
Distrib. Syst. Engng 5 (1998) 1–11. Printed in the UK PII: S0967-1846(98)88318-6

Context management and its
applications to distributed
transactions ∗

Ajay D Kshemkalyani †‖, George Samaras ‡¶ and Andrew
Citron §+

† Department of Electrical & Computer Engineering and Computer Science, PO
Box 210030, University of Cincinnati, Cincinnati, OH 45221-0030, USA
‡ Department of Computer Science, University of Cyprus, PO Box 537, Kallipoleos
75, 1678 Nicosia, Cyprus
§ IBM Corporation, PO Box 12195, Research Triangle Park, NC 27709, USA

Received 9 December 1996

Abstract. An emerging paradigm that handles multiple loci of control in a system
allows multiple program threads to work on the same task, each thread to work on
a different task, or a thread to work on multiple tasks for greater design flexibility or
due to system constraints such as real-time demands and a high load on tasking.
We use the definition of context to capture the notion of logical locus of control.
The context of the work being currently executed must be identifiable uniquely by
the application, the resource managers and the transaction manager because each
context represents different work. in this paper, we define context management by
defining a local context manager and its user interface. We then show why the
notion of context is required to solve the problems that arise in local and distributed
transaction processing due to the emerging paradigm. We present solutions to
these problems in transaction processing using the proposed context management.

1. Introduction

Currently, operating systems that handle multiple applica-
tions provide a separate operating system level locus of
execution for each individual application program. The lo-
cus of execution is the process for single-threaded processes
provided by operating systems such as DOS and VM, and it
is the thread] for multithreaded processes provided by op-
erating systems such as UNIX††, OS/2‡‡ [6, 13], Windows
NT§§ and Windows 95§§ [9]. Operating systems support
the client–server model of computing by dispatching a sep-
arate server process or thread to handle a new request from
the clients.

There are two recent trends which indicate that the
existing support provided by operating systems is unsuitable

∗ This paper is a revised and expanded version of a paper by the same
title, by G Samaras, A Kshemkalyani and A Citron, that appeared inProc.
IEEE Conf. Distributed Computing Systems (May 1996)pp 683–91.
‖ E-mail address: ajayk@ececs.uc.edu
¶ E-mail address: cssamara@turing.cs.ucy.ac.cy
+ E-mail address: citron@vnet.ibm.com
] For commit processing of a transaction, the locus of execution is still
the process, not the thread. This is a drawback of existing transaction
processing design for multithreaded systems.
††UNIX is a registered trademark in the United States and other countries
licenced exclusively through X/Open Company Limited.
‡‡OS/2 is a trademark of the IBM Corporation.
§§Windows, Windows NT and Windows 95 are trademarks of Microsoft
Corporation.

for a range of application programs. First, as applications
grow in number and get more distributed, the number
of applications a server can support becomes limited by
the operating system constraints such as the number of
processes/threads allowed within the system. Secondly, as
applications become more numerous and response times
become critical for real-time systems, the servers cannot
afford the overhead of process start-up and switching,
or forking and dispatching, and the overhead of locking
mechanisms for access to shared tables for each new
application. A new processing paradigm is now evolving
to overcome the above problems and to provide more
flexibility to distribute tasks across processes/threads. The
emerging paradigm is as follows. A process or thread
can concurrently support multiple client applications, and
a server application can be distributed across multiple
processes and/or threads. This paper proposes how this new
paradigm can be supported, and discusses its interaction
with transaction processing. Note that this paradigm is
applicable to all operating systems, and can be exploited
by all applications. We focus on distributed transaction
processing as an application because it represents an
important and growing class of applications, and it was
our involvement in distributed transaction processing that
triggered this work.

In the paradigm outlined above, each initiated
transaction supported by a thread(s) is explicitly associated

0967-1846/98/010001+11$19.50 c© 1998 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd 1

A D Kshemkalyani et al

with a context. Thus, a context becomes a logical locus
of control and represents a transaction and its associated
resources. The above notion of context is similar to
X/Open’s notion of ‘thread-of-control’ [19]. With the
new processing paradigm, multiple transactions can be
associated with a thread, representing multiple contexts
per thread. However, at any instant, only one of these
contexts will be active. The application and the system
should be able to specify and determine: (1) the context
currently being worked on by the thread, and (2) all the
resources associated with the processing of any context.
There is an explicit need to coordinate the contexts within
and across threads and processes, and to coordinate access
to resources by multiple contexts (within a thread, across
threads, and across processes). This is achieved through a
context manager (CM)mechanism and its associated user
interface defined in this paper.

The contribution of this paper is that we define
context, the CM and its application programming interface
(API), and show how context is used for local and
distributed transaction processing. We highlight the role
of context in a multithreaded, real-time, operating system
environment with a high load on tasking, provide different
practical styles of transaction management using context
management, and show how to use context management
to solve deadlocks, protocol violations, and loopbacks in
distributed transaction processing, as well as to reconcile
chained and unchained support for distributed transaction
processing. We have implemented a prototype of the
CM for use with the SNA LU6.2 Syncpoint Services [8].
The VM operating system Shared File System has been
enhanced to provide a version of the context management
support described here.

This paper is organized as follows. Section 2 describes
the system model. Section 3 examines the requirements
for a new notion of context, and defines and describes
the operation and usage of context, along with a new
CM user interface. Two examples of the use of context
management in a multithreaded environment are given.
Section 4 describes the problems that arise in distributed
transaction processing using the new paradigm, namely
assigning multiple transactions to multiple threads. It
then shows how to use context management to solve the
problems. Section 5 shows how context management is
used to provide the functionality of unchained transaction
processing to those systems that provide only chained
transaction processing. Section 6 concludes.

