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Abstract

The complex events in distributed applications such as industrial process control, avionics,
navigation, planning, robotics, diagnostics, virtual reality, and temporal and geographic databases,
are realistically modeled by nonatomic events. This paper derives and studies causality relations
between nonatomic distributed events in the execution of a complex distributed application. Such
causality relations are useful because they provide a fine level of discrimination in the specification
of the relative timing relations and synchronization conditions between the nonatomic events. The
paper then proposes a set of axioms on the proposed causality relations. The set of axioms
provides a mechanism for temporal and spatial reasoning with the set of relations and can be used
to derive all possible implications from any valid predicate on the proposed relations. © 1997
Elsevier Science B.V.

Keywords: Time; Causality; Distributed system; Temporal and spatial reasoning; Interval

1. Introduction

The notion of grouping elementary events in a system execution into higher level
nonatomic events is useful for event abstraction. Nonatomic events are modeled in dis-
tributed applications such as industrial process control, navigation, planning, robotics,
virtual reality, coordination in mobile systems, and temporal and geographic databases.
These applications deal with nonatomic events that are nonlinear, i.e., nonatomic events
for which at least some of their component atomic events occur at more than a single
point in space concurrently [ 11, 14]. For these applications, the traditional causality rela-
tion [24] defined between individual points in space-time is inadequate when applied to
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the abstracted nonatomic events, for the following reasons. (i) The interaction between
two nonatomic events cannot be captured at a fine level of discrimination using various
degrees of relative timing constraints, as required for a sophisticated and realistic mod-
eling of these applications. (ii) The synchronization conditions between two nonatomic
events cannot be richly specified using various degrees of relative timing constraints, as
required for an intelligent and realistic modeling of these applications. Therefore, a rich
set of causality relations that allows the expression of various degrees of relative timing
constraints to accurately represent and specify real-life relationships between nonatomic
events needs to be defined. We also need a corresponding system of axioms to reason
intelligently with the proposed relations. We propose and examine causality relations
between nonatomic nonlinear events in a distributed system and provide a set of axioms
to reason with such relations.

We use the space-time model for a system execution. This model is a poset event
structure model as in [4,11, 14,26]. Consider a poset (E, <) where < is an irreflexive
partial ordering that can be either the precedence relation “precedes”, or the causality
relation “causes” which is a modalized precedence relation ( “precedes” plus some modal
statement ). We prefer to let < denote the causality relation because the nonatomic events
between which relations are derived are application-specific groupings of atomic events,
and an application-specific modal statement is associated with the precedence relation.
Thus, (E, <) represents points in space-time which are the most primitive atomic events
related by the causality relation. Elements of E are partitioned into local executions at
coordinates in the space dimensions. Each local execution E; is a linearly ordered set of
events in partition i. An event e in partition / is denoted e;.

Nonatomic nonlinear events are now defined in our system model as follows. Let £
denote the power set of E. Let A(# 0) C (£ —0). Thus, there is an implicit one-many
mapping from 4 to E. Each element A of A is a nonempty subset of E, and is termed
an interval or a nonatomic event.'

Relations between time durations and between instants have been extensively studied
in the literature on time and knowledge representation, temporal reasoning, and interval
algebras; several axiom systems have been proposed for these relations. Some represen-
tative literature is [ 1-8,12, 13, 15-18,20-25]. This literature studied causality relations
between instants or between durations at a single point in space, or between intervals
in relativistic space-time. In all these studies, causality relations were considered only
between linear intervals or durations.

The study of nonatomic poset intervals, i.e., nonatomic nonlinear intervals, is im-
portant in developing intelligence and in knowledge representation and reasoning in a
distributed system for applications described earlier. Time in nonatomic poset intervals
has been studied in the context of convex and nonconvex intervals in two or more
dimensions [24]. Properties of time in nonlinear intervals have also been studied in
the context of branching time which represents different possible courses of events with
only one course happening [9,24]. However, in the context of relativistic space-time
which is our system model, there is no prior treatment of nonlinear time or causality
relations between nonatomic poset intervals, except for the following.

