
Dispersion of Mobile Robots on Grids

Ajay D. Kshemkalyani1, Anisur Rahaman Molla2, and Gokarna Sharma3(B)

1 University of Illinois at Chicago, Chicago, USA
ajay@uic.edu

2 Indian Statistical Institute, Kolkata, India
molla@isical.ac.in

3 Kent State University, Kent, USA
sharma@cs.kent.edu

Abstract. The dispersion problem on graphs asks k ≤ n robots initially
placed arbitrarily on the nodes of an n-node anonymous graph to repo-
sition autonomously to reach a configuration in which each robot is on a
distinct node of the graph. This problem is of significant interest due to
its relationship to many other fundamental robot coordination problems,
such as exploration, scattering, load balancing, relocation of self-driven
electric cars (robots) to recharge stations (nodes), etc. The objective in
this problem is to simultaneously minimize (or provide trade-off between)
two fundamental performance metrics: (i) time to achieve dispersion and
(ii) memory requirement at each robot. The existing algorithms for trees
and arbitrary graphs either minimize time or memory but not both. In
this paper, we consider for the very first time the dispersion problem on
a grid graph embedded in the Euclidean plane and present solutions that
simultaneously minimize both the metrics. The grid graph is appealing
as it naturally discretizes the 2-dimensional Euclidean plane and finds
applications in many real-life robotic systems. Particularly, we provide
two deterministic algorithms on an anonymous grid graph that achieve
simultaneously optimal bounds for both the metrics.

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a
region is a problem of significant interest in distributed robotics, e.g., see [4,5].
Recently, this problem has been formulated in the context of graphs as follows:
Given any arbitrary initial configuration of k ≤ n robots positioned on the nodes
of an n-node graph, the robots reposition autonomously to reach a configuration
where each robot is positioned on a distinct node of the graph (which we call
the Dispersion problem) [1]. This problem has many practical applications,
for example, in relocating self-driven electric cars (robots) to recharge stations
(nodes), assuming that the cars have smart devices to communicate with each
other to find a free/empty charging station [1,6]. This problem is also important
due to its relationship to many other well-studied autonomous robot coordina-
tion problems, such as exploration, scattering, and load balancing [1,6].

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 183–197, 2020.
https://doi.org/10.1007/978-3-030-39881-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_16

184 A. D. Kshemkalyani et al.

Table 1. Results on Dispersion for k ≤ n robots on n-node square grids (for grids,
maximum degree Δ = 4 and diameter D = O(

√
n)). Time always remains sub-optimal

on a grid applying the arbitrary graph algorithms for Dispersion from the litera-
ture. Theorem 1 is simultaneously time-memory optimal for grid when k = Ω(n) and
Theorem 2 is for any k ≤ n.

Algorithm Memory/robot
(in bits)

Time
(in rounds)

Communication
model

Lower bound Ω(log k) Ω(
√

k) Local/global

Applying first algorithm of [6] O(k) O(n) Local

Applying second algorithm of [6] O(D) = O(
√

n) O(4D) = O(4
√
n) Local

Applying third algorithm of [6] O(log k) O(nk) Local

Applying algorithm of [7] O(logn) O(k log k) Local

Theorem 1 (this paper) O(log k) O(min(k,
√

n)) Local

Applying algorithm of [8] O(log k) O(k) Global

Theorem 2 (this paper) O(log k) O(
√

k) Global

The objective in this problem is to simultaneously minimize (or provide trade-
off between) two fundamental performance metrics: (i) time to achieve dispersion
and (ii) memory requirement at each robot. Several papers studied this problem
recently on trees and arbitrary graphs giving algorithms with increasingly better
bounds on both the metrics [1,6–8]. However, the existing algorithms (for trees
and arbitrary graphs) are only able to minimize either time or memory but not
both (details in related work). Particularly, some of the existing algorithms
obtained optimal memory bounds but no algorithm established optimal time
bounds. Therefore, the following question naturally arises: Is it possible to solve
Dispersion on some graph classes simultaneously minimizing both time and
memory? In this paper, we answer this question in the affirmative, considering
for the very first time Dispersion on a grid graph embedded in the Euclidean
plane. Surprisingly, we are not only able to simultaneously minimize both the
metrics but also able to achieve optimal bounds for both. Grid graph setting
is simple yet appealing as it naturally discretizes the 2-dimensional Euclidean
plane and finds applications in many real-life robotic systems, for example,
see [9,12].