2. System model

A distributed system consists of a set of computing nodes
linked by a communications network. The nodes of the
system cooperate with each other in order to process
distributed computations. For the purpose of cooperation,
the nodes communicate by exchanging messages via the
communications network using a dedicated end-to-end
logical connection called aconversation.

A multiprogramming/multiprocessing operating system
runs at each node. A process which is an executing
program has a single address space and a single thread

of control for the program [18]. The state information
for the process consists of page tables, swap images, file
descriptors, outstanding I/O requests, and saved register
values. Multiple programs are handled by maintaining and
switching between processes. If threads or lightweight
processes are supported by the operating system, then
the threads of a process concurrently execute within the
same address space. Each thread uses a separate program
counter, a stack of activation records, and a control
block which contains information necessary for thread
management. Most of the information that is part of a
process is shared by all the threads executing in the same
address space. This reduces the overhead in creating and
maintaining information, and the information that has to be
saved when switching between threads of the same process.

A transaction program (TP) is any program that
requires that its effects areatomic, i.e. either all the
effects of the program persist or none persist, whether
or not failures occur [5, 11]. Each TP has a unique
identifier denoted TRANID. Atomicity of a transaction is
guaranteed by acommit protocol. A distributed transaction
is a transaction for which the program code and/or data
accessed is distributed on different nodes in the networked
system [5]. The execution of a distributed transaction
requires adistributed commit protocolto ensure atomicity.
An application, also known as an application program,
consists of several (possibly distributed) transactions that
may be interleaved with nontransactional program code.
An application usually denotes a user-level program. An
application may be executed by single or multiple processes
or threads. In addition, the application may be distributed
and may be a server application or a client application.
We use the terminology ‘server application or server’
and ‘client application or client’ when the nature of the
application needs to be emphasized.

Once the code of a transaction is executed, the
application instructs thetransaction manager (TM)of its
node (site) to initiate and coordinate the commit protocol.
The ‘logical locus of control’ from which the application
issues the commit command is the entity that identifies to
the TM the transaction to be committed. At each node, the
local resource managers (RMs), such as database and file
managers, andcommunication resource managers (CRMs)
participate in the commit protocol. The RMs/CRMs
commit only those resources that are associated with the
current ‘logical locus of control’ and transaction. The
CRM embodies the communication protocol and provides
a local view of the remote processes and remote TMs. The
TMs that participate in the commit processing include one
coordinatorand one or moresubordinates. The coordinator
coordinates the final outcome of the commit processing
by issuing a commit or abort, that is propagated to all
subordinates. Subordinate TMs propagate the decision to
their subordinate TMs or local RMs. The commit operation
employs the well knowntwo-phase commit (2PC)protocol
[5, 12, 17], sketched next.

The 2PC protocol ensures that all participants commit
if and only if all can commit successfully. The 2PC
consists of two serial phases: thevoting phase and the
decision phase. During the voting phase, the coordinator

2

Context management and its applications to distributed transactions

asks all the other participants to prepare to commit (using
the prepare flow), and they reply YES or NO. During the
decision phase, the coordinator propagates the outcome of
the transaction to all participants (using the commit/abort
flows): if all participants voted YES, the commit outcome
is propagated; if any participant voted NO, the abort
outcome is propagated to those participants that voted YES.
Each participant in the transaction commits or aborts the
effects of the transaction based on the outcome propagated
by the coordinator and acknowledges the completion to
the coordinator. The entire 2PC is triggered by issuing
the COMMIT command at the coordinator. However,
an individual branch of the spanning tree rooted at the
coordinator can be processed for the voting phase by issuing
a PrepareFor Syncpt call along it [8].

3. Context

Definition 1. A context is a logical locus of control that
is unique and local to the operating system at a node.
The context is shared by the application, TM and RMs
to manage their resources, and relate their resources to
the resources owned by other RMs within the system.
A context represents a grouping of resources within the
system, needed to perform a particular function in a logical
locus of control or to show the inter-relationship between
diverse resources.

Each dispatchable entity is associated with a context.
The notion of context is supported by the system by way
of defining, storing, and recognizing a context identifier,
discussed in section 3.1. The application, TM, and RMs
share this notion of context. The usage of context is
user-defined; the extent to which a context is shared by
the operating system dispatchable entities (processes or
threads), the address spaces, and data spaces, is controlled
by the application design.

Thescopeof a task defines the set of resources required
for the task. When an application issues commit, the scope
defines the set of related local resources that participate in
the commit processing. The notion of context helps group
the set of resources more flexibly.

3.1. Requirements

There are several emerging trends that require the notion
of context.

(I) Currently, a process or thread is associated with at
most a single logical locus of control. This paradigm is
proving inadequate for some applications because:
• the client–server paradigm requires an executing

server application to accept multiple incoming requests.
For example, the asynchronous RPC style of distributed
programming uses this model [1]. The following difficulties
arise if a different thread/process is used for each request.
(a) First, as applications grow in number and become more
distributed, the number of transactions a server can support
becomes limited by the operating system constraints such as
the number of processes/threads allowed within the system.
For example, OS/2 can support 4096 threads. (b) Second,
as response time becomes critical for real-time systems,

the servers cannot afford the overhead of process start-up,
switching, dispatching or forking, locking mechanisms for
accessing shared tables, and extra storage for each new
transaction. A thread should be able to support multiple
transactions and temporarily suspend work on a long-
running request to process work for another request. This
minimizes demand on operating system resources, while
allowing greater parallelism in servicing requests. The
result is better response time and/or better throughput.
• A message routing program in a large database

system acts as a router based on the content of the
message. A database system typically uses long-lived
programs that handle transactions from more than one end-
user or transaction at a time and that can activate other
conversations based on the database activity and the input.