"' We will use the term “interval” interchangeably with “event” when referring to nonatomic events.
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Table 1

Relations in [11]

Relation r Expression for r(X,Y)
R1 VxeXVyel x<y
Rl VyeYVxeX, x<y
R2 VxeX3dyel x<y
R2! dyeYVxeX, x<y
R3 IxeXVyey x<y
R3' VveYdxeX, x<y
R4 IxeX3Iyel x<y
R4’ dyeYdxeX x<y

Table 2

Inclusion relationships between relations, from [11]

Relation of row header Rl R2 R3 R4
to column header

Rl = C C C
R2 | = I c
R3 > I - c
R4 - 2 3 =
Lamport defined system executions using two relations —— and ——— between

primitive nonatomic elements and provided axioms on these relations [14]. Informally,
these relations are as follows. Let a nonatomic event be a set of atomic events. For
two nonatomic events X and Y in 4, X —— Y iff every atomic event in X causally
precedes every atomic event in Y. X ——— Y iff some atomic event in X causally
precedes some atomic event in Y. The axioms in [14] were examined in [1].

In an earlier paper [11], we showed that the two relations defined by Lamport are not
sufficient to capture the essential temporal properties of system executions and specify
relative timing constraints between nonatomic events in distributed systems. In [11],
we proposed a set of new relations between nonatomic events in a distributed system
to capture a spectrum of relative timing constraint specifications, without assuming a
global time axis. These relations R1-R4 and R1’-R4’ from [11] are expressed in terms
of the quantifiers over X and Y in Table 1.

Note that all the relations in Table 1 are not independent relations. Table 2 gives
the inclusion relationship among the causality relations R1-R4, where each cell in the
grid indicates the relationship of the row header to the column header. The notation
for the inclusion relationship between causality relations on nonatomic events is as
follows. The inclusion relation “is a subrelation of”’ is denoted “C”. “21” is the inverse
of C. “=" stands for equality between relations in addition to its standard usage as the
equality in other contexts. For two causality relations », and ry, we define 7| || r2 to
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be (1 £ rp Arp £ ry). The relations {R1, R2, R3, R4} form a lattice hierarchy ordered
by C.

Table 1 also defined relations R1’, R2’, R3’, and R4’, for which the order of quantifiers
was reversed from the order in R1, R2, R3, and R4, respectively. Observe that the
relations R2' and R3’ are different from relations R2 and R3, respectively, when applied
to posets. However, for a linear interval, they are the same as R2 and R3, respectively.
R1’ and R4’ are the same as R1 and R4, respectively.

In this paper, we extend the above hierarchy of relations in [11] by presenting new
relations that form an “exhaustive” set of causality relations between nonatomic poset
events using first-order predicate logic (Section 2). We derive a complete axiom system
to reason with these relations (Section 3). Section 4 concludes. The results of this paper
are included in [10].

2. Relations between nonatomic poset events

Let A be the set of all the sets that represent a higher level grouping of the events of
E that is of interest to the particular application. An element of A is denoted A.

Definition 1. An interval A is linear iff Vx,y € A, x < yVy < x.
Definition 2. An interval A is convex iff Vx,y € A,Vz € E (x < z<y) =z € A.
Definition 3. N4, the node set of interval A, is {i | E;NA # 0}.

Our results apply to nonlinear, i.e., poset, intervals. These intervals need not be convex
because convexity is not important in the study of causality. The cardinality of the node
set of the intervals we consider is greater than one.

The relations in [11] are used to derive an exhaustive set of causality relations
between nonatomic poset events, denoted R. As an intermediate step, we propose defi-
nitions of certain proxies of a nonatomic event in Section 2.1.

2.1. Proxies of nonatomic poset events

In the extensive literature on linear intervals and time durations, for example [2-
8,12,13,15-18,20-25], a convex linear interval is identified by the instants of its
beginning and end, whereas a nonconvex linear interval is identified by the beginning
and end instants of its convex subsets. The beginning and end instants of a linear interval
are points in space-time which are atomic events in E. For a nonatomic poset interval, it
is natural to identify counterparts for the beginning and end instants. These counterparts
will serve as “proxy” events for the poset interval just as the events at the beginning
and end of linear intervals such as time durations serve as proxies for the linear interval.
The proxies identify the durations on each node, in which the nonatomic event occurs.

We now define two proxies corresponding to the beginning and end of a nonatomic
poset interval [10].



A.D. Kshemkalyani/Artificial Intelligence 92 (1997) 301-315 305

Definition 4.
Ly={e; € X | Ve, € X,e; < €'},
Ux ={e; € X | Ve, € X, e; > e}.

