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ABSTRACT
The vector clock is a fundamental tool for tracking causality in
distributed applications. Unfortunately, it does not scale well to
large systems because each process needs to maintain a vector of
size n, where n is the total number of processes in the system. To
address this problem, we propose the encoding of the vector clock
using prime numbers to use a single number to represent vector
time. We propose the operations on the encoded vector clock (EVC).
We then show how to timestamp global states and how to perform
operations on the global states using the EVC. We also discuss
scalability issues of the EVC.
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1 INTRODUCTION
A distributed system is modeled as an undirected graph (P ,L),
where P is the set of processes and L is the set of communica-
tion links connecting them. Let n = |P | and let d denote the degree
of the graph. Between any two processes, there may be at most
one logical channel over which the two processes communicate
asynchronously. A logical channel from Pi to Pj is formed by paths
over links in L. We do not assume FIFO logical channels; thus the
messages may be delivered out of order. Let l denote the number
of logical channels in the system.

The execution of process Pi produces a sequence of events Ei =
⟨e0i , e

1
i , e

2
i , · · · ⟩, where e

k
i is the kth event at process Pi . An event

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICDCN ’18, January 4–7, 2018, Varanasi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6372-3/18/01. . . $15.00
https://doi.org/10.1145/3154273.3154305

at a process can be an internal event, a message sending event, or
a message reception event. Let E =

⋃
i ∈P {e | e ∈ Ei } denote the

set of events in a distributed execution. The causal precedence
relation between events induces an irreflexive partial order on E.
This relation is defined as Lamport’s “happened before” relation
[14], and denoted as→. An execution of a distributed system is thus
denoted by the tuple (E,→). Lamport designed the scalar clock,
which is a function C that assigns integer timestamps to events
such that if e → f , then C(e) < C(f ). However, the drawback of
scalar clocks is that C(e) < C(f ) does not imply that e → f .

Mattern [15] and Fidge [4] designed the vector clock which
assigns a vectorV to each event such that e → f ⇐⇒V (e) < V (f ).
Each process Pi maintains a vector clockV . Events are timestamped
by the current clock value. The vector clocks, initialized to the 0-
vector, are updated by the following rules.

(1) Before an internal event happens at process Pi ,V [i] = V [i]+1
(local tick).

(2) Before process Pi sends a message, it first executes V [i] =
V [i] + 1 (local tick), then it sends the message piggybacked
with V .

(3) When process Pi receives a message piggybacked with times-
tampU , it executes
∀k ∈ [1 . . .n],V [k] = max(V [k],U [k]) (merge);
V [i] = V [i] + 1 (local tick)
before delivering the message.

The vector clock is a fundamental tool to characterize causality
in distributed executions [11, 19]. Each process needs to maintain
a vector of size n, where n is the total number of processes in the
system, to represent the local vector clock. Unfortunately, this does
not scale well to large systems. Several works in the literature
attempted to reduce the size of vector clocks [12, 16, 21, 22], but
they had to make some compromises in accuracy or alter the system
model, and in the worst-case, were as lengthy as vector clocks. To
address this problem, we propose the encoding of the vector clock
using prime numbers to use a single number to represent vector
time.

In Section 2, we give the encoding of the vector clock, and the
operations on the encoded vector clock (EVC). In Section 3, we give
mechanisms to timestamp global states and operations on the global
states using EVC. In Section 4, we discuss scalability techniques for
EVC. We give concluding remarks in Section 5.

2 ENCODED VECTOR CLOCK
Charron-Bost has shown that to capture the partial order (E,→),
the size of the vector clock is the dimension of the partial order [2],
which is bounded by the size of the system, n. Instead of using a

https://doi.org/10.1145/3154273.3154305
https://doi.org/10.1145/3154273.3154305


ICDCN ’18, January 4–7, 2018, Varanasi, India A. Kshemkalyani et al.

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

Cut A Cut B

3

[0,1,0]

Cut C

Figure 1: Illustration of using EVC. The vector timestamps and EVC timestamps are shown above and below each timeline,
respectively. In real scenarios, only the EVC is stored and transmitted.

vector of size n, we propose that the vector can be encoded into
a single number using n distinct prime numbers. The encoding of
vector clocks using primes was used for detecting locality-aware
conjunctive predicates in large-scale systems [20]. A vector clock
containing n elements, V = ⟨v1,v2, · · · ,vn⟩, can be encoded by n
distinct prime numbers p1,p2, · · · ,pn as:

Enc(V ) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvnn

However, only being able to encode a vector clock into a single
number is insufficient to track causal relations. We develop the
EVC technique to show how to implement the basic operations of
a vector clock. The EVC at each process Pi is initialized to 1. For
a vector clock to work, it needs three basic operations: local tick,
merge, and compare. Below, we implement these basic operations
using EVC.