In both of these cases, the same thread or process
should accept the various incoming routing requests (loci
of execution) rather than have separate threads handle the
various routing requests, for better efficiency. A new
paradigm that allows a server process/thread to support
multiple transactions is required.

(II) The notion of context provides useful functionality
allowing process-oriented systems as well as thread-based
systems the flexibility needed in today’s complex and
demanding environment. For operating systems that
allow threads to be spawned or processes to be forked,
it is desirable to allow a server application to divide
the incoming requests however it chooses to. Some
applications might want all threads to work on the same
request. Other applications might want each thread to work
on a different request or to work on multiple requests. A
context management service needs to allow each thread to
identify each of the contexts it is associated with. The
context must be independent from the operating system’s
task dispatching mechanism.

The above requirements express the emergence of
environments where:
• a server process or thread can accept requests from

different end users, and is allowed to suspend work on one
request to work on a different request, or
• multiple server processes/threads are working on

related work representing the same context of the
application.

The application needs a way to inform the TM and the
RMs which task the application is working on at a particular
time, and the TMs and RMs need to coordinate to have a
common understanding of which context is currently under
execution, for the following reasons.
• To group together logically related work and separate

logically unrelated work.
• Each request is likely to be a part of a different atomic

transaction. The work a server process does on behalf of
one transaction must commit or abort independently from
other unrelated work that the server was handling.
• The security authorization of each request can be

different. An application must make sure that the system’s
security manager and other RMs cooperate to ensure that
the access granted at any particular instant is proper for the
end user application that is currently being worked on.

3

A D Kshemkalyani et al

For the above, a threadid or processid does not
suffice to identify the logical locus of control; rather a
contextid is required. The notion of context allows the
management of multiple logical instances of the same
transaction program within a single process or single thread,
as well as the management of a single instance of a
transaction program across several processes/threads. Our
context management scheme thus provides the much greater
flexibility of allowing the coordination of context not just
between the TM and transactional RMs, but between all
system components including the TM, transactional RMs,
nontransactional RMs, and the applications. With context
management, the commit issued by the application applies
to the context from which it was issued; not to the thread
that issued it. Currently, for commit processing, the locus
of control is confined to the process level and is not allowed
to the thread level, even though multithreaded environments
are common. This is an existing shortcoming of transaction
processing design for multithreaded systems. Our solution
of context can accommodate any future extensions of the
scope of a commit to the thread or even to a context within
a thread or across threads.

3.2. Context management

Context management is a local application-support
mechanism that permits applications to manage logically
separate pieces of work within or across processes or
threads [2]. When an application uses context management,
the CM keeps track of the various contexts, allows the
application to create and set a context for work, and allows
an application to switch contexts when appropriate. The
CM shares the notion of contexts with the RMs and the
application.

A new incoming conversation is assigned a new context
and the program’s current context is set to the new context.
When a new outgoing conversation is allocated to a partner
program, the conversation is assigned the current context
of the program.

While context management provides additional func-
tions such as flexibility and avoidance of process switching
to the application program, it also imposes an extra burden
on the application. The application has to keep track of
the progress done in each context, and switch contexts to
meaningfully exploit the features of context management.
An application can perform context management by ex-
ploiting the functions provided by the CM using a suite of
calls, described subsequently.

A server process that performs context management
has special responsibilities [3]. The server process must
correctly indicate the end user context on behalf of which
it is working. When many threads are acting on behalf of
the same context, the server process must make sure that
the work of all the threads is completed before kicking off
2PC processing. Similarly, when a thread does work on
behalf of multiple independent contexts, it must be ensured
that all the work in the relevant context is completed before
kicking off 2PC processing.

The notion of context provides a logical separation of
work done by an application; each logically separate piece

of work is done in a separate context. Context is local to
a system node. Different tasks of a distributed transaction,
that each represent different loci of control and are executed
at different nodes, have a different context even though
they belong to the same transaction. Furthermore, loosely
coupled executables within a transaction that are executed
on the same physical node may have separate contexts.
Specific examples of such loosely coupled contexts that
arise in distributed transaction processing are discussed in
section 4. Clearly, when an application program is involved
in multiple transactions at a time, each transaction is done
in a separate context at the application. The same context
at a node may be involved in multiple transactions only
sequentially. The application assumes the responsibility
of keeping track of its various contexts, coordinating the
data spaces of the various contexts, and switching between
contexts.

Context manager associations. The CM administers the
contexts independently of the operating system’s task
dispatching mechanism. At each node, the context is
identified by acontextid; a CM maintains a context table
that stores the following information per contextid:
• contextid, unique to a node
• (threadid, processid), unique to a node
• a boolean indicating whether this context is currently

being worked on by this (threadid, processid).
The TM maintains the association between the

TRANID and the contextid, the RM maintains the
association between the resources it manages and the
contextid, i.e. the database resource manager keeps the
association between the database changes, lock information,
and the contextid, the communications resource manager
keeps the association between the connectionid and the
contextid, the security manager keeps the association
between the validated userid and contextid; likewise for
the managers of other subsystems. The various RMs can
query the security manager for the userid of the current
context.

We define a context management interface that: (1)
implicitly externalizes the creation, coordination and
deletion of contexts, and (2) allows the application and
managers of various subsystems such as the TM, RM,
and security manager to associate their resources with a
context and coordinate the usage of all resources related to
a particular context.

3.2.1. Context management calls. In an environment
where there is no one-to-one association (but rather a
many–many association) between threads and contexts,
explicit context management calls are required to control
the association between threads and contexts. This is
particularly important for transaction processing because
the TM and RMs must identify the TRANID on a context
basis and not on a thread basis. The threadid, TRANID,
accounting and security information are all associated with
a context.