For any poset X, Ux and Ly are the sets of the maximal elements in X for each
node and the set of the minimal elements in X for each node, respectively. Uy and Ly
correspond to the end of the poset and the beginning of the poset, respectively, and can
act as a proxy for poset X, depending on context and application. As per Definition 4,
each of Ly and Uy contains one event from each node in Ny.

An equally valid interpretation of the beginning and end of a poset are the sets of its
minimal and maximal elements, respectively, as defined by the irreflexive partial order
across the nodes. This leads to the following alternate definition of the proxies Ly and
Ux.

Definition 5.
LX={eEX|Ve'€X,e?4€I},
Uy={ec X |V eXedse}

Ly is the largest anti-chain containing the minimal elements of X. Uy is the largest
anti-chain containing the maximal elements of X.

The causality relations between poset intervals will be derived using proxies and will
depend on whether proxies are defined by Definition 4 or by Definition 5. The distinction
between the two resulting sets of relations is studied in Section 3.1. However, in all
results and discussions upto Section 3.1, we assume that any one of these definitions of
proxies is consistently used.

2.2. Deriving the relations

We propose that there are two aspects of a relation that can be specified between
poset intervals. One aspect deals with the determination of an appropriate proxy for
each interval. A good choice for the proxy(ies) of the interval are the beginning and
end of the interval (Definition 4 or 5), as justified in Section 2.1. Relations between
posets are not specified on members Z € A, but rather on their proxies Uz and L;.
The second aspect of specifying relations r(X,Y) specifies how the chosen proxies of
X and Y are related. Fig. 1 depicts the proxies of X and Y and serves as a visual aid for
the following discussion; recall that each poset X and Y represents a grouping of atomic
events of interest to the application. We will use the following notation in the ensuing
formulation of the relations between poset intervals. C} is the number of combinations
of k things out of n things. P is the number of permutations of k things out of # things.

A proxy for X and Y can be chosen in C? x C2 ways; it can be the set of maximal
elements or minimal elements for each of X and Y. This is the first aspect of specifying
relations between posets, and corresponds to the relations in {R1, R2, R3, R4}. From
Table 2, these four relations form a lattice ordered by C.
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® : atomic event time
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Fig. 1. Poset events X and Y and their proxies.

Table 3
Full hierarchy of relations of Table 1 [11]; relations R1, R1’, R2, R2’, R3, R3’, R4, R4’ of Table | are
renamed «, @', b, ¥, ¢, ¢/, d, d’, respectively; relations in the row and column headers are defined between

Xand Y

Relation names: Rl,a (=Rl',d’): | R2,b: | R2Z,W: | R3,c: | R¥,c': | R4, d (=R4.d'):
its quantifiers for x < v | VxVy (= VyVx) Vx3y Ivvx JxVy | Vydx Jxdy (=3v3x)
Rl,a (= Rl,d'):

VaVy (= VyVx) = C C C C C

R2, b VxJy 3 = 3 [ f C

R2', b 3ywx J C = I Il C

R3,c: 3rvy 3 I I = C C
R3¢ Vy3Ix | I I | = C

RA,d (= R4, d"):

3x3y (=3JyIx) | 3 3 3 | =

The second aspect of specifying the causality relations between posets deals with how
the atomic elements of the chosen proxies of X and ¥ are related by causality. There are
C? x C} combinations of distinct quantifications 3 and V over the proxies of X and Y to
express r(X,Y), and for each combination, there are P? permutations of the proxies of
X and Y. The eight relations so formed are exactly the relations R1, R1’, R2, R2/, R3,
R3’, R4, R4’ of Table 1 and are renamed a, @, b, ¥/, c, ¢/, d, d’, respectively, to avoid
confusion with their original names used for the first aspect of specifying the relations
between poset intervals, Table 3 gives the hierarchy and inclusion relationship among
the relations in {a,a’,b,b’,¢,c’,d,d’}. Each cell in the table indicates the relation of
the row header to the column header. The notation used is the same as that used for
Table 2. Note that a’ and d’ are the same as a and d, respectively. Observe that the six
distinct relations form a lattice ordered by C.