2.1 Encoded Vector Clock Operations
Local Tick: Whenever the logical time advances locally at Pi , the
local component of the vector clock needs to tick. This increases
the local component in the vector by 1:

V [i] = V [i] + 1

While using EVC, this operation is equivalent to multiplying the
EVC timestamp by the local prime number pi ,

Enc(V ) = Enc(V ) ∗ pi

Merge:Whenever one process sends a message to another process,
with a vector clock timestamp piggybacked, the recipient of the
message needs to merge the piggybacked vector clock with its own
local vector clock. For two vector clock timestamps

V1 = ⟨v1,v2, · · · ,vn⟩ and V2 = ⟨v ′
1,v

′
2, · · · ,v

′
n⟩

merging them yields:

U = ⟨u1,u2, · · · ,un⟩, where ui = max(vi ,v ′
i )

The encodings of V1, V2, andU are:

Enc(V1) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvnn

Enc(V2) = p
v ′
1

1 ∗ p
v ′
2

2 ∗ · · · ∗ p
v ′
n

n

Enc(U ) =

n∏
i=1

p
max(vi ,v ′

i )

i

We do not have access to the vector components vi and v ′
i (i =

1 . . .n) to generate Enc(U ). Furthermore, it would be better tomerge
Enc(V1) and Enc(V2) into Enc(U ) without knowing the n prime
numbers. (One advantage of this is protection against attacks.) This
can be achieved by observing that

Enc(U ) = LCM(Enc(V1),Enc(V2))

So, by computing the LCM of two EVC timestamps, these two
timestamps can be merged without knowing the n prime numbers.

Comparison: A mechanism to compare two vector clock times-
tamps is needed. Let VE denote the set of vector timestamps of
events. Then (VE , <) is isomorphic to (E,→) [4, 15]. To compare
two distinct vector clock timestamps, a component-wise compari-
son between the corresponding elements of two vectors is needed.
The comparison has two results (the tests V1 < V2 and V2 < V1 are
symmetrical):

i) V1 < V2 if ∀j ∈ [1,n],V1[j] ≤ V2[j] and
∃j,V1[j] < V2[j]

ii) V1∥V2 if V1 ≮ V2 and V2 ≮ V1

Let ENCVE denote the set of encoded vector timestamps of
events. To compare two (distinct) EVC timestamps, it is only neces-
sary to test if Enc(Vj ) mod Enc(Vi ) = 0. Thus,

i) Enc(V1) ≺ Enc(V2) if Enc(V1) < Enc(V2) and
Enc(V2) mod Enc(V1) = 0

ii) Enc(V1)∥Enc(V2) if Enc(V1) ⊀ Enc(V2) and
Enc(V2) ⊀ Enc(V1)

The correspondence between the three basic operations of the
vector clock and EVC is shown in Table 1. These operations using
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Table 1: Correspondence between vector clocks and EVC.

Operation Vector Clock Encoded Vector Clock
Representing clock V = ⟨v1,v2, · · · ,vn⟩ Enc(V ) = pv1

1 ∗ pv2
2 ∗ · · · ∗ pvnn

Local Tick V [i] = V [i] + 1 Enc(V ) = Enc(V ) ∗ pi
(at process Pi )
Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields

where V [j] = max(V1[j],V2[j]) Enc(V ) = LCM(Enc(V1),Enc(V2))
Compare V1 < V2: ∀j ∈ [1,n], V1[j] ≤ V2[j], Enc(V1) ≺ Enc(V2): Enc(V1) < Enc(V2),

and ∃j, V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0

(1) Initialize ti = 1.
(2) Before an internal event happens at process Pi ,

ti = ti ∗ pi (local tick).
(3) Before process Pi sends a message, it first executes

ti = ti ∗ pi (local tick), then it sends the message pig-
gybacked with ti .

(4) When process Pi receives a message piggybacked with
timestamp s , it executes
ti = LCM(s, ti ) (merge);
ti = ti ∗ pi (local tick)
before delivering the message.

Figure 2: Operation of EVC ti at process Pi .

EVC are illustrated in Figure 1 using an example execution over
three processes. As our technique encodes vector clocks of events,
the encoded vector clock/timestamps of events, (ENCVE ,≺) is
isomorphic to (E,→) and to (VE , <).

Thus, the encoded vector clock ti (initialized to 1) is operated
at process Pi as shown in Figure 2. To manipulate the EVC, each
process needs to know only its own prime and not the primes of
other processes. Merging two EVCs requires computing the LCM,
which does not require factorization (see Section 2.2.2).