4

Context management and its applications to distributed transactions

Transaction management in a multithreaded environ-
ment. When a thread (more generally, alocus of execu-
tion) is created, it is assigned a context—the context can
be a new one or an inherited one. We describe three trans-
action program design patterns that use threads [2]. The
design patterns use context management calls to start and
manage the threads within the context management frame-
work. Typically, server applications would follow these
design patterns.

The following auxiliary calls are needed to support
threaded applications, as well as applications that are single-
threaded but process more than one context at a time.
• EXTRACT CURRENT CONTEXT(contextid): This

function allows the TM, RM, or the application to find out
which context is currently active. The contextid is a return
parameter.
• SET CONTEXT(contextid): This function allows

an application that can run for more than one context
(e.g. a program that processes many independent incoming
requests) to inform the system which context the application
wants to work on.
• START NEW CONTEXT(contextid): This function

allows the system scheduler and applications to start new
work that is independent of other work they are processing.
The contextid is a return parameter.

Program design pattern 1. A server receives new
work and kicks off a thread to handle the new
work. A new context is implicitly created using
START NEW CONTEXT whenever new work is accepted.
This is a typical approach for an RPC server, or an OS/2
LU6.2 TP that issues RECEIVEALLOCATE and then
waits for the next incoming work. The context management
function to support this is as follows.
• START THREAD AND HANDOFF CONTEXT(co-

ntext id): This function starts a new thread and disassoci-
ates the main (old) thread from the newly created context.
If no parameter is specified, the contextid that is handed
off is extracted from the environment of the current con-
text using EXTRACTCURRENT CONTEXT. The forked
thread is associated with the new context.

Program design pattern 2. A server kicks off a thread
but the forking thread continues to work on the same
context. This is typical of an application that can
take advantage of the parallelism that lightweight threads
provide. The CM function associated with this is as
follows.
• START THREAD AND SHARE CONTEXT(con-

text id): This function starts a new operating system thread.
If no parameter is specified, the contextid to be shared
is extracted from the environment of the current context
using EXTRACTCURRENT CONTEXT. Any one of the
threads can initiate the commit operation. The commit op-
eration affects all resources allocated to this context. It is
up to the application’s design to ensure that all threads are
ready for commitment. If some threads are not ready, the
commit call may return a state-check, or it may backout, or
accidentally commit work in-progress. A simple approach
is to have the main thread issue COMMIT, after all forked

threads report they are ready (using an OS wait/post mech-
anism for example).

Program design pattern 3. The main thread receives a
new work request, and then instead of forking a new thread,
it hands the work to an existing thread. For performance
reasons, it is better to avoid creating a new thread; using
prestarted threads that are waiting for work is faster.
• HANDOFF CONTEXT(contextid): This function

gives exclusive ownership of a context to an existing
thread and posts the thread to inform it a new context
is available. If a context is not explicitly specified as
a parameter, then the current context, identified using
EXTRACT CURRENT CONTEXT, is handed off. Any
one of the existing threads that are waiting for work using
GET NEW CONTEXT (see below) is given the context.
• SHARE CONTEXT(contextid): This function

permits shared ownership of a context with an existing
thread and posts the thread to inform it a new context
is available. If a context is not explicitly specified as
a parameter, then the current context, identified using
EXTRACT CURRENT CONTEXT, is shared. Any one
of the existing threads that are waiting for work using
GET NEW CONTEXT (see below) gets to share the
context.
• THREAD DONE WITH CONTEXT(contextid):

This function allows a thread to disassociate itself with a
context and get ready to be involved in a new context.
If no other thread is associated with the context, an
implicit commit is attempted. If a context is not explicitly
specified as a parameter, then the thread disassociates itself
from the current context, identified using EXTRACTCUR-
RENT CONTEXT.
• GET NEW CONTEXT(contextid): This function

allows a thread to wait for a coordinator thread to issue
HANDOFF CONTEXT or SHARECONTEXT. Blocking
and nonblocking flavours are useful. The contextid is a
return parameter.

GET NEW CONTEXT and SETCONTEXT are the
two ways in which a thread can explicitly change the con-
text to get involved in existing work. STARTNEW CON-
TEXT creates a new context for new work. HAND-
OFF CONTEXT, THREAD DONE WITH CONTEXT
and STARTTHREAD AND HANDOFF CONTEXT dis-
associate the issuing thread from a context.

3.2.2. Examples

Example 1. Thread handles multiple contexts. Table 1
gives example 1 in which a single thread at the server
switches context to handle requests from two clients.

Example 2. Threads handle a transaction using
different/same contexts. Example 2 given in table 2
deals with one client and one server. The server has
prestarted a number of threads. This design can be used
to optimize the performance of a database client/server
application that issues multiple SQL queries that open

5

A D Kshemkalyani et al

Table 1. Example 1. Thread handles multiple contexts.

Time Client 1 Server Client 2

1 BEGIN TRANSACTION
request

START NEW CONTEXT(C1)
BEGIN TRANSACTION
begin work for client 1; send reply

get reply

2 BEGIN TRANSACTION
request

START NEW CONTEXT(C2)
BEGIN TRANSACTION
begin work for client 2; send reply

get reply

3 request
SET CONTEXT(C1)
(server switch to Client 1’s context C1)
do some work for context 1; send reply

get reply

4 request
SET CONTEXT(C2)
(server switch to Client 2’s context C2)
do some work for context 2; send reply

get reply

5 COMMIT (client 1 commits)
SET CONTEXT(C1)
Change context to C1. Issue COMMIT
to TM. TM commits all work associated
with current context. (TM queries CM
to get current context before
processing commit. It then associates
current context with the TRANID and
orders all RMs to commit work
associated with that TRANID and context.)