The proposed relations between nonatomic poset events are given in the second
column of Table 4. The relations are formed by combining the two aspects of deriving
causality relations as described above, and are labeled in the first column of Table 4 as
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Table 4
Proposed relations r(X,Y) in R
Relation r(X,Y) Relation definition specified by
quantifiers for x < y, wherex € X, v € Y
Rla VxeUxVy€ Ly
Rld (= Rla) Vv € Ly Vx € Uy
R1b Vx e Uy dy€ Ly
R1Y dv € Ly Vx € Uy
Rlc dxeUxVyvely
RI¢ Vy € Ly dx € Uy
Rld dx e Ux dy € Ly
R1d’ (= R1d) dy € Ly dx € Uy
R2a Vx € Ux Vy € Uy
R2d’ (= R2a) Yy € Uy Vx € Uy
R2b Vx € Uy dy € Uy
R2Y dy € Uy Vx € Uy
R2¢ dx € Uy Yy € Uy
R2¢ Vyve Uy Ix € Uy
R2d 3x e Uy Iy € Uy
R2d' (= R2d) dy € Uy Ix € Uy
R3a VxelyVyely
R3d’ (= R3a) vy € Ly Vx € Ly
R3b Vx €Ly 3dv €Ly
R3b' dve Ly Vxe Ly
R3c dx € Ly Vy € Ly
R3¢’ Yye€ Ly dx€ Ly
R3d dx e Ly dye Ly
R3d' (= R3d) IyeLlyxe Ly
Raa Vx € Ly Vy e Uy
R4d’ (= R4a) Yy € Uy Vx € Ly
R4b Vx € Ly 3y e Uy
R4b' dy e Uy Vx € Ly
R4c Ixe Ly Vye Uy
R4’ Vy €Uy 3x € Ly
R4d 3xe€ Ly 3Ivye Uy

R4d' (= R4d) Iye Uy 3x € Ly
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b’ b R2b' A2b

Fig. 2. Hierarchy of proposed relations.

follows. The relations R1, R2, R3, and R4 on linear intervals correspond to the groups
of relations R1*, R2*, R3* and R4*, respectively, for poset intervals. The hierarchy
among the relations R1*, R2*, R3* and R4* is isomorphic to the hierarchy among R1,
R2, R3, and R4.

Relations R1*(X,Y) relate certain activity of Uy to certain activity of Ly. Specifically,
R1*(X,Y) could be specified by quantifying over all or some elements of Uy, all or
some elements of Ly, and the order of the quantifications of the proxies of X and ¥ can
be permuted. There are eight possibilities for R1*(X,Y), that correspond to relations
{a,d',b,b ,c,c',d,d'}. R2*(X,Y) relate certain activity of Uy to certain activity of
Uy. R3*(X,Y) relate certain activity of Ly to certain activity of Ly. R4*(X,Y) relate
certain activity of Ly to certain activity of Uy. For each of R2*(X,Y), R3*(X,Y), and
R4*(X,Y), there are eight possible relations like for R1*(X,Y).

The relations {R1*, R2*, R3*, R4*} between proxies for X and Y, and the relations
{a,d’ b, ,c,c',d,d'} between the elements of the proxies, when multiplied give 32
relations over the domain A x A to express r( X, Y). The resulting set of poset relations,
denoted R and given in the second column of Table 4, is thus a product of the relations
represented by the two lattices {R1%*, R2*, R3* R4*} and {a,b,b',c,c’,d} of unique
elements, as shown in Fig. 2. The resulting hierarchy of 24 unique relations forms a
lattice (R, Z) and provides a fine-grained choice of causality relations for specification
of relative timing and synchronization conditions.

2.3. Discussion

The set of relations we formulated between nonatomic poset events is exhaustive using
first-order predicate logic. The proposed relations form a lattice hierarchy. The strongest
relation is Rla and the weakest is R4d. The significance of a relation R (X,Y) is
determined by examining ? for the choice of proxies of X and ¥, and examining # for
how these proxies are related. The proposed set of causality relations between nonatomic
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Table 5

Reflexivity, symmetry and transitivity of R1, R2, R3, R4 from [11]
Relation Reflexive? Symmetric? Transitive?
R1 [14] no no yes
R2 no no yes
R3 no no yes
R4 [14] no no no

poset events is richer than the specific causality relations in the literature. The suite of
two relations in [14], viz., —— and ———, correspond to Rla and R4d, respectively.
The suite of relations in [11] and listed in Table 1 correspond to the new relations as
follows: R1 = Rl’, R2, R2', R3, R3’, R4 = R4 correspond to Rla, R2b, R2¥, R3c,
R3c’, R4d, respectively. The significance of the complete hierarchy of causality relations
in first-order predicate logic is given in Section 4.