Specifically, we provide two novel deterministic algorithms for Dispersion
on an anonymous grid graph (Table 1). Our first algorithm works in the local
communication model where a robot can only communicate with other robots
that are present at the same node. Our second algorithm works in the global
communication model where a robot can communicate with any other robot in
the graph possibly at different nodes (but the graph structure is not known to
robots). The global communication model seems stronger than the local model
at first sight, however many challenges that occur in the local model carryover
to the global model. For example, two robots in two neighboring nodes of G
cannot figure out just by communicating which edge of the nodes leads to each
other. Therefore, the robots still need to explore through the edges as in the

Dispersion of Mobile Robots on Grids 185

local model. The global communication model has been of much interest in the
past in distributed robotics, e.g., see [2,3,11]. Among the previous works [1,6–8]
on Dispersion, papers [1,6,7] considered the local communication model and
[8] considered the global communication model. Applying the arbitrary graph
results of [6–8] to a grid, memory bound obtained is optimal but time remains
sub-optimal.

Overview of the Model and Results. We consider a system of k ≤ n robots
are operating on an n-node graph G. G is assumed to be a connected, undirected
graph with m edges, diameter D, and maximum degree Δ. In addition, G is
anonymous, i.e., nodes have no unique IDs and hence are indistinguishable but
the ports (leading to incident edges) at each node have unique labels from [1, δ],
where δ is the degree of that node. The robots are distinguishable, i.e., they have
unique IDs in the range [1, k]. The robot activation setting is synchronous – all
robots are activated in a round and they perform their operations simultaneously
in synchronized rounds. Runtime is measured in rounds (or steps). We establish
the following result in the local model.

Theorem 1. Given any initial configuration of k ≤ n mobile robots on
an anonymous n-node square grid graph G, Dispersion can be solved in
O(min(k,

√
n)) time with O(log k) bits memory at each robot in the local com-

munication model.

Theorem 1 is simultaneously time-memory optimal when k = Ω(n)
since a time lower bound of Ω(D) trivially holds for Dispersion of n
robots on any graph [1] and the diameter of a n-node grid is D =
Ω(

√
n). Furthermore, Ω(log k) bits are necessary at a robot to distinguish

the robots from each other. We also extend Theorem 1 on a rectangular
grid G. We establish the following result in the global model.

Theorem 2. Given any initial configuration of k ≤ n mobile robots on an
anonymous n-node square grid graph G, Dispersion can be solved in O(

√
k)

time with O(log k) bits memory at each robot in the global communication model.

Theorem 2 is simultaneously time-memory optimal for Dispersion for any
k ≤ n. We also extend Theorem 2 for Dispersion on a rectangular grid graph
G.

Challenges and Techniques. The solutions proposed in the literature in the
local [1,6,7] and global [8] communication models for Dispersion on arbitrary
graphs and trees (grids were not considered before) heavily use a DFS (depth
first search) traversal approach. The best bound so far for grid in the local model
is obtained while applying the arbitrary graph algorithm of [7] (the bounds
obtained in [7] for arbitrary graphs are given in related work): O(k log k) time
with O(log k) bits at each robot (see Table 1). However, for a grid, the time lower
bound is Ω(D) = Ω(

√
k) for any k ≤ n and memory lower bound is obviously

Ω(log k) at each robot to distinguish the robots from each other (consider the
case of all k robots are at a single node of G initially). Therefore, we develop two

186 A. D. Kshemkalyani et al.

techniques for grids, one specific to the local model and another to the global
model. The technique for the local model uses the grid properties (instead of
a DFS traversal). Particularly, the grid technique in the local model uses the
idea of repositioning first all robots to the boundary nodes of G using the grid
properties (despite the grid being anonymous), then collect them to a boundary
corner node of G, and finally distribute them to the nodes of G leaving one
robot on each node. The technique for the global model uses the grid properties
with a limited use of the DFS traversal tailored specifically to the information
available to robots during execution due to the global model. Particularly, the
grid technique in the global model uses the DFS traversal for O(

√
k) time, then

forms a square boundary of perimeter 4(
√

k − 1), and disperses all k robots
within that boundary in O(

√
k) time. Although the techniques above seem rather

straightforward in high level, we need to overcome many challenges for them to
correctly work while putting together to solve Dispersion.

Related Work. As discussed above, for Dispersion, there are three previous
studies [1,6,7] in the local communication model. For k = n, Augustine and
Moses Jr. [1] proved a memory lower bound of Ω(log n) bits at each robot and
a time lower bound of Ω(D) (Ω(n) on arbitrary graphs) for any determinis-
tic algorithm on any graph. They then provided two algorithms for arbitrary
graphs for k = n: (i) The first algorithm with O(mn) time using O(log n) bits
at each robot and (ii) The second algorithm with O(m) time using O(n log n)
bits at each robot. Kshemkalyani and Ali [6] provided an Ω(k) time lower bound
for arbitrary graphs for any k ≤ n. They then provided three deterministic
algorithms for arbitrary graphs: (i) The first algorithm with O(m) time using
O(k log Δ) bits at each robot, (ii) The second algorithm with O(ΔD) time using
O(D log Δ) bits at each robot, and (iii) The third algorithm with O(mk) time
using O(log(max(k,Δ))) bits at each robot. Recently, Kshemkalyani et al. [7] pro-
vided an algorithm for arbitrary graphs that runs in O(min(m, kΔ) · log k) time
using O(log n) bits at each robot. There is one previous study [8] for Dispersion
in the global communication model, which provides a deterministic algorithm for
arbitrary graphs that runs in O(min(m, kΔ)) time using O(log(max(k,Δ))) bits
at each robot, improving the time in [7] in the local model by an O(log k) factor.
Randomized algorithms for Dispersion are presented in [10] where the random
bits are used to reduce the memory requirement. Other closely related works to
Dispersion are omitted due to space constraints.