2.2 Complexity
Comparing with vector clocks, EVC has advantages in time, space,
and message size complexity. Each process only needs to store and
transmit a single number. If we assume that the local space for
storing and transmitting this number is bounded, then the storage
cost and message space overhead is only O(1).

In general, we analyze the complexity of vector clocks and EVC
assuming bounded storage using the uniform cost model, which is
suitable for analysis when the numbers fit into a single machine
word. We analyze the complexity of EVC assuming unbounded
storage using the logarithmic cost model, which assigns a cost to
every machine operation that is a function of the number of bits
involved, and is suitable when the numbers are unbounded. The
logarithmic cost model is used to compute the bit complexity. For a
EVC value H , we use h to denote the number of bits or digits in H .
Thus, h = logH .

2.2.1 Local Tick.

• Unbounded storage: If we assume the EVC has unbounded
storage, the bit complexity of multiplying two numbers of
size H is O(h2) using naive multiplication. This becomes
O(h(logh)(log logh)) using the Schonhage-Strassen or other
modern algorithms. However, for the local tick, the prime
number that the EVC value H is being multiplied with is
assumed to have bounded storage (fits in one machine word).
Hence, the multiplication has bit time complexity O(h).

• Bounded storage: If we assume the EVC has bounded stor-
age, the multiplication of EVC with the prime number has
O(1) time complexity.

2.2.2 Merge or Computing LCM. To compute LCM(a,b), we
have:

LCM(a,b) =
a ∗ b

GCD(a,b)

By applying the Euclidean algorithm, we can computeGCD(a,b)
without factoring the two numbers. The time complexity is the num-
ber of steps in Euclid’s algorithm, multiplied by the computational
cost of each step. Let ℏ be number of digits of the smaller number in
base 10. (Note that ℏ and h are of the same order.) It is well known
that the number of steps required is never more than five times the
number ℏ [5, 6, 13].

• Bounded numbers: In the uniform cost model, each step
of the algorithm takes constant time. The total running time
for GCD is O(ℏ); this can be expressed as O(1) because ℏ
is bounded by the word size. So we can compute GCD and
LCM in O(1) time.

• Unbounded numbers: In the logarithmic cost model, it
is well known that the overall bit time complexity of the
Euclidean algorithm for GCD isO(h2) [3, 7] by employing the
Euclid algorithm together with a classical mod operation.
This can be reduced using recursive reduction techniques,
and be brought down to O(M(h) logh), where M(h) is the
bit complexity of multiplication of two h-bit integers [3].
The best-known bound forM(h) is O(h(logh)(log logh)), as
derived from modern transform and convolution techniques
based on the Schonhage-Strassen or other algorithms for
fast large integer multiplication [3, 17]. Thus, the complexity
of the recursive GCD algorithms is:

O(h(log2 h)(log logh))

This results in quasilinear algorithms for the GCD and LCM.
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Table 2: Comparison of the time complexity of the three basic operations and the space complexity, for vector clock and EVC.

Vector Clock Encoded Vector Clock Encoded Vector Clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Local Tick O(1) O(h) O(1)
Merge O(n) O(h(log2 h)(log logh)) O(1)
Compare O(n) O(h(logh)(log logh)) O(1)
Storage O(n) O(h) O(1) +O(d) (with resetting)

2.2.3 Compare.

• Unbounded numbers: The complexity of a mod opera-
tion modulo H is asymptotically the same as a size-H mul-
tiply. The time to check Env(V2) mod Enc(V1) = 0 is the
same time taken to multiply two large numbers of h bits.
The best-known bit complexity can be calculated using the
Schonhage-Strassen bound, as O(h(logh)(log logh)) [3].

• Bounded numbers: In the uniform cost model, the time
complexity to check Env(V2) mod Enc(V1) = 0 is O(1).

2.2.4 Storage.

• Unbounded numbers: The storage complexity is O(h).
• Bounded numbers: In the uniform cost model, the stor-
age complexity is O(1). The only drawback for assuming a
bounded space for storing the numbers is that eventually it
will overflow. When overflow happens, we can adapt the vec-
tor clock resetting technique [25] which enables us to reuse
the smaller numbers. The clock resetting algorithm will in-
cur an O(l) message count complexity and an O(d) storage
cost at each process. The resetting technique is outlined in
Section 4.3.

In Table 2, we compare the time complexity of the three basic op-
erations (local tick, merge, compare), and the storage cost, for vector
clock and EVC. Note that the logarithmic cost model for computing
the complexities for the unbounded EVC storage case is different
from the uniform cost model used to compute the complexities for
the bounded EVC storage case and for vector clocks.

