all other previous operations. Therefore, only
the current frame and EVC value of the REVC of the thread
that has performed such operation are needed in order to be
able to detect possible races. On the other hand, when the
status is READ-SHARED, multiple concurrent read opera-
tions have been performed, therefore a structure needs to be
saved containing for each read operation the current frame
and EVC value from the REVC of the thread performing it.
Clearly, EVC values pertaining to the same frames can be
merged together to reduce the amount of information that
needs to be stored. Finally, we define a slightly different
behavior for the comparison operation when applied to this
latter structure. In such case, in fact, it is necessary to apply
the usual REVC comparison operation to all the frames con-
tained in the defined structure, rather than just to one of
them. This ensures that all the operations that are being
tracked by the REVC instance have happened before the
timestamp that is being checked.
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Using the defined structures, we can now identify races
using the Resettable Encoded Vector Clock. Let us suppose
that thread twith REVC ðf; e;mÞ accesses a memory location
which is labeled with status s and REVC ðf1; e1;m1Þ due to
access by another thread u. It follows fromwhatwe have pre-
viously defined that, if the access operation is a write and it is
not true that ðf1; e1;m1Þ ! ðf; e;mÞ, then either a Read-Write
race or aWrite-Write race is detected based on s. On the other
hand, if the access operation is a read, a Write-Read race race
can be detected only if s is labeled asWRITE and it is not true
that ðf1; e1;m1Þ ! ðf; e;mÞ.

Finally, after the thread performing an access to the
memory location has tested the operation for possible races,
it can update the information that is stored for that memory
location with the data from this latest access.

6.1 REVC Optimization Techniques

With the current formulation of our modified DJITþ proto-
col, the size of the REVC instances is allowed to grow
unboundedly and possibly overflow the maximum amount
of memory that is allocated for the application or incur sig-
nificant overhead for merge operations. In practical cases,
this might still be acceptable, especially for applications that
exhibit a behavior in which the REVCs have a very low
growth rate, for example applications that have few syn-
chronization points among the threads, and concentrate
mainly on parallel work. However, in general, the optimiza-
tion techniques that we presented in Sections 5.2 and 5.3
(FSFW and DMT) need to be employed to reduce both space
and time overheads and improve overall performance of the
implementation.

6.1.1 Practical Consequences of FSFW

When we presented the Fixed Size Frame Window, we stated
that this optimization technique allows to reduce both time
and space requirements, at the expense of precision. We
now analyze the practical implications of this when applied
to the dynamic race detection protocol.

Given a certain frame window size F, the protocol will
only be able to detect races that happen within the last F
frames. In fact, the comparison operation of the REVC is
used in our modified version of the DJITþ protocol only for
race detection purposes, and any comparison operation
always uses as one of the operands a thread’s current clock
value. Therefore, only when the two access events under
investigation are comparable (as given by Predicate 1), a pos-
sible race condition can be analyzed. This means that races
can be detected only if the previous access to the memory
location has happened within the last F frames from the
thread’s current frame. This optimization technique, there-
fore, clearly presents a tradeoff between performance and
precision.

The intuition that stands behind the adoption of such
optimization, however, is the fact that a race condition, by
definition, is a tentative access to a memory location by two
threads which are accessing it concurrently, and is therefore
highly probable that the two operations will happen within
a low number of synchronization points one from the other.
By selecting a fairly low value of F, we still allow a relatively
high number of synchronizations to happen between the

two accesses, and therefore we should still maintain a rela-
tively high precision. This intuition is confirmed by the data
that we collected during our practical experimentation. We
will show in our results that, despite choosing very low val-
ues of F, our system is still capable of detecting races with
100 percent precision over the suite of applications that we
used for evaluation.

6.2 Evaluation

In this section we analyze and evaluate our solution in
terms of performance, by comparing it to the other tools
that have already been developed for Dynamic Race Detec-
tion. We have implemented our tool as a backend tool in the
dynamic analysis framework RoadRunner [10]. In order to
be able to provide a fair evaluation of our system with
respect to the traditional DJITþ protocol, we also developed
an implementation of DJITþ on the same framework. Fast-
Track, on the other hand, was already implemented on top
of RoadRunner, as it has been studied and developed by
Flanagan and Freund as well.

The applications that were chosen for evaluation are a
subset of the applications that are found in the DaCapo
Benchmarking Suite [36] and the Java Grande Benchmarking
Suite [37]. Those two suites are composed of Java programs
that have been designed to emulate non-trivial loads and be
representative of intensive calculations. The applications
that have been chosen exhibit multi-threaded behaviour and
very diverse semantics, in order to be able to test the system
on a relatively complete set of programs ranging from a very
high usage of synchronization to a high parallelization of the
workload. All experiments have been carried out on a system
with a Dual-Core Intel i7 2.8 GHz processor and 12 GB of
RAM running Linux Ubuntu 18.04 and Java 8, with multi-
threading enabled. Table 1 shows the execution time in milli-
seconds of each application, for each tool that has been
tested.We ran the code twice for warmup of caches. Then for
each configuration we took the readings of 10 runs and
reported the average. As the same platform was used for
REVC, DJITþ, and FastTrack, the average speedup ratios in
Table 1 should not be affected by the platform.