Roadmap. We discuss model details in Sect. 2. We present an algorithm in the
local model in Sect. 3. We present an algorithm in the global model in Sect. 4.
Finally, we conclude in Sect. 5 with a short discussion on possible future work.
Due to space constraints, many details and proofs are deferred to a full version.

2 Model Details and Preliminaries

Grid Graph. Let G = (V,E) be an n-node grid graph embedded in the
2-dimensional Euclidean plane, i.e., |V | = n and |E| = m = O(n). G is assumed

Dispersion of Mobile Robots on Grids 187

to be connected, unweighted, and undirected with no holes. G is anonymous, i.e.,
nodes do not have identifiers but, at any node, its incident edges are uniquely
identified by a label (aka port number) in the range [1, δ], where δ ≤ 4 is the
degree of that node. The maximum degree of G is Δ = 4, which is the maxi-
mum among the degree δ of the nodes in G. Any edge e connecting two nodes
u, v ∈ G has two port numbers associated with it, one at the end of e towards
u and another at the end of e towards v. We assume that there is no correla-
tion between two port numbers of an edge. For a grid graph G, the nodes on
2 boundary rows and 2 boundary columns are called boundary nodes and the 4
corner nodes on boundary rows (or columns) are called boundary corner nodes.
In an n-node square grid graph G, there are exactly 4

√
n − 4 boundary nodes.

Any number of robots are allowed to move along an edge at any time. The grid
nodes do not have memory, i.e., they are not able to store any information.

Robots. Let R = {r1, r2, . . . , rk} be a set of k ≤ n robots residing on the nodes
of G. For simplicity, we sometime use i to denote robot ri. No robot resides on
the edges of G, but one or more robots can occupy the same node of G. Each
robot has a unique �log k�-bit ID taken from [1, k]. When a robot moves from
node u to node v in G, it is aware of the port of u it used to leave u and the port
of v it used to enter v. Furthermore, it is assumed that each robot is equipped
with memory to store information, which may also be read and modified by
other robots present on the same node.

Communication Model. We have two communication models: local and
global. In the local communication model, a robot can only communicate with
other robots present on the same node. In contrast, in the global communication
model, a robot is capable to communicate with any other robot in the graph
G, irrespective of their positions in the graph. However, they will not have the
position information as graph nodes are anonymous and there is no correlation
between two port numbers of an edge.

Cycle. At any time a robot ri ∈ R could be active or inactive. When a robot
ri becomes active, it performs the “Communicate-Compute-Move” (CCM) cycle
as follows.
– Communicate: ri can communicate with and observe the memory of some

other robot rj ∈ R (at the same node or a different node) depending on the
communication model used. Robot ri can also observe its own memory.

– Compute: ri may perform an arbitrary computation using the information
observed during the “communicate” portion of that cycle. This includes deter-
mination of a (possibly) port to use to exit vi and the information to store
in the robot rj at vi.

– Move: At the end of the cycle, ri writes new information (if any) in the
memory of rj at vi, and exits vi using the computed port to reach to a
neighbor v′

i of vi. After entering v′
i, it will keep track of the port at v′

i from
which it entered v′

i.

Time and Memory Complexity. We consider the synchronous setting where
every robot is active in every CCM cycle and they perform the cycle in a syn-

188 A. D. Kshemkalyani et al.

Algorithm 1: Grid Disperse(k) in the local communication model
1 Input: An n-node square grid G with k ≤ n robots positioned arbitrarily on its

nodes.
2 if k ≥ √

n then
3 Stage 1: the robots not already on the boundary nodes move to the

boundary nodes;
4 Stage 2: the robots not on the boundary corner nodes move to the corner

nodes;
5 Stage 3: the robots not on the boundary corner nodes move to a corner node;

6 Stage 4: the robots distribute on the nodes of a grid side, at most
√

k on
each node;

7 Stage 5: the robots disperse with one robot on a node;
8 else
9 The robots move in a direction from their position to find a free node to

settle;

chrony. Therefore, time is measured in rounds or steps (a cycle is a round or
step). Another parameter is memory which comes from a single source – the
number of bits stored at each robot.

Mobile Robot Dispersion. Dispersion can be formally defined as follows.

Definition 1 (Dispersion). Given any n-node anonymous grid G = (V,E)
having k ≤ n mobile robots positioned initially arbitrarily on its nodes, the robots
reposition autonomously to reach a configuration where each robot is on a distinct
node of G.