2.3 Resilience to Churn
Churn refers to the dynamic joining and departure of processes.
EVCs (and the operations on them) can operate correctly without
any change and without any overhead in the face of churn, because
the prime number of each process is independent of the others, and
the EVC timestamp of an event also encodes its causal history into
a single number. Optimizations, such as reducing the EVC values by
a factor corresponding to the component of the departed process,
require an engineered solution.

In comparison, vector clocks can also handle churn but may
require some adaptation of the basic protocol and/or the operations
and incur a corresponding overhead. In the simple approach, when
a process joins, the vector size is increased and when a process
departs, the vector size is not reduced [4]. Approaches that reduce
the vector size when a process departs incur a change to the protocol
[18, 23].

3 EVC TIMESTAMPS OF CUTS
3.1 Cuts
A cut is a prefix of the execution (E,→) and the state after the events
of a cut represents a global state [1]. A downward closed prefix
of (E,→) represents a consistent global state, and is a meaningful
observable state of the execution [1]. The set of consistent cuts
CCuts forms a lattice (CCuts, ⊂) under the set inclusion relation
[15]. Vector timestamps are assigned to cuts in order to reason with
cuts [8, 15].

Let ↓ e = { f | f → e
∧

f ∈ E} ∪ {e} denote the causal history
of event e . ↓ e is a consistent cut. In general, the union of the
causal histories of any subset X of events is a consistent cut. Thus,
cut(X ) =

⋃
ei ∈X ↓ ei is consistent even if the events in X form a

cut that is not consistent.
The surface of a cut S(cut) is the set that contains the last

event of the cut cut at each process. Formally, S(cut) = {eki | eki ∈

cut
∧
ek+1i < cut}. For a cut cut , we define ĉut =

⋃
ei ∈S (cut ) ↓ ei

to be the smallest consistent cut that is larger than or equal to the
cut cut . If cut is consistent, then cut = ĉut , whereas if cut is not
consistent, then cut ⊂ ĉut .

3.2 EVC Timestamp of a Cut
Vector timestamp of a cut cut , V (cut), is defined as

∀k ∈ [1,n],V (cut)[k] = V (ek )[k], for ek ∈ S(ĉut)

= max
ei ∈S (cut )

V (ei )[k]

Let event ei ∈ S(cut) occur at process Pi and let the vector
timestamp of ei , V (ei ) = ⟨vi1,v

i
2, · · ·v

i
n⟩. Likewise, let event êi ∈

S(ĉut) occur at process Pi and let the vector timestamp of êi ,V (êi ) =
⟨v̂i1, v̂

i
2, · · · v̂

i
n⟩. We can then observe that

Enc(V (cut)) =
n∏
i=1

p
v̂ ii
i

=

n∏
i=1

p
max(v1

i ,v
2
i , · · · ,v

n
i )

i

To compute Enc(V (cut)), we do not have access to the individual
components of vector timestamps of events in S(cut). Moreover, it
would be better to combine Enc(V (e1)), Enc(V (e2)), . . ., Enc(V (en ))
into Enc(V (cut)) without knowing the n prime numbers. This can
be achieved by observing that

Enc(V (cut)) = LCM(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en ))).
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Table 3: Correspondence between operations on cuts using vector clocks and EVC.

Operation Vector Clock Encoded Vector Clock
Cut ∀k ∈ [1,n],V (cut)[k] = maxei ∈S (cut )V (ei )[k] Enc(V (cut)) = LCM(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en ))),

(cut may not be consistent) where ei ∈ S(cut)
∀k ∈ [1,n],V (cut)[k] = V (ek )[k] for ek ∈ S(cut)
(cut is consistent)

Common past ∀k ∈ [1,n],V (CP(cut))[k] = minei ∈S (cut )V (ei )[k] Enc(V (cut)) = GCD(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en ))),
where ei ∈ S(cut)

If V (cut1)[j] = vj and V (cut2)[j] = v ′
j , Merge Enc(V (cut1)) and Enc(V (cut2)) yields

Intersection V (cut1
⋂
cut2)[j] = min(vj ,v ′

j ) Enc(V ) = GCD(Enc(V (cut1)),Enc(V (cut2)))
Union V (cut1

⋃
cut2)[j] = max(vj ,v ′

j ) Enc(V ) = LCM(Enc(V (cut1)),Enc(V (cut2)))
Compare V (cut1) < V (cut2): ∀j ∈ [1,n], V (cut1)[j] ≤ V (cut2)[j], Enc(V (cut1)) ≺ Enc(V (cut2)): Enc(V (cut1)) < Enc(V (cut2)),