6 COMMIT (client 2 commits)
SET CONTEXT(C2)
change context to C2. Issue COMMIT
to TM. TM commits all work associated
with current context. (TM interacts
with CM as in previous step.)

multiple cursors† and fetches data from each cursor [4]. A
separate connection is used for each cursor to allow a fetch
to be done on each open cursor independent of the data
flowing on other connections. The server hands off work
to the threads which are already initialized, and are waiting
for incoming work. The waiting threads are not involved
in work for any context. Once the thread is given the
context and the connection associated with that context, the
thread has exclusive use of the connection. In the example,
multiple threads work on a single transaction using different
contexts. There are two independent connections created at
the server. By default, each connection starts a new context.

For performance reasons, it is better to have all
the threads using the same context. Even though
each connection has its own context, the server can
understand, through application-specific logic, that the
requests from the single client that are coming over

† Each cursor is a pointer to a row within each query result.

different conversations pertain to related work. So the
server could choose to hand the same context to each
of the threads. The example would change as follows.
In step 1, the server would issue SHARECONTEXT
instead of HANDOFFCONTEXT. In step 2, the
server would simply issue SHARECONTEXT instead of
START NEW CONTEXT and HANDOFFCONTEXT.

3.3. Interfaces between CM, TM and RMs

The TM and protected RMs normally associate a thread
with a TRANID. Threadid and TRANID, along with
accounting and security information are the associations
maintained for a ‘context’. In an environment where an
application can start a thread to take care of part or all of
a transaction, the TM and the protected RMs need to share
the current context of the thread that is executing on the
protected resource. The mechanism that allows the TM and

6

Context management and its applications to distributed transactions

Table 2. Example 2. Multithreaded server application using a different thread for each context. Each context is part of the
same distributed transaction.

Time Client 1 Server

0 Two threads are prestarted and are waiting to do work on
behalf of a context by issuing to the main thread
GET NEW CONTEXT(context id)

1 BEGIN TRANSACTION
SQL request
OPEN CURSOR A
(one protected connection with the server) START NEW CONTEXT(C1)

BEGIN TRANSACTION
HANDOFF CONTEXT(C1)
(This satisfies thread one’s GET NEW CONTEXT.
Thread one is now processing SQL request.)

2 SQL request
OPEN CURSOR B
(one protected connection with the server) START NEW CONTEXT(C2)

HANDOFF CONTEXT(C2)
(This satisfies thread two’s GET NEW CONTEXT.

fetch from A Thread two is now processing SQL request.)
fetch from B

3 COMMIT
(If both connections are protected, The two server threads will receive the commit message.
the local TM will initiate commit Each thread issues COMMIT to TM. TM commits all work
processing on both connections.) associated with current context of each thread.

TM queries CM to get current context before
processing commit. It then associates current context
of each thread with TRANID and requests all RMs to
commit work associated with that TRANID and context.

the RMs on a local system to share a common contextid
is a matter of implementation. Two design choices we
considered are given below.

Design 1. Each time an RM, including the security RM,
is invoked, it can query the current context using the CM’s
EXTRACT CURRENT CONTEXT. The RM then looks
up its own tables to determine if it is already involved in
work for this current context. If it is not already involved
in work for the current context, the RM adds an entry
to its internal tables. The entry includes the contextid,
and whatever other information the particular RM needs.
Section 3.2 described how the contextid is used by the
various RMs.

Design 2. The CM provides a broadcast mechanism. With
this approach, the CM broadcasts the current contextid to
all ‘interested’ RMs. The broadcast occurs each time an OS
dispatchable unit (thread or process) changes the context it
is working on. The context change occurs because the
application issues a SETCONTEXT call to the CM. The
RMs do internal housekeeping when notified that the active
context has switched from one contextid to another. The
switch does not imply that the work has committed or
aborted, but rather that a context has temporarily suspended
execution. This usage of SETCONTEXT is akin to
X/OPEN’s xa end(suspend).

The mechanism for determining which RM is
‘interested’ in the broadcast is also an implementation issue.

There can be either dynamic registration where an RM calls
the CM to request to be notified whenever the context
associated with a thread or process changes, or the CM
can support automatic inclusion of RMs based on system
definition.

The choice of query versus broadcast is a performance
issue. In a particular environment, queries might entail less
overhead than broadcasts. In the prototype developed for
OS/2, a query mechanism was used. The CM maintained
a table with processid, threadid, contextid, and a flag for
the active contextid per thread. On receiving a query, the
CM could reply with the context currently associated with
the thread/process of interest to the query.

3.4. X/Open’s thread of control API and the context
management API

We have seen that an important part of context management
is the ability to allow the application, TM, RM, and other
resources to share contexts and identify the current context.
The interface between the TM and RM, as defined by
X/Open [19], allows thexa end(suspend/resume)call from
the TM to the RM to inform the RM about which thread of
control is currently performing work. However, the X/Open
specification does not address how the TM identifies the
active thread of control because X/Open does not provide
any handle or API to identify the current thread of control.
X/Open has recognized the importance of the drawback
and in a recent X/OPEN request for comments (RFC) [20],
the need to address the problem was clearly identified.

7

A D Kshemkalyani et al

Our proposed context management mechanism provides the
solution to this problem.

Sections 4 and 5 describe how context management can
solve complex issues in distributed transaction processing
that arise due to the way multiple transactions are assigned
across processes/threads.