3. Axiom system

The inclusion hierarchy of the relations in Table 4 is pictorially depicted in Fig. 2.
This hierarchy is captured by the following axioms XP1-XP6. Let V| denote the set
{1,2,3,4} and let V, denote the set {a,b,b’,c,c’,d}. Then the axioms are:

XP1. R1? C R2? C R4?, where ? is instantiated from V5.

XP2. R1?7 C R3? C R4?, where ? is instantiated from V5.

XP3. R2? || R3#, where ? and # are separately instantiated from V5.

XP4. R?% C R?' C R?b C R7d, where ? is instantiated from V;.

XP5. R?a C R C R’ T Rd, where ? is instantiated from V.

XP6. R? || R, RW' || R2', R || R?%, R || R?c, where ? is instantiated from V;.

Further axioms for the relations in Table 4 are derived from Tables 5, 6, and 7 as
follows. Table 5 is reproduced from [11] and represents the reflexivity, symmetry, and
transitivity for the relations R1-R4 defined in [11]. Table 6 is reproduced from [11]
and gives the transitive axioms on the relations R1-R4 defined in [11]. Table 7 indicates
that if the proxies of X and Y in r|(X,Y) are related by the row header of the table,
and if the proxies of Y and Z in r,(Y¥, Z) are related by the column header of the table,
then the corresponding proxies of X and Z are related by the corresponding table entry;
this entry is useful in deducing r(X,Z). If r{(X,Y) and r,(X, Z), then the transitive
relation r(X, Z) is determined by the algorithm Trans_Poset_Axioms using Tables 5, 6,
and 7 as follows.
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Table 6

Axioms for causality relations R1, R2, R3, R4 from [11]

Axiom label

n(X,HYAnXzZ)=r(X,2)

ALl
AL2
AL3
AL4A
ALS
AL6
AL7
AL8
AL9
AL10
ALIl
AL12

RI(X,Y) AR2(YZ) = R2(X,Z)
RI(X.Y) AR3(¥Z) = RI(X,Z)
RUX,Y)ANRMYXZ) = R2(X,Z)
R2(X, YY) ARI(XZ) = RI(X,Z)
R3(X,Y) ARI(YZ) = R3(X,Z)
RAUX.Y)ANRI(Y,Z) = R3(X,Z)
R2(X,Y) AR3(Y,Z) = true

R2(X,Y) ANRA(Y,Z) = true

RI(X,YYANR2YZ) = R4(X.Z)
RA(X,Y) ARUXZ) => RA(X,Z)
R3(X,Y) ARAYZ) = RA(X. Z)
RA(X,Y) AR3(Y¥Z) = true

Algorithm Trans_Poset_Axioms.

1. Use the first two characters (prefix) of the identifier strings of ri(X,Y) and
r2(Y, Z) as the inputs to Table 5 or 6.

temp]1 := output of the appropriate table.

/* templ gives the relation between X and Z if X, ¥, Z were all linear

intervals.*/

If templ = true, then r(X, Z) := true; exit.
/* no relation between X and Z can be inferred.*/

2. The row and column headers in Table 7 are the strings following the first two
characters (suffix) of the identifier strings of the poset relations R. Use the suffixes
of ri(X,Y) and (¥, Z) as the row header and column header inputs, respectively,

to Table 7.

temp2 = the entry identified by the row and column headers.
If temp2 = true, then r(X, Z) := true; exit.
/* no relation between X and Z can be inferred.*/

3. Concatenate the values of rempl and temp2 to get the value of r(X, Z).

Example 6. If R1c/(X,Y) AR3b(Y, Z) then the algorithm yields R1d(X, Z). In step 1,
the inputs to Table 6 are R1 and R3, and the output templ is R1. In step 2, the inputs
to Table 7 are ¢’ and b, and its output temp? is d. Step 3 concatenates templ and temp?2

to yield R1d.