and ∃j, V (cut1)[j] < V (cut2)[j] and Enc(V (cut2)) mod Enc(V (cut1)) = 0

So, by computing the LCM of n EVC timestamps of events, the
encoded timestamp of the consistent cut can be computed without
knowing the n prime numbers. The LCM of n numbers can be
computed iteratively, and its complexity isn−1 times the complexity
of a single LCM. By extending the results of Section 2.2, the time
complexity of computing the LCM of n EVC timestamps is O(n ×

h(log2 h)(log logh)) assuming unbounded storage for EVCs and
O(n) assuming bounded storage for EVCs.
Example 1: For Cut A in Figure 1, for events ei ∈ S(CutA),V (e1) =
[2, 0, 1], V (e2) = [1, 3, 0], and V (e3) = [0, 0, 1]. We have V (CutA) =
[2, 3, 1].

• Using prime numbers,
Enc(V (CutA)) = 2max(2,1,0) × 3max(0,3,0) × 5max(1,0,1) = 4 ×
27 × 5 = 540.

• WehaveEnc(V (e1)) = 20,Enc(V (e2)) = 54, andEnc(V (e3)) =
5. Without using prime numbers,
Enc(V (CutA)) = LCM(Enc(V (e1)), Enc(V (e2)), Enc(V (e3))) =
LCM(20, 54, 5) = 540.

Thus, Enc(V (CutA)) is the same value with and without using the
prime numbers.

3.3 EVC Timestamp of Cut Representing
Common Past

For a cut cut , we can define its common-past CP(cut) to be the
execution prefix such that the prefix is in the causal history of every
element in S(cut).CP(cut) =

⋂
ei ∈S (cut ) ↓ ei [8]. The common-past

of a cut is useful for discarding obsolete information in distributed
databases, checkpointing, and designing protocols for the replicated
log and replicated dictionary problems [10, 24].We define the vector
timestamp of CP(cut), V (CP(cut)), as

∀k ∈ [1,n],V (CP(cut))[k] = min
ei ∈S (cut )

V (ei )[k]

As before, let event ei ∈ S(cut) occur at process Pi and let the vec-
tor timestamp of ei , V (ei ) = ⟨vi1,v

i
2, · · ·v

i
n⟩. We can then observe

that

Enc(V (CP(cut))) =
n∏
i=1

p
min(v1

i ,v
2
i , · · · ,v

n
i )

i

To compute Enc(V (CP(cut))), we do not have access to the in-
dividual components of vector timestamps of events in S(cut).
Moreover, it would be better to combine Enc(V (e1)), Enc(V (e2)),
. . . Enc(V (en )) into Enc(V (CP(cut))) without knowing the n prime
numbers. This can be achieved by observing that

Enc(V (CP(cut))) = GCD(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en ))).

So, by computing the GCD of n EVC timestamps of events, the
encoded timestamp of the consistent cut can be computed without
knowing the n prime numbers. The GCD of n numbers can be
computed iteratively, and its complexity isn−1 times the complexity
of a single GCD. By extending the results of Section 2.2, the time
complexity of computing the GCD of n EVC timestamps is O(n ×

h(log2 h)(log logh)) assuming unbounded storage for EVCs and
O(n) assuming bounded storage for EVCs.

For unbounded storage, an alternate bound forGCD(a1, . . . ,an ),
based on the Euclidean algorithm, also computes the GCD iter-
atively but counts the total number of division operations. The
derivation leverages the fact that after each GCD calculation, the
GCD reduces by a factor of at least two, (else if it remains the same,
only one division is used). There are log2 a1 (rather than n) terms in
the series

∑log2 a1
k=1 logaik . The total number of division operations

is less than O((loga1)(logan )) or simply O(h2). As each division
costs O(h(logh)(log logh)), this bound is better if

O(h3(logh)(log logh)) < O(nh(log2 h)(log logh))

which may not be true for large numbers ai .
Example 2: For Cut B in Figure 1, for events ei ∈ S(CutB), we have
V (e1) = [3, 0, 1], V (e2) = [3, 4, 1], and V (e3) = [1, 3, 2]. V (CutB) =
[3, 4, 2], whereas we have V (CP(CutB)) = [1, 0, 1].

• Using prime numbers,
Enc(V (CP(CutB))) = 2min(3,3,1) × 3min(0,4,3) × 5min(1,1,2) =
2 × 1 × 5 = 10.

• WehaveEnc(V (e1)) = 40,Enc(V (e2)) = 3240, andEnc(V (e3)) =
1350. Without using prime numbers,
Enc(V (CP(CutB))) =GCD(Enc(V (e1)),Enc(V (e2)),Enc(V (e3)))
= GCD(40, 3240, 1350) = 10.

Thus, Enc(V (CP(CutB))) is the same value with and without using
the prime numbers.
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Table 4: Comparison of the time complexity of the operations on cuts using vector clocks and EVC.