The goal is to optimize two performance metrics: (i) Time – the number of
rounds (steps), and (ii) Memory – the number of bits stored at each robot.

3 Algorithm in the Local Communication Model
(Theorem 1)

We present and analyze an algorithm, Grid Disperse(k), that solves Disper-
sion for k ≤ n robots on n-node square grid graphs in O(min(k,

√
n)) time using

O(log k) bits at each robot in the local communication model. The high level
pseudocode is given in Algorithm 1. We discuss algorithm Grid Disperse(k), k =
Ω(n), here. Grid Disperse(k), k ≤ o(n), and the algorithm for rectangular grid
graphs for any k ≤ n are omitted here and discussed in a full version due to
space constraints.

High Level Overview of the Algorithm. Grid Disperse(k), k = Ω(n), for n-
node square grid graphs has five stages, Stages 1–5 (Algorithm 1), which execute
sequentially one after another. The goal in Stage 1 is to move all the robots (not
already on boundary nodes) to position them on the boundary nodes of G. The
goal in Stage 2 is to move the robots, now all on the boundary nodes, to the

Dispersion of Mobile Robots on Grids 189

four boundary corner nodes of G. The goal in Stage 3 is to collect all robots,
now on four corner nodes, at one corner node of G. The goal in Stage 4 is to
distribute robots equally on the nodes of a boundary row or column of G. The
goal in Stage 5 is to distribute the robots, now on the nodes of a boundary row
or column, so that each node of G has exactly one robot positioned on it. We will
show that each stage can be performed correctly in O(

√
n) rounds, giving overall

O(
√

n) time complexity for Grid Disperse(k). Algorithm Grid Disperse(k) for
k ≤ o(n) differentiates the cases of

√
n ≤ k ≤ o(n) and k <

√
n and handles

them through separate algorithms. For
√

n ≤ k ≤ o(n), we provide a O(
√

n)-
time algorithm, and for k <

√
n, we provide a O(k)-time algorithm, giving

overall O(min(k,
√

n)) runtime for any k ≤ n. We then extend all these ideas for
Dispersion on rectangular grid graphs.

Algorithm for Square Grid Graphs, k = Ω(n). We describe in detail how
Stages 1–5 of Grid Disperse(k) are executed for square grids. The high level
pseducode is in Algorithm 1. Figure 1 illustrates the working principle of
Grid Disperse(k) for n = k = 49. Each robot ri ∈ R stores five variables
ri.round (initially 0), ri.stage (values 1 to 5, initially null), ri.port entered
(values 1 to 4, initially null), ri.port exited (values 1 to 4, initially null), and
ri.settled (values 0 and 1, initially 0). We assume that in each round ri updates
ri.round ← ri.round + 1. Moreover, we denote the rounds of each stage by α.β,
where α ∈ {1, 2, 3, 4, 5} denotes the stage and β denotes the round within the
stage. Therefore, the first round (α+1).1 for Stage α+1 is the next round after
the last round of Stage α.

Stage 1. The goal in Stage 1 is to reposition the robots that are not already
on boundary nodes of G to the boundary nodes of G. The robots that are
already on (or reach during Stage 1) the boundary nodes do nothing until Stage
1 finishes. The idea here is, for each robot independently, to choose a port of a
non-boundary node to exit in the current round based on the port from which it
entered that non-boundary node in the previous round. Pick a robot ri ∈ R at
some node v ∈ G which is not the boundary node. In round 1.1, ri does not have
information on the port of v from which it entered v (ri has not moved yet).
Therefore, it randomly picks one of the four ports at v and exits v. Suppose, in
the beginning of round 1.2, ri reaches a neighbor of v, say w. If w is a boundary
node, we are done as ri can differentiate a boundary node from a non-boundary
node (a boundary node has three ports instead of four ports at a non-boundary
node). While reaching w, the model provides ri with the information on the
port p at w from which ri entered w. That means, in round 1.2 and after, ri
has information on port from which it entered the node in the previous round
where it is positioning in the current round. Therefore, in round 1.2, ri moves
as follows. Besides port p, w has three other ports. ri orders (in clockwise or
counterclockwise direction) the three remaining ports at w starting from p. It
then picks the second port in either order and exits w using that port. The
process is then repeated by ri in round 1.3 and after until it reaches a boundary
node.

190 A. D. Kshemkalyani et al.

Fig. 1. An illustration of the five stages of algorithm Grid Disperse(k) for n = k = 49:
(a) An initial configuration, (b) Stage 1 that moves robots to boundary nodes of G,
(c) Stage 2 that moves robots to four boundary corner nodes of G, (d) Stage 3 that
moves the robots to one boundary corner node of G, (e) Stage 4 that distributes robots
equally in a row (or a column) with each node having

√
n robots, and (f) Stage 5 that

distributes robots so that each node of G having exactly one robot each. The numbers
denote the number of robots positioned at that node.