The first column shows the execution time of the applica-
tion without the overhead of a dynamic analysis tool, while
the following columns show the execution times of the same
applications when they are instrumented by RoadRunner
and processed by a dynamic analysis tool. Ourmodified ver-
sion of DJITþ which exploits the REVC is tested in various
flavors, first without any optimization technique, then using
the sizes 30, 5 and 1 for the Fixed Size Frame Window, in
varying combinations with and without the Differential
Merge Technique. As expected, when the REVC is used
without any limitation to the amount of frames that are
stored as part of the history, applications that perform fre-
quent synchronization, and therefore produce high growth
in the REVCs, use up all the available memory and return an
out-of-memory error (OOM). This is the case for avrora, h2,
luindex and lusearch. It is however interesting to notice that
specific applicationswhichmake frequent use of comparison
operations, but do not require high growth of the logical
clocks, perform the best without any form of optimization,
because the overhead of the additional processing or mainte-
nance of the required data structures for the optimization
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techniques is higher than the performance benefit that is
obtained. This behaviour can be noticed in particular for ray-
tracer and crypt.

On average, however, a reduced size of the frame win-
dow results in higher overall performance as would be rea-
sonable to expect. Similarly, the results show that the
Differential Merge Technique is able to increase the overall
performance by reducing the overhead of merge operations.
The last line clearly presents the performance comparison,
by showing the average speedup achieved over the DJITþ

protocol across all benchmarks. The configurations that
caused out-of-memory errors do not present an aggregate
average measurement as it would not be comparable to the
other configurations due to the lack of data.

Our REVC-based application is able to outperform by up
to 1.6 times the traditional VC-based DJITþ protocol, even
if it is not able to achieve performance that is comparable to
the state-of-the-art FastTrack protocol that employs Scalar
Clocks. We claim, however, that this result is a promising
achievement as it allows us to show that the REVC can have
practical applications, which are competitive for scenarios
in which no alternatives to a traditional Vector Clock imple-
mentation are available.

We have stated, when presenting the Fixed Size Frame
Window optimization, that activating such technique would
improve performance at the theoretical expense of precision,
as not all pairs of events remain comparable, and this can lead
tomissed race conditions.We also intuitively stated, however,
that because of the nature of the race condition detection prob-
lem, most races would have probably derived from events
that are very close (in terms of number of instructions) rather
than several frames apart. We have now corroborated such
intuition with some experimental data, as our results show
that all configurations that we have tried, down to a Fixed
Size Frame Window of just 1 frame, are able to detect the
same number of races for all applications, which also

corresponds to the same number of races found by DJITþ

and FastTrack. Therefore, for the applications tested, the pre-
cision of our tool, in all its configurations, is not affected by
the optimization techniques that are employed. Note that as
this is a dynamic race detection system, it will be only able to
detect races that happen in the current program run.

We list two limitations of our tool. Our practical imple-
mentation cannot be applied to any programming language
that does not run on the JVM. The concepts, however, are
general and should be replicable, but that will require some
further research in that field. Another limitation of the
bounded-space implementation of REVC is that for a new
application, one would have to guess the optimal size F of
the FSFW window so as to detect all data races, by a trial-
and-error approach or by comparing results with DJITþ or
FastTrack.

7 CONCLUSION

In this paper we have presented the Resettable Encoded
Vector Clock, a logical clock implementation that is built on
top of the EVC with the objective of tackling its main draw-
backs: high growth rate and unbounded growth. We have
defined and formalized such protocol, and showed its
applicability in both shared memory systems and message
passing systems. We have presented experimental results
that show how we have been able to achieve the desired
objectives. In particular, the REVC presents a linear growth
rate with respect to the total number of events being exe-
cuted in the system, which is in contrast with the exponen-
tial growth rate presented by the EVC. Furthermore, the
REVC’s definition allows to easily tune the implementation
to place an upper bound on the storage requirements. We
have showed how this result can be achieved through the
use of the FSFW at the theoretical expense of precision. We
have however argued that practical applications rarely

TABLE 1
Execution Time Comparison
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require unconstrained comparability among the events, and
we have showed how there exist real-world scenarios in
which the Bounded REVC can achieve no loss in precision.
We have also presented the DMT optimization technique, to
consistently mitigate the overhead of the merge operation
derived from a high number of stored frames. Finally, we
have explored a practical application of the REVC by apply-
ing it to the dynamic race detection problem, with the aim
of evaluating its performance with respect to other tradi-
tional logical clock implementations, and showing its practi-
cal applicability in real-world scenarios.

Our results show how the REVC is not just a theoretical
concept, but it is applicable to practical problems and can
compete in terms of both space and time requirements with
other known protocols. The REVC has been designed with
scalability and adaptability in mind. Its formulation con-
tains several intrinsic tradeoffs that can be easily tuned by
enabling or disabling optimization techniques, and choos-
ing between Bounded and Unbounded implementations.
These configurations provide the REVC with a much higher
adaptability to very different scenarios, which cannot be
found in other logical clock implementations. We believe
that these results are promising and conjecture that they can
be the starting point for a number of developments that can
help introduce new theoretical and practical tools to more
efficiently tackle several problems in distributed systems,
that require causality analysis as part of their solutions.

Lidbury and Donaldson [38] present a state-of-the-art
dynamic race detector for C/C++11, that also uses vector
clocks. Hence, the REVC idea proposed can be applied to
their C/C++11 framework. It would be interesting to mea-
sure the performance improvement that may be obtainable
by using REVC instead of vector clocks in their C/C++11
framework. This is a future research work item. Another
future work item is to examine the benefits of REVC in par-
allel programming frameworks such as OpenMP.
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