Vector Clock Encoded Vector Clock Encoded Vector Clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Computing timestamp O(n2) (cut may not be consistent) O(nh(log2 h)(log logh)) O(n)
O(n) (cut is consistent)

Computing common past O(n2) O(nh(log2 h)(log logh)) O(n)

Intersection and union O(n) O(h(log2 h)(log logh)) O(1)
Compare O(n) O(h(logh)(log logh)) O(1)

Matrix clocks, first defined by Wuu and Bernstein [24], use a
n × n matrix M of clock values, where the M[j,k]th entry at Pi
denotes Pi ’s knowledge of Pj ’s knowledge of the latest local clock
value at Pk . Note that M[j], the jth row of the matrix timestamp
of an event e , corresponds to the vector timestamp of the event at
Pj in the surface of the cut ↓ e , denoted by V ((S(↓ e))j ), and this
can be encoded by EVC as shown above. Thus, the matrix clock
can be encoded as a vector of length n of EVCs. The common past
of events (S(↓ e))j , for all j, identifies the execution prefix that is
known to all processes and thus can be discarded from the local log
at event e .
Example 3: For the event e with EVC = 3240 in Figure 1, Enc(M(e))
= [40, 3240, 5]. We have V (↓ e) = [3, 4, 1], V ((S(↓ e))1) = [3, 0, 1],
V ((S(↓ e))2) = [3, 4, 1], V ((S(↓ e))3) = [0, 0, 1], whereas we have
V (CP(↓ e)) = [0, 0, 1]. By applying a logic similar to example 2, it
follows that:

• Using prime numbers,
Enc(V (CP(↓ e))) = 2min(3,3,0) × 3min(0,4,0) × 5min(1,1,1) = 1 ×
1 × 5 = 5.

• Enc(V ((S(↓ e))1)) = 40,Enc(V ((S(↓ e))2)) = 3240,Enc(V ((S(↓
e))3)) = 5, Without using prime numbers,
Enc(V (CP(↓ e))) = GCD(40, 3240, 5) = 5.

The EVC of the execution prefix that can be safely discarded is 5.

3.4 Other Operations on Cuts
Intersection and Union: For two vector clock timestamps of (con-
sistent) cuts cut1 and cut2, let

V (cut1) = ⟨v1,v2, · · · ,vn⟩ and V (cut2) = ⟨v ′
1,v

′
2, · · · ,v

′
n⟩

We have that

V (cut1
⋂

cut2) = ⟨u1,u2, · · · ,un⟩, where ui = min(vi ,v ′
i )

V (cut1
⋃

cut2) = ⟨u1,u2, · · · ,un⟩, where ui = max(vi ,v ′
i )

The encodings of V (cut1), V (cut2), V (cut1
⋂
cut2), and V (cut1

⋃
-

cut2) are:

Enc(V (cut1)) = pv1
1 ∗ pv2

2 ∗ · · · ∗ pvnn

Enc(V (cut2)) = p
v ′
1

1 ∗ p
v ′
2

2 ∗ · · · ∗ p
v ′
n

n

Enc(V (cut1
⋂

cut2)) =

n∏
i=1

p
min(vi ,v ′

i )

i

Enc(V (cut1
⋃

cut2)) =

n∏
i=1

p
max(vi ,v ′

i )

i

To compute the encodings of the vector timestamps of the intersec-
tion and union cuts, we do not have access to the individual compo-
nents of the vector timestamps of cut1 and cut2. Moreover, it would
be better to compute Enc(V (cut1

⋂
cut2)) and Enc(V (cut1

⋃
cut2))

without knowing the n prime numbers. This can be achieved by
observing that

Enc(V (cut1
⋂

cut2)) = GCD(Enc(V (cut1)),Enc(V (cut2)))

Enc(V (cut1
⋃

cut2)) = LCM(Enc(V (cut1)),Enc(V (cut2)))

So, by computing the GCD and the LCM of two EVC timestamps of
cuts, the EVC timestamps of the intersection and the union cuts, re-
spectively, can be computed without knowing the n prime numbers.
The time complexity is O(1), namely the cost of a single GCD or
LCMoperation, assuming bounded storage, orO(h(log2 h)(log logh))
assuming unbounded storage to represent the EVCs. This assumes
the encoded vector timestamps of cut1 and cut2 are available. These
should be available since we are operating in the EVC domain.
Example 4: Consider the intersection and union of Cut A and Cut
C shown in Figure 1. Using vector timestamps of cuts and prime
numbers, we have:

• V (CutA) = [2, 3, 1];V (CutC) = [1, 3, 2].
• V (CutA

⋂
cutC) = [1, 3, 1];V (CutA

⋃
CutC) = [2, 3, 2]

• Enc(V (CutA
⋂
CutC)) = 21 ∗ 33 ∗ 51 = 270;

Enc(V (CutA
⋃
CutC)) = 22 ∗ 33 ∗ 52 = 2700

Using the encodings of the vector timestamps of Cut A and Cut C
and without using prime numbers, we have by using the expres-
sion from Section 3.2, Enc(V (CutA)) = LCM(20, 54, 5) = 540 and
Enc(V (CutC)) = LCM(2, 54, 1350) = 1350. We then have:

• Enc(V (CutA
⋂
CutC)) = GCD(Enc(V (CutA)),Enc(V (CutC)))

= GCD(540, 1350) = 270.
• Enc(V (CutA

⋃
CutC)) = LCM(Enc(V (CutA)),Enc(V (CutC)))

= LCM(540, 1350) = 2700.

Comparison: The comparison of two distinct consistent cuts cut1
and cut2 inCCuts results in one of two outcomes: i) cut1 ⊂ cut2 (or
symmetrically, cut2 ⊂ cut1), or ii) cut1 1 cut2 and cut2 1 cut1, i.e.,
cut1∥cut2. To compare two EVC timestamps of cuts cut1 and cut2,
it is only necessary to test if Enc(V (cut2)) mod Enc(V (cut1)) = 0.
Thus,
i) Enc(V (cut1)) ≺ Enc(V (cut2)) if Enc(V (cut1)) < Enc(V (cut2)) and

Enc(V (cut2)) mod Enc(V (cut1)) = 0
ii) Enc(V (cut1))∥Enc(V (cut2)) if Enc(V (cut1)) ⊀ Enc(V (cut2)) and

Enc(V (cut2)) ⊀ Enc(V (cut1))



Encoded Vector Clock: Using Primes to Characterize Causality in Distributed Systems ICDCN ’18, January 4–7, 2018, Varanasi, India

For unbounded storage, the time to check Env(V (cut2)) mod -
Enc(V (cut1)) = 0 is asymptotically the same as the time taken to
multiply two large numbers of h bits. The best-known bit complex-
ity is based on the Schonhage-Strassen bound, asO(h(logh)(log logh)).
For bounded numbers, the time complexity to check Env(V (cut2))
mod Enc(V (cut1)) = 0 is O(1).

The encoded vector clock timestamps of consistent cuts, denoted
(ENCVCC ,≺), is isomorphic to (VCC , <), the vector clock times-
tamps of consistent cuts, and to (CCuts, ⊂).

Table 3 gives the correspondence between the operations on
cuts using vector clocks and using EVC. In Table 4, we compare
the time complexities between the operations on cuts using vector
timestamps and using EVCs.

4 SCALABILITY
For n processes in the system and fi events at each process Pi ,
the maximum EVC timestamp across all processes is O(

∏n
i=1 p

fi
i ).

From this observation, we can see that EVC timestamps grow very
fast and overflow is unavoidable. We can use several strategies to
alleviate this problem.

4.1 Relevant Events
It suffices if the local clock does not tick at every event but only at
events that are relevant to the application. Thus, the EVC does not
grow so fast. This strategy is explained in the context of predicate
detection [20]. The local clock should tick only when the variables
in the predicate alter the truth value of the predicate.

We also note that on social platforms such as Twitter and Face-
book, the maximum length of any chain of messages is usually
small, after which that chain of posts dies out.

4.2 Detection Regions
In large-scale systems, the application requiring a vector clock
may be confined to only a subset of m processes, where m < n.
An example of this is locality-aware predicate detection [20]. The
subset ofm processes forms a detection region. Processes within
the detection region maintain a single number for the EVC. More
importantly, for processes outside the detection region, we can cut
down the storage cost and make the solution more practical for
large-scale systems. For a process Pj outside the region, when it
first receives a message piggybacked with an EVC timestamp, it
simply stores this single number. Although Pj will not tick the EVC
locally since there is no corresponding component in the vector
clock for Pj , it may still receive multiple messages. Each time this
happens, Pj simply executes the merge operation by calculating
the LCM of two numbers. (Pj needs to store the EVC and to do the
merge because it may later send messages back into the detection
region, directly or transitively.)

4.3 Resetting EVC
We can adapt the clock resetting technique [25] to solve the problem
when the clock overflows. This technique divides the execution
of a distributed system into multiple phases. Each time the clock
overflows at any process, the resetting algorithm terminates the
current phase by sending control messages while ensuring there
is no computation message sending from the current phase to the

(1) Initialize ti = 0.
(2) Before an internal event happens at process Pi ,

ti = ti + log(pi ) (local tick).
(3) Before process Pi sends a message, it first executes

ti = ti + log(pi ) (local tick), then it sends the message
piggybacked with ti .