Lemma 1. Pick a robot ri at non-boundary node v ∈ G. Let ri moves to a
neighbor node w of v in round 1.1. Let L−→vw be a line with one end v and passing
through w. In round 1.2 and after (until ri reaches a boundary node), ri moves
following the nodes of G that are on L−→vw in the same direction in each round.

Proof. Let the four ports of v be pv1, pv2, pv3, and pv4. Suppose ri exits v using
pv1 in round 1.1 and reaches node w in the beginning of round 1.2. If w is a
boundary node, we are done. Otherwise, it remains to show that in round 1.2
and after, ri always moves on the nodes of L−→vw in the same direction. Let pw1

be the port at w from which ri entered w in round 1.1. The three remaining
ports at w are pw2, pw3, and pw4. Since ri picks second port in the clockwise (or
counterclockwise) order in round 1.2 and after, the port ri picks at w is always
opposite port of port pw1 that it used to enter w from v in round 1.1. Notice
that ri is aware of pw1 while at w. Therefore, in the beginning of round 1.3,
ri reaches a neighbor node of w on L−→vw (opposite of v). Continuing this way,
the move decision in round 1.3 (and after) resembles the approach of round 1.2,
takes ri farther way from v on L−→vw in each subsequent round. �	
Lemma 2. At the end of Stage 1, all k = Ω(n) robots in any initial configura-
tion are positioned on boundary nodes of G. Stage 1 finishes in

√
n − 1 rounds.

Stage 2. The goal in Stage 2 is to collect all k = Ω(n) robots on boundary
nodes of G to four boundary corners of G. Let Lab be a boundary row or column
of G passing through boundary corners a, b of G. For the rest three bound-
ary row or columns the ideas are analogous and run in parallel. In Stage 2,
Grid Disperse(k) collects the robots on the nodes on Lab to either node a or
node b or some on a and some on b. The idea here is to move each robot inde-
pendently in a direction on the boundary row or column of the grid until the

Dispersion of Mobile Robots on Grids 191

robot reaches a boundary corner node. In this process, while selecting a port to
leave from a current node to the next node in the boundary row or column, the
robot may reach to a non-boundary node, in which case it will return back to the
boundary node in the next round using the same port from which it entered the
non-boundary node. Details are in a full version. We have the following lemma.

Lemma 3. At the end of Stage 2, all k = Ω(n) robots in G are positioned on
(at most) 4 boundary corner nodes of G. Stage 2 finishes in 3(

√
n − 1) rounds

after Stage 1.

Stage 3. The goal in Stage 3 is to collect all k = Ω(n) robots on a boundary
corner node of G. Let a, b, c, d be the four boundary corner nodes of G. Suppose
the smallest ID robot r1 ∈ R is positioned on a. Pick any robot ri
= r1. If ri
is already on a, it does nothing in Stage 3. Otherwise, it is on b, c, or d (say b)
and it moves in Stage 3 to reach a. Since ri needs to move on the boundary of
G, the technique of Stage 2 can be modified for ri so that it reaches a following
the boundary nodes (details omitted).

Lemma 4. At the end of Stage 3, all k = Ω(n) robots in G are positioned on a
boundary corner nodes of G. Stage 3 finishes in 9(

√
n − 1) rounds after Stage 2.

Stage 4. The goal is Stage 4 is to distribute k = Ω(n) robots (that are at a
boundary corner node a after Stage 3) to a boundary row or column so that there
will be no more than

√
n robots on each node. In the first round, the smallest

ID robot r1 moves to pick a direction (i.e., row or a column). From the second
round onwards, the idea similar to Stage 2 is used to move the robots on the
boundary row or column leaving

√
n robots on each node of that row or column.

Details are omitted.

Lemma 5. At the end of Stage 4, all k = Ω(n) robots in G are distributed on a
boundary row or column of G so that there will be exactly

√
n or less robots on

a node. Stage 4 finishes in 3
√

n − 1 rounds after Stage 3.

Stage 5. The goal in Stage 5 is to distribute robots to nodes of G so that there
will be at most one robot on each node. Let c be a boundary node with

√
n or

less robots on it and ri is on c. In round 5.1, if ri is the largest ID robot rmax

among the robots on c, it settles at c assigning ri.settled ← 1. Otherwise, in
round 5.1, ri moves as follows. While executing Stage 4, ri stores the port of
c it used to enter c (say ri.port entered = pc1) and the port of c used by the
robot that left c exited through (say ri.port exited = pc2). Robot ri then exits
through port pc3, which is not ri.port entered and ri.port exited. This way ri
reaches a non-boundary node c′. All other robots except rmax also reach c′ in
the beginning of round 5.2. In round 5.2, the largest ID robot rmax′ settles at c′.
The other at most

√
n−2 robots exit c′ using the port of c′ selected through the

port ordering technique described in Stage 1. This process then continues until
a single robot remains at a node z, which settles at z.