Example 7. If R2a(X,Y) A R1d(¥, Z) then the algorithm yields R15'(X, Z). In step 1,
the inputs to Table 6 are R2 and R1, and the output rempl is R1. In step 2, the inputs
to Table 7 are a and d, and its output temp2 is b'. Step 3 concatenates templ and temp?2

to yield R1b'.
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Table 7
Intermediate table to derive further axioms for poset relations R; the relation names in the row and column
headers are the suffixes of the poset relations R defined between X and Y

Relation name: a(=d): b: b c ¢ d(=d):
its quantifiers VaVy Vx3y JvVx IxVy Vydx Ix3y
for x <y (=VyVx) (=3y3x)
a(=da):

VxVy (= VyVx) a (VxVv) b (3yV¥x) b (IyVx) a (Vxvy) a (VxVy) b (Ivvx)
b: Vx3y a (VxV¥y) b (Vx3y) b (IvWx) true true true
4=\ 1 a (VxVy) b (3vvx) ¥ (IyVx) true true true
¢ dxVy ¢ (IxVy) d (3x3y) d (3x3Jy) ¢ (FxVy) ¢ (IxVy) d (3x3y)
¢ Yy3x ¢ (AxVy) d (3x3Iy) d (Ix3Iy) ¢ (IxVy) ¢’ (Vy3x) d (3x3v)
d{(=d"):

Fx3y (= 3Iy3x) ¢ (Jxvy) d (3x3y) d (Fx3v) true true frue

Example 8. If R3a(X,Y) A R2b(¥, Z) then the algorithm yields R4b'(X, Z). In step 1,
the inputs to Table 6 are R3 and R2, and the output templ is R4. In step 2, the inputs
to Table 7 are a and b, and its output temp2 is &', Step 3 concatenates temp1 and temp?2
to yield R4b'.

Example 9. If R36(X,Y) A R2¢'(Y, Z) then the algorithm yields true. In step 1, the
inputs to Table 6 are R3 and R2, and the output templ is R4. In step 2, the inputs to
Table 7 are b and ¢, and its output temp? is true. Hence, no relation between X and Z
can be inferred.

We specify the following axioms XP7-XP14 of the form r(X,Y) = ra(¥, X) for
the nonatomic poset events. For each relation r;(X,Y), we determine the strongest
relation(s) (¥ X) that can be stated between Y and X in the hierarchy depicted in
Fig. 2 (axioms XP1-XP6). Thus, given a relation between X and Y, the axioms give
all possible relations between Y and X. The notation R indicates that the relation R is

false. These axioms can be verified to be meaningful by examining each axiom with the
aid of Fig. 1 which shows X and Y in two-dimensional space-time.

XP7. Rla(X,Y) V RIb(X,Y) V RIH (X,Y) V R1c(X,Y) V RI/(X,Y) => R4d(Y, X).
XP8. R1d(X,Y) = R4b(Y, X) A RAC (Y X).

XP9. R2a(X,Y) V R2b(X,Y) V R2V'(X,Y) V R2c(X,Y) V R2¢/(X,Y) = R2d(X. X).
XP10. R2d(X,Y) = R2b(Y,X) A R2C (X X).

XP11. R3a(X,Y) V R3b(X,Y) V R3V' (X,Y) V R3c¢(X,Y) V R3¢ (X,Y) = R3d(Y. X).

XP12. R3d(X,Y) = R3b(Y X) A R3c (X X).
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—

¢ - \/  proxy formed by grouping of local :Ly/ N ,-\UY
- — min. or max. events LTy A\
.7 77~ :proxy formed by grouping of : /[ J / |
“— .-~ anti-chain of min. or max events | e } & | Py } ’
,,,,,,,,,,,, X \\ / \ ’/{'/
o E S T =7 3 =
/ A\ / N T T T T e

o Y
. space
1 e J N ] .J] ’p.
A -\\\“ / \ // . 0O e :atomicevents e
' € j »:ordering < between local min. or max.
atomic events within X and Y

O :max. or min. local event, but not a member of anti-chain of max or min. events
o :member of anti-chain of max or min. events

Fig. 3. Two definitions of proxies of poset events X and V.

XP13. R4a(X,Y) V R4b(X,Y) V R4 (X,Y) V R4c(X,Y) V Rac'(X,Y) => R1d(Y, X).
XP14. R4d(X,Y) = R1b(Y,X) ARIC (Y X).

In addition, we specify axiom XP1S5 that specifies the reflexivity and symmetry of the
relations in R.

XP15. The relations in R are not reflexive and are not symmetric.