(4) When process Pi receives a message piggybacked with
timestamp s , it executes
ti = s + ti − log(GCD(log−1(s), log−1(ti ))) (merge);
ti = ti + log(pi ) (local tick)
before delivering the message.

Figure 3: Operation of the logarithm of the EVC, ti , at pro-
cess Pi .

next phase, nor from the next phase to the current phase. The reset
protocol involves a period of send inhibition of messages, and the
local clock gets reset in a strongly consistent (i.e., transitless) global
state [9].

4.4 Using logarithms of EVC
As the EVC technique uses exponentiation, we propose the use
of logarithms to store and transmit the EVCs. This can result in a
reduction in the size of EVCs. Before proceeding with this approach,
we note that since logarithms involve finite-precision arithmetic,
their use is subject to the introduction of errors due to the limited
precision. The use of logarithms requires a careful analysis of the
errors introduced. Yet, we outline this approach due to its promise.

The logarithms can be taken to any base greater than 1. Hence-
forth, we omit mention of the base. The three operations of the
EVC, using the representation of logarithms, are as follows.

Local Tick: At a process Pi , the local tick updates log(Enc(V )) as
follows.

log(Enc(V )) = log(Enc(V )) + log(pi )

Merge: Let vectorU denote the merge of vectorsV1 andV2, and let
x and y denote the logarithms of Enc(V1) and Enc(V2), respectively.
Then,

log(Enc(U )) = log(LCM(Enc(V1),Enc(V2)))

= log(Enc(V1)) + log(Enc(V2))
− log(GCD(Enc(V1),Enc(V2)))

= x + y − log(GCD(log−1(x), log−1(y)))

Compare: Letx andy denote the logarithms ofEnc(V1) andEnc(V2),
respectively, and let N denote the set of natural numbers.

i) x ≺ y if x < y and log−1(log(
Enc(V2)

Enc(V1)
)) ∈ N

if x < y and log−1(y − x) ∈ N

ii) x ∥y if x ⊀ y and y ⊀ x
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The local tick is implemented by a single addition. Unfortunately,
the merge and the comparison operations require taking the antilog-
arithms, which may require a large amount of scratch space. The bit
time complexity of taking the log and anti-log using the arithmetic-
geometric mean iteration method is O(M(r ) log r ), where r refers
to the number of digits of precision andM(r ) is the complexity of
the multiplication module. For the merge operation, this cost can
be assumed to be less than or of the same order as that of com-
puting the GCD. The test for the compare operation is subject to
errors due to the finite precision used in representing logarithms.
The amount of errors can be reduced if for each tick operation, a
conversion from the log domain to the integer domain, followed by
multiplication in the integer domain and then a conversion back to
the log domain is performed.

In summary, the logarithm of the encoded vector clock, ti (ini-
tialized to 0) at process Pi , is operated as shown in Figure 3. The
advantage is that the storage of the EVC and transmission of the pig-
gybacked timestamp can be done using a single (smaller) number,
and the extra space required is only scratch space.

5 CONCLUSIONS
We proposed the encoding of the vector clock using prime numbers,
to use a single number to represent vector time. We gave the oper-
ations on the EVC. We also showed how to timestamp global states
using EVC, and various operations on these global states using EVC.
To manipulate the EVC, every process only needs to know its own
prime, and not the primes of other processes. Further, to compute
the equivalent of the maximum of two vector clocks, a process
needs to find the largest common multiple of their EVCs, which
does not require factorization. In addition to the obvious advantage
of saving space, the time complexity of most operations using EVC
(with bounded storage) is lower than that using traditional vector
clocks. The one exception is timestamping a consistent global state;
however, cut operations are not performed frequently.

A drawback of EVCs is that they grow very fast and overflow
soon occurs. Therefore, we examined scalability approaches for
the EVC to deal with this. These included ticking the clock only
at application-relevant events and only at processes where such
events occur, and resetting the EVC throughout the system when it
overflows at some process. We also proposed the use of logarithms
of EVCs to store and transmit EVCs to cut down the overhead.

The approach of using logarithms of EVCs appears promising
although an analysis of errors introduced due to finite-precision
logarithms is required before reaching any conclusions. Another
direction for further work is to examine how quickly the EVC grows
in practice for real applications or via simulations. Further, by ex-
amining the length of the causal chain of relevant events/messages
in social platforms (e.g., Twitter and Facebook) where the number
of users is potentially large, one could discover firm evidence as to
whether or not EVCs are advantageous on social platforms.
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