192 A. D. Kshemkalyani et al.

Lemma 6. At the end of Stage 5, all k = Ω(n) robots in G are distributed such
that there is exactly one robot on a node of G. Stage 5 finishes in

√
n rounds

after Stage 4.

Theorem 3. Grid Disperse(k) solves Dispersion correctly for k = Ω(n)
robots on an n-node square grid graph G in O(

√
n) rounds with O(log n) bits

at each robot.

Proof. Each stage of Grid Disperse(k) executes sequentially one after another.
Therefore, the correctness of Grid Disperse(k) follows combining the correct-
ness proofs of Lemmas 2–6. The time bound of O(

√
n) rounds also follows

summing up the O(
√

n) rounds of each stage. Regarding memory, variables
port entered, port exited, settled, and stage take O(1) bits (Δ = 4 for grids),
and round takes O(log n) bits. Moreover, two or more robots at a node can be
differentiated using O(log k) bits, for k = Ω(n). Therefore, a robot needs in total
O(log n) bits. �	

We have the following theorem for k ≤ o(n). Details are omitted.

Theorem 4. Grid Disperse(k) solves Dispersion correctly for k ≤ o(n) robots
on a square grid G in O(min(k,

√
n)) rounds with O(log k) bits at each robot.

Proof of Theorem 1: Theorems 3 and 4 together prove Theorem 1 for any
k ≤ n. �	

Algorithm 2: Grid Disperse Global(k) in the global communication
model
1 Input: An n-node square grid G with k ≤ n robots positioned arbitrarily on its

nodes.
2 Stage 1: For each node of G with two or more robots, run a DFS traversal

algorithm of Kshemkalyani et al. [8] for W = 48
√

kΔ rounds;
3 Stage 2: If a DFS traversal tree component formed in Stage 1 has 14

√
k or

more nodes, then (i) divide the component into sub-components having 6
√

k to
14

√
k − 1 nodes, and (ii) collect all the robots on each sub-component into a

node in that sub-component;
4 Stage 3: The nodes in G with at least 6

√
k robots positioned on them form a

square boundary of length 4(
√

k − 1) having 4(
√

k − 1) robots on the boundary
(the remaining nodes of G has at most one robot on each);

5 Stage 4: If two or more square boundaries overlap, make them non-overlapping
by coalescing some square boundaries with others;

6 Stage 5: If there are robots, if any, in the interior of each square boundary,
collect those robots to a corner of that boundary such that only that corner has
multiple robots;

7 Stage 6: Disperse the multiple robots on a single corner of each square
boundary to the nodes in the interior of that boundary;

Dispersion of Mobile Robots on Grids 193

4 Algorithm in the Global Communication Model
(Theorem 2)

We present and analyze an algorithm, Grid Disperse Global(k), that solves
Dispersion for k ≤ n robots on n-node square grid graphs in O(

√
k)

time with O(log k) bits at each robot in the global model. We discuss
Grid Disperse Global(k) for square grids here. The algorithm for rectangular
grid graphs is in a full version.

High Level Overview of the Algorithm. Grid Disperse Global(k) for
square grid graphs has six stages, Stage 1–6, which execute sequentially one
after another. Grid Disperse Global(k) works for any k ≤ n. Each stage runs
for O(

√
k) rounds, giving overall O(

√
k) runtime. Stage 1 runs a DFS traversal

in parallel for the nodes of G with at least two robots in the initial configu-
ration. Stage 1 forms one or more DFS traversal tree components. Each DFS
traversal tree component is a graph. Stage 2 divides each DFS traversal tree
component with 14

√
k or more nodes into sub-components containing between

6
√

k to 14
√

k − 1 nodes. The robots on a sub-component (say CC) are then
collected to a node (say vCC) on that sub-component. Stage 3 is then initiated
by the nodes of grid G (for example, node vCC of sub-component CC) having
at least 6

√
k robots. They create a square boundary of length 4(

√
k − 1) so that

there will be exactly 4(
√

k−1) robots positioned on the square boundary. If there
is overlapping between two or more square boundaries constructed in Stage 3,
Stage 4 makes them non-overlapping through merging all the square boundaries
to one. Stage 5 collects the robots, if any, that are in the interior of each square
boundary to a boundary corner node of the square boundary (again the node is
vCC for the sub-component CC). Finally, Stage 6 first distributes the robots on
the boundary corner node (vCC for sub-component CC) equally to the nodes on
a row or a column of the square boundary and then disperses those robots to the
nodes inside the square boundary, one on each node, achieving a Dispersion
configuration.

Algorithm for Square Grid Graphs, k ≤ n. We now describe in detail
how Stages 1–6 of Grid Disperse Global(k) are executed for n-node square grid
graphs. The high level pseudocode is given in Algorithm 2. We also abstract some
details on what variables are used and how they are used to provide better read-
ability for the overall algorithm. The techniques are highly involved compared
to Sect. 3.