4. Distributed transaction management

Each new incoming request accepted by a transaction
program (TP) is handled by a new instance of the TP.
Multiple such TP instances can in some cases share the
same TRANID but may be in the same or different
thread or process in the proposed processing paradigm.
Each TP instance is a different locus of control and
context is necessary to identify it. We show that the
TRANID, and threadid or processid are not enough to
identify the TP instance. If contextid is not used, there
is a possibility of deadlocks [10] or protocol violations
during commit processing, due to the combination of
the new processing paradigm and ‘loopback’, discussed
next. Note that these problems occur even if the commit
protocols are nonblocking and cope with failures during
their execution. The problems are more obvious in the
peer-to-peer communication model where the commit can
be initiated by any partner in the transaction tree and
more than one transaction is in progress at the same time.
The notion of context plays an important role in solving
these problems cleanly. We will discuss the problems
in transaction processing that exist without using context,
and the solutions offered by context management. We
also review the use of context management in reconciling
communication protocol support between chained and
unchained transactions [16].

4.1. Loopback

Loopbackis a system state in which a transaction reappears
at a node that is already involved in the same transaction
[8]. Multiple contexts in one commit tree present the same
TRANID to the shared RMs. The loopback can be direct
when a client invokes a server that happens to reside on
the same node. Loopback can be indirect, when a server,
sayX, is invoked by a client on a different node, which in
turn is a cascaded server for a client on the same node as
the serverX. Indirect loopback can also occur when two
different servers on the same node are invoked as part of the
same transaction. Figure 1 illustrates a loopback involving
three partner programsX, Y , andZ.

Currently, when a loopback occurs, a process or thread
is dispatched to handle the second occurrence of the
transaction. The two loci of execution have the same
TRANID but can be differentiated by using the processid
or threadid. In 2PC, the TM needs to determine which
resource needs to be sent prepare [8]. (Note that the
prepare flows correspond to the TP-prepare service of OSI
TP [14], and in the X/Open model, they are triggered by
xa prepare and ax prepare [19].) A particular resource
associated with the locus of control can be identified by
processid (from which TRANID can be deduced) and

TP_Y

TP_X

TP_Z

TP_Z'

Figure 1. Example of loopback. TP Z and TP Z′ share the
same TRANID, process id and thread id.

connectionid (the ‘leg’ identifier, known in OSI TP as
the branchid and in LU6.2 as the conversation correlator).
This is sufficient even if a program has a conversation with
another program on its own node whereby both branches
of the connection/conversation have the same TRANID
and connectionid. In the new processing paradigm, the
TM can identify a particular resource associated with the
locus of control by contextid, from which TRANID can be
deduced, and connectionid. If TRANID or threadid were
used instead of contextid, two loci of control would satisfy
(TRANID, connectionid) or (threadid, connectionid),
respectively, when the two loci of execution were allocated
to the same thread and had a connection with each
other. However, when the contextid is used with the
connectionid, the contextid uniquely identifies the locus of
execution, with respect to which the connectionid is used
to determine which resource(s) should be sent prepare.

The above occurrence of loopback arises in the new
paradigm when a peer-to-peer communication model, such
as modern SNA (APPN and APPC), is assumed [7]. The
peers in the transaction are considered to be ‘loosely
coupled’ [19]. In the peer-to-peer model, the commit
initiator can be different from the dialogue initiator, and
may reside on the same system. In this case, the (TRANID,
connectionid) pair is not sufficient to identify the dialogue
on which the prepare or backout should be sent. But in the
hierarchical communication model (such as OSI TP [14]
and RPC [1], whether blocking or nonblocking), only the
dialogue initiator can initiate commit processing or send
prepare; a TRANID, which can be deduced from processid
or threadid, and connectionid are sufficient for the TM
to determine the branch on which the CRM should send
the prepare. However, context is still needed for other
requirements presented in section 3.1.

4.2. Protocol violations and deadlocks

If the scope of the commit is the process and the
TRANID and processid are used to identify the different
resources, protocol violations and deadlock [10] occur.
If context management is used and the commit scope is
the context (using the contextid), such problems do not
occur. Consider the configuration shown in figure 1. The
distributed transaction involves three partner programs,X,
Y andZ. An instance of program P is denoted by TPP.
TP X has invoked servers TPY and TPZ. The arrows
on the lines indicate the direction of invocation of TPs.
TP Y has in turn invoked TPZ (which is really instance

8

Context management and its applications to distributed transactions

TP Z′ that is distinct from TPZ that was started before it).
TP Z and TPZ′ share the same TRANID, processid, and
threadid, and hence the TM cannot distinguish between
them. The commit tree is not a spanning tree if its nodes
are defined by the TRANID, processid, and threadid.

Example 1 of protocol violations/deadlocks. (1) TP X
initiates the commit process. Both the conversation
resources representing the connection to TPY and TPZ
belong to the current context of TPX and the prepare
message [7] is sent to both TPY and TPZ. (2) In turn, the
TM of TP Y sends prepare to TPZ′. However, TPZ and
TP Z′ share the same TRANID, processid, and threadid,
and hence cannot be distinguished by the TM handling
them. The TM of TPZ receives two prepares for the same
transaction, which is interpreted as a protocol violation and
results in backing out the transaction.

Using context management, the two incoming requests
from client TPX and client TPY result in the creation
of two separate contexts (with the same TRANID and
possibly same processid and same connectionid) for TP Z
and TPZ′, respectively. The commit scope is now the
context and the commit tree is now represented by a tree
of contexts. This is now a spanning tree. When TPX
initiates the 2PC, the prepare for partner TPZ is for the
context representing the connection from TPX to TP Z.
The other prepare that arrives from TPY is for the context
that represents the connection from TPY to TP Z′. Based
on context, the TM distinguishes between TPZ and TPZ′

and there are no problems in the 2PC.