X is the set of axioms XP1-XP6 (that specify hierarchy among relations), XP7-
XP14 (that give all relations of the form ry (¥, X), given r|(X,Y)), XP15 (that spec-
ifies reflexivity and symmetry), and the axioms that can be derived from algorithm
Trans_Poset Axioms to specify transitive relations. We do not attempt a completeness
proof of this axiom system here. The axioms in X provide a “sufficiently” rich frame-
work to reason about poset intervals because:
¢ Axioms XP1-XP6, XP7-XP14 and XP15 give all enumerations of relations r(X,Y)
as well as relations r(¥, X), implied by R(X.,Y), VrVR € R.

e Algorithm Trans_Poset Axioms enumerates all relations r(X,Z) implied by
r(X, Yy Ar (X, Z), VrvriVr, e R.

e This set of axioms can be used to derive all possible implications from any given
valid predicates on relations in .

3.1. Dependence on proxy definition

The derivation of the causality relations in R used the definition of proxies to represent
the beginning and end of a nonatomic poset event. However, there are two equally
meaningful definitions of proxies, as given by Definitions 4 and 5. Each application
chooses the definition more suitable to it. Depending on which definition is used, we
get two different sets of 32 relations R, each of which satisfies the same hierarchy
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of Fig. 2 and the same set of axioms X. The set R of 32 relations, each member
relation in R, and the axioms X on these relations, that are obtained by the use of
Definition 4 (respectively, Definition 5) for proxies are identified by the superscript ~;
(respectively, <).

Next, we present axioms on the inclusion relationship C between relations in R~
and relations in R~ These axioms can be verified to be meaningful by examining each
axiom with the aid of Fig. 3 which shows poset events X and Y in two-dimensional
space-time, and their proxies as per Definitions 4 and 5.

XP16. Rla™ = Rla™.

XP17. R1?7* C R177, where ? is instantiated from {b,¥’,c,c’,d}.
XP18. R2a~ C R2a™~.

XP19. R2b/ =i = R2b'=, R2b™ = R2b™.

XP20. R2¢™ || R2¢™, R2c= || R2c".

XP21. R2d~ C R2d™,

XP22. R3a~ C R3a™.

XP23. R3b'= || R3b'<, R3b™ || R3b™.

XP24. R3¢™ = R3c™, R3¢~ = R3¢'~.

XP25. R3d™~ C R3d™.

XP26. R4?~ C R47?~, where ? is instantiated from {a, b, ¥’,c,c'}.
XP27. R4d™ = R4d™.

The inclusion relationship of relations in R~ with respect to relations in R/, as cap-
tured in axioms XP16-XP27, is depicted in Fig. 4. In this figure, individual hierarchies
within R~ and within R, which are the same as in Fig. 2, are shown only partially.
Observe that the mapping of relations in Table 1 [11] to relations in R (Table 4), as
given in Section 2.3, is independent of whether the proxies used to derive R are defined
by Definition 4 or by Definition 5.

4. Conclusion

We presented a hierarchy of relative timing relations between nonlinear events in
a distributed system. The hierarchy of relations is complete using first-order predicate
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R2b" R2b.

-------------------------- = partial hierarchy of reiations defined using anti-chains of min.and max events as proxies
— — — ~ partial hierarchy of relations defined using local min. and max events as proxies
" :Inclusion relationships between relations in the above two hierarchies

Fig. 4. Inclusion relationships between relations in hierarchies R~ and R~/

logic. We also presented an axiom system for reasoning intelligently with the proposed
relations.

The results are useful in the study of time, temporal logic, and temporal and spatial
representation and reasoning in distributed systems, as well as for applications which
use nonatomicity in reasoning and modeling and need a fine level of discrimination of
causality relations. Each application can choose appropriate causality relations from the
exhaustive fine-grained hierarchy to specify and capture relative timing and synchroniza-
tion conditions between its nonatomic poset events at a fine level of discrimination. This
allows for a sophisticated modeling of the interactions in the application and system.
The exhaustive classification gives an insight into the existing possibilities and can be
used to select a number of primitive relations with good properties and clear intuitions.
The axiom system on the relations enables reasoning with different levels of causality
relations between nonatomic poset events. The axiom system is complete because the
axioms can be used to derive all possible implications from any given valid predicates
on the proposed relations.

The use of proxies in the definition of the proposed causality relations reduced the
evaluation for causality between two nonatomic poset events X and Y from |X| x
|Y| to |Nx| x |Ny| tests for causality between atomic events in terms of which the
two nonatomic events are defined. It is shown in [10] that the evaluation of the
causality relations in Table 4 can by further simplified using properties of partial or-
ders.
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