Stage 1. Stage 1 is for the nodes of G which have at least two robots positioned
on them in the initial configuration. Stage 1 runs a DFS traversal algorithm for
arbitrary graphs developed Kshemkalyani et al. [8] in the global communication
model. Kshemkalyani et al. [8] run this DFS traversal until a Dispersion config-
uration is achieved, and hence the runtime becomes min (2 · 4m, 2 · 2kΔ) rounds
for arbitrary graphs. In grid, running this algorithm until reaching a Dispersion
configuration needs 16k rounds (in a n-node square grid m ≤ 4n, Δ = 4, and
k ≤ n), which is clearly sub-optimal. Recall that our goal is to achieve optimal

194 A. D. Kshemkalyani et al.

runtime of O(
√

k) rounds in grids. Therefore, we run the DFS traversal of [8]
in the global communication model only for 48

√
kΔ rounds and derive some

properties to achieve a O(
√

k)-round algorithm for a grid.

Lemma 7. Let W = 48
√

kΔ. If the DFS traversal forming a DFS tree compo-
nent stops before W rounds, there is exactly one robot on each node of that DFS
tree component. IF the DFS traversal does not stop until W rounds, there will be
≥ 6

√
k nodes (with at least a robot on each node) on the DFS tree component.

Stage 2. Consider a connected DFS tree component CCi with ID CIDi formed
in Stage 1. Stage 2 will run for CCi if it has at least a node with two
or more robots on it. For simplicity, we denote such DFS tree components
by CCi(not settled). Robots in the component CCi(not settled) have knowl-
edge of the component ID CIDi of CCi(not settled). We have from Lemma 7
that CCi(not settled) must have at least 6

√
k nodes. Suppose CCi(not settled)

has Xi ≥ 6
√

k nodes. Then, CCi(not settled) must have Yi > Xi robots. If
CCi(not settled) has 6

√
k ≤ Xi < 14

√
k − 1 nodes, we collect all the robots

of CCi(not settled) to the node of CCi(not settled) that is CIDi. If there
are Xi ≥ 14

√
k nodes on CCi(not settled), we partition CCi(not settled) into

sub-components CCsub,j
i (not settled) such that each CCsub,j

i (not settled) has
between 6

√
k and 14

√
k − 1 nodes on it. After this, the robots on the nodes of

each sub-component CCsub,j
i (not settled) are collected to a node in that sub-

component. Note that we collect only for sub-components CCsub,j
i (not settled)

which have Yi > Xi (or at least a node on that sub-component has two robots
on it). It remains to discuss two techniques:
(a) How the partitioning of a connected DFS tree component CCi(not settled)

into sub-components CCsub,j
i (not settled) is achieved.

(b) How the collection of the robots on the nodes of each sub-component
CCsub,j

i (not settled) into a node in that sub-component is achieved.
The details are in a full version. We have the following lemma after Stage 2.

Lemma 8. At the end of Stage 2, there is either no, one, or at least 6
√

k robots
on the nodes of grid G. Stage 2 finishes in O(

√
k) rounds.

Stage 3. Stage 3 is initiated in parallel by the grid nodes which have at least
6
√

k robots positioned on them at the end of Stage 2 (Lemma 8). Consider a
node w ∈ G which has at least 6

√
k robots on it at the end of Stage 2. The goal

is to form a square boundary SBw of length 4(
√

k−1) containing one robot each
on the boundary nodes (except node w which will have at least 2

√
k +1 robots).

This boundary helps to disperse all k robots in the interior. Details are omitted
on how the square boundary is formed.

Lemma 9. At the end of Stage 3, for each node of G with at least 6
√

k robots
on it at end of Stage 2, a square boundary of length 4(

√
k−1) is correctly formed

with each boundary node having one robot positioned on it, with only exception of
a node on the boundary which has at least 2

√
k + 1 robots on it. Stage 3 finishes

in O(
√

k) rounds.

Dispersion of Mobile Robots on Grids 195

Stage 4. The goal in Stage 4 is make the square boundaries SBw non-
overlapping. Consider a square boundary SBi with ID SIDi (the smallest ID
robot on node w for the square boundary SBw). All the robots on the boundary
of SBi know they belong to the boundary SBi. In the first round of Stage 4, if
any robot ri of SBi has some other robot rj with SIDj colocated on the same
node, it broadcasts a Overlap(SIDi, SIDj) message. This is to indicate that the
square boundary SBi has met the square boundary SBj , j
= i. All the robots
listen to such broadcasts and build an undirected square boundary overlapping
graph SB Overlap(B,E′), where B is the set of square boundary IDs, and edge
(SIDi, SIDj) indicates that Overlap(SIDi, SIDj) message has been received.
There might be one or more SB Overlap(B,E′) components and Stage 4 runs
in parallel for each of those. A maximal independent set (MIS) is computed for
each component and the square boundaries which are not part of the MIS will
merge with the neighboring square boundary that is part of the MIS. Details are
omitted.