Example 2 of protocol violations/deadlocks. (1) TP X
issues PrepareFor Syncpt [7] on the branch to TPY. (2)
TP Y then issues the same call to TPZ′. (3) The TM
cannot distinguish between TPZ and TPZ′ and in an effort
to prepare that branch of the tree identified by (TPX,TP Y)
and (TPY,TP Z′), the TM at Z propagates the prepare
along (TPZ,TP X). (4) The TM at TPX will detect
a protocol violation in the hierarchical communication
model [19], or a deadlock will occur in the peer-to-peer
communication model as follows. TPX will not reply to
the prepare request of TPZ; TP Z′ (which the TM cannot
distinguish from TPZ) will not reply to the prepare request
of TP Y; TP Y will not reply to the prepare request of
TP X.

However, if context were used, TPZ′ would never
have sent a prepare to TPX, and no problems would have
occurred. Context is essential to keeping a spanning 2PC
tree.

Example 3 of protocol violations/deadlocks. The 2PC
protocol has been extensively optimized by reducing the
number of messages and force log writes [8, 17]. One
such well known optimization is the linear commit [5],
otherwise known as the last-agent (LA) optimization. When
a partner that initiates the 2PC protocol decides to use the
LA optimization, it first chooses the agent that will act as
the last agent, then prepares all the other subordinates and
finally passes control to the LA (by sending it the YES
vote).

(1) Let TP X choose partner TPZ as the LA. When
TP X initiates the commit processing, the TM of TPX
will send prepare only to TPY. (2) TP Y will in turn
send prepare to TPZ′. (3) The TM handling TPZ′ cannot
distinguish between it and TPZ if it does not use context.
So it attempts to send prepare to TPX along (TPZ,TP X)
because it does not know TPZ has been chosen as the LA
of TP X.

If the conversation between TPX and TPZ is half-
duplex, TPX has send control and TPZ waits to receive
send control in order to send prepare to TPX. This wait
is indefinite because TPX is blocked waiting for the
response to the initial prepare, TPY is blocked waiting
for a response from TPZ′, and TPZ (which the TM at
Z cannot distinguish from TPZ′), is blocked waiting for
send control from TPX. If the conversation between TPX
and TPZ is full-duplex and a peer-to-peer model is used,
TP Z sends the prepare to TPX and waits for a reply from
TP X. But TP X cannot receive the prepare because its TM
is blocked waiting for the response to the initial prepare,
TP Y is blocked waiting for a response from TPZ′, and
TP Z (which the TM at Z cannot distinguish from TPZ′),
is blocked waiting for a response from TPX. Thus, there is
deadlock. If a hierarchical model is used and conversations
are full-duplex, a protocol violation is detected by the TM
of TP X. None of these problems would arise if context
were used because the TM of TPZ′ would not send a
prepare to TPX.

5. Reconciling support for chained and
unchained transactions

Distributed transactions require transaction processing
support either from their communications protocols or
from protocols at some other layer. One of the earliest
industrial-strength distributed transactional support systems
was provided by SNA (LU6.1 and LU6.2) and the vast
majority of legacy applications for transaction processing
still run over SNA [8]. When a transaction commits in
SNA, the involved resources assume they are automatically
placed in the next transaction—leading to the notion of
chained resources and chained transactional support. As
OSI TP [14] began specifying the flows for transactional
support, the notion of unchained transactional support
as opposed to the chained nature of LU6.2 transactions
gradually developed. Unchained transactional support
and unchained resources connote that when a transaction
commits, the involved resources assume they are not
placed in the next transaction unless explicitly informed
otherwise (by BeginTransaction). OSI/TP provides
both chained and unchained transactional support. This
makes the coexistence of applications requiring both kinds
of transaction processing support over an SNA LU6.2
network problematic and reduces the interoperability of
communication protocols providing transactional support.
We define chained and unchained transactions and show
how context management can be used to efficiently provide
unchained transactional support in those systems that
provide only chained transactional support, as proposed in
[16]. Adding chained transactional support to those systems

9

A D Kshemkalyani et al

that have only unchained transactional support is given for
completeness.

5.1. Chained and unchained transactions

We recently defined chained and unchained transactions
based on the manner in which the application demarcates
the boundaries of a transaction [16].

Unchained transactions. An application is said to follow
the unchained paradigm if it fulfils the following two
requirements.
• The application does protected work on behalf of a

transaction only when it explicitly specifies the beginning
(and end) of the transaction.
• The application can only do unprotected work, or

work that is not part of the transaction, outside the
boundaries of a transaction specified by BeginTransaction
and EndTransaction (or commit).

Chained transactions. An application is said to follow
the chained paradigm if and only if the application enters
a transaction implicitly when it indicates the end of the
previous transaction. Any protected work done by the
application is always part of a transaction.

Note that the chained transaction paradigm is a
transaction processing mechanism and differs from the
chained transaction model [15] that is an extended
transaction model for structuring advanced database
applications.

5.2. Enhancing unchained transactional support for
chained applications

A chained application can be made to run in an environment
with unchained transactional support without the services
of the CM. The goal is to somehow force the unchained
resources to always be in a transaction. When a chained
application issues a commit, the TM processes the 2PC
protocol and the application is implicitly placed in the next
protected unit of work. However, the underlying protocol
(CRM) is unchained and assumes that subsequent work is
unprotected unless it is informed otherwise. The TM knows
that the application is running in chained mode and has to
explicitly send a BeginTransaction(new TRANID) to the
unchained partner through the CRM because the application
will not issue the BeginTransaction message. This action
of the TM explicitly places the partner in the next unit
of protected work. In this way, a chained application can
run over an underlying protocol that offers only unchained
support.