Lemma 10. At the end of Stage 4, all square boundaries are non-overlapping.
The 4(

√
k−1) boundary nodes in each square boundary have a robot each, except

a node which has at least 2
√

k + 1 robots. Stage 4 finishes in O(
√

k) rounds.

Stage 5. At the end of Stage 4, all the remaining square boundaries are non-
overlapping. The only problem might be that there are robots in the interior of
the square boundaries. This is particularly because of DFS traversal trees that
stopped before W rounds in Stage 1 and the robots of square boundaries from
Stage 4 not collected yet. The goal in Stage 5 is to collect those robots, if any,
inside each square boundary SBi to the SIDi node so that at the end of Stage
5, there are robots only the boundary of each SBi. A challenge is how to collect
robots if any in the interior of SBi in O(

√
k) rounds. For this,

√
k−2 robots first

move in a row or column of SBi and then to the interior of SBi until reaching the
opposite row or column, collecting all the robots that are found on the traversal.
They then return to SIDi with all the robots (if any) in the interior of SBi.
Details are in a full version. We have the following lemma.

Lemma 11. At the end of Stage 5, there will be no robot in the interior of the
non-overlapping square boundaries obtained in Stage 4. Only a corner of square
boundaries have at least 2

√
k + 1 robots. Stage 5 finishes in O(

√
k) rounds.

Stage 6. At the end of Stage 5, we have the following: (i) All square boundaries
SBi are non-overlapping, (ii) There is no robot in the interior of the square
boundaries, and (iii) Each boundary node of SBi has exactly one robot on it
except one corner SIDi which has at least Ti ≥ 2

√
k + 1 robots. The goal in

Stage 6 is to disperse Ti − 1 robots to the interior nodes in SBi. Stage 6 uses
the ideas as in Stages 4 and 5 of Sect. 3 modified appropriately. Details are in a
full version.

196 A. D. Kshemkalyani et al.

Lemma 12. At the end of Stage 6, all k ≤ n robots are distributed such that
there is at most one robot on a node of G. Stage 6 finishes in O(

√
k) rounds.

Theorem 5. Grid Disperse Global(k) solves Dispersion correctly for k ≤ n
robots on an n-node square grid G in O(

√
k) rounds with O(log k) bits at each

robot.

Proof. The correctness and runtime of Grid Disperse Global(k) follows com-
bining Lemmas 7–12. Regarding memory, Grid Disperse Global(k) uses O(1)
number of different variables to be stored by each robot, taking O(log k) bits for
each variable. �	

Proof of Theorem 2: Theorem 5 proves Theorem 2 for any k ≤ n. �	

5 Concluding Remarks

We have studied the robot Dispersion problem on graphs with the object
of simultaneously minimizing two fundamental performance metrics: time and
memory at each robot. We have presented two algorithms for Dispersion of
k ≤ n robots considering for the very first time grid graphs that find applications
in many real-life robotic systems and provide simultaneously optimal bounds for
both the metrics. The first result is for the local communication model and the
second result is for the global communication model. The existing results in the
literature were only for trees and arbitrary graphs and they were not able to
simultaneously minimize both the metrics.

For future work, it will be interesting to solve Dispersion on grids with time
O(

√
k) in the local model for any k ≤ n. Another interesting direction will be to

extend our algorithms to semi-synchronous and asynchronous settings.

References

1. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-
time trade-offs. In: ICDCN, pp. 1:1–1:10 (2018)

2. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by
energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018)

3. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

4. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms
for rapidly dispersing robot swarms in unknown environments. In: WAFR, pp.
77–94 (2002)

5. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online
dispersion algorithms for swarms of robots. In: SoCG, pp. 382–383 (2003)

6. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In:
ICDCN, pp. 218–227 (2019)

7. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on
arbitrary graphs. CoRR, abs/1812.05352 (2018). (Accepted to ALGOSENSORS
2019)

Dispersion of Mobile Robots on Grids 197

8. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the
global communication model. CoRR, abs/1909.01957 (2019). (Accepted to ICDCN
2020)

9. Martnez, H., Cnovas, J.P., Zamora, M.A., Skarmeta, A.G.: i-Fork: a flexible AGV
system using topological and grid maps. In: ICRA, pp. 2147–2152 (2003)

10. Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of random-
ness. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–
500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 30

11. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with
rectangular obstacles. In: SPAA, pp. 27–36 (2012)

12. Sharma, G., Dutta, A., Kim, J.-H.: Optimal online coverage path planning with
energy constraints. In: AAMAS, pp. 1189–1197 (2019)

https://doi.org/10.1007/978-3-030-14812-6_30

	Dispersion of Mobile Robots on Grids
	1 Introduction
	2 Model Details and Preliminaries
	3 Algorithm in the Local Communication Model (Theorem 1)
	4 Algorithm in the Global Communication Model (Theorem 2)
	5 Concluding Remarks
	References