5.3. Enhancing chained transactional support for
unchained applications

Once a transaction is committed, all chained resources are
implicitly in the next transaction. Any work now performed
by them is considered part of the next transaction. To
emulate the unchained paradigm implies that we somehow
need to force the chained resources to consider work that

they perform as unprotected until the application issues a
Begin Transaction(TRANID) to these chained resources to
include them in the next transaction. Context management
can be used to temporarily change from a transactional
context to a nontransactional context just as it can be used
to change from the context of one transaction to that of
another. Using the context to identify the commit scope
of a transaction, an application that commits needs to
be directed to change context to one not associated with
the governing transaction, in order to perform out-of-a-
transaction work. To apply this to a distributed transaction,
after the coordinator commits and decides to perform work
with a chained resource out of the current distributed
transaction, it must first direct the chained resource/partner
to switch context. This can be done explicitly or implicitly
via the first message to that resource. Details of several
mechanisms to achieve this are given in [16]. Thus, the use
of context allows unchained transactions to run on systems
that offer only chained transactional support.

6. Conclusions

Operating systems that support threads within a process
need the notion of context to efficiently support the
paradigm where a single thread can be concurrently
associated with several transactions or where several
threads work on the same transaction. This paradigm
is particularly useful for greater flexibility in application
design and to overcome constraints such as real-time
demands and a high load on tasking. The first contribution
of this paper was that it defined context management by
defining a CM and the primitives in its associated user
interface, to support the above paradigm. Systems that
do not support threads, but support server processes can
also take advantage of the context management services.
The context management services permit a transaction
processing application to specify which work is to be
handled at any instant. The application using these
services can then divide the work within and among
the threads or processes, and be assured the RMs will
know which transaction the work belongs to. While
context management fits naturally in the peer-to-peer
transactional paradigm, it also allows legacy, process-
oriented systems to increase the transactional throughput by
allowing multiplexing of transactions within one process.

A second contribution of this paper is that it showed
how context management is necessary to solve problems
such as deadlocks and protocol violations, and to handle
loopback situations that arise in distributed transaction
processing when using the paradigm in which a thread could
be associated with multiple transactions. The paper then
gave solutions to these problems in transaction processing.
The paper also showed how context management is
used to provide the functionality of unchained transaction
processing to those systems that only provide chained
transactional processing. A third contribution of this paper
is that it showed how the limitations of the X/Open proposal
can be overcome by the use of context management
in conjunction with their standard API for distributed
transaction processing.

10

Context management and its applications to distributed transactions

We expect context management will become increas-
ingly important to efficiently handle higher tasking demands
and real-time demands on the operating system. We be-
lieve that our context management API also addresses all
the present as well as likely future needs of the distributed
transaction processing community. We have implemented a
prototype of the CM and its user interface for use with dis-
tributed transaction processing. The VM operating system
Shared File System has been enhanced to provide several
features of context management support described here.

References

[1] Ananda A L, Tay B H and Koh E K 1992 A survey of
asynchronous RPCACM Operating Syst. Rev.26 92–109

[2] Citron A 1991 Context managerProc. 4th Int. Workshop on
High Performance Transaction Systems (Asilomar)

[3] Comer D 1988Internetworking with TCP/IP: Principles,
Protocols and Architecture(Englewood Cliffs, NJ:
Prentice-Hall)

[4] Date C J 1994An Introduction to Database Systems
6th edn (Reading, MA: Addison-Wesley)

[5] Gray J N 1978 Notes on data base operating systems
Operating Systems—An Advanced Course (Lecture Notes
in Computer Science 60)ed R Bayer, R Graham and
G Seegmuller (Berlin: Springer)

[6] OS/2 Technical Library 1994OS/2 Warp Control Program
Programming ReferenceIBM G25H-7102-00

[7] Systems Network Architecture 1993Transaction
Programmers’ Reference Manual for LU Type 6.2
Document Number SC30-3084-5 IBM

[8] Systems Network Architecture 1994Sync Point Services
Architecture ReferenceDocument Number SC31-8134-0
IBM

[9] King A 1994 Inside Windows 1995(Redmond, WA:
Microsoft Press)

[10] Kshemkalyani A D and Singhal M 1994 On
characterization and correctness of distributed deadlock
detectionJ. Parallel Distrib. Comput.22 44–59

[11] Lampson B W 1981 Atomic transactionsDistributed
Systems: Architecture and Implementation—An Advanced
Course (Lecture Notes in Computer Science 105)
ed B W Lampson (Berlin: Springer) pp 246–65

[12] Mohan C, Lindsay B and Obermarck R 1986 Transaction
management in the R* distributed data base management
systemACM Trans. Database Syst.11 (4)

[13] Moskowitz D et al 1993OS/2 2.1 Unleashed, Sam’s
Publishing(Englewood Cliffs, NJ: Prentice-Hall)

[14] Information Technology—Open Systems
Interconnection—Distributed Transaction
Processing—Part 1: OSI TP Model; Part 2: OSI TP
Service 1992 ISO/IEC JTC 1/SC 21 N

[15] Ramamritham K and Chrysanthis P 1994 Synthesis of
extended transactions using ACTAACM Trans.
Database Syst.19 450–91

[16] Samaras G, Citron A and Kshemkalyani A 1997
Reconciling chained and unchained transactional support
for distributed systemsJ. Syst. Archit.43 229–43

[17] Samaras G, Britton K, Citron A and Mohan C 1995
Two-phase commit optimizations in a commercial
distributed environmentJ. Distrib. Parallel Databases3
325–60

[18] Singhal M and Shivaratri N 1994Advanced Concepts in
Operating Systems: Distributed, Database, and
Multiprocessor Operating Systems(New York:
McGraw-Hill)

[19] X/Open Consortium 1992Distributed TP: a) The TX
Specification P209 b) The XA Specification C193 6/91
c) The XA+ Specification S201

[20] Change No. ATT-03 Thread of Control 1995X/Open
TxRPC CAE Specification

11

