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ABSTRACT
The dispersion problem on graphs requires k robots placed arbi-

trarily at the n nodes of an anonymous graph, where k ≤ n, to
coordinate with each other to reach a final configuration in which

each robot is at a distinct node of the graph. The dispersion problem

is important due to its relationship to graph exploration by mobile

robots, scattering on a graph, and load balancing on a graph. In

addition, an intrinsic application of dispersion has been shown to

be the relocation of self-driven electric cars (robots) to recharge

stations (nodes). We propose five algorithms to solve dispersion on

graphs. The first three algorithms require O(k log∆) bits at each
robot andO(m) steps running time, wherem is the number of edges

and ∆ is the degree of the graph. The algorithms differ in whether

they address the synchronous or the asynchronous system model,

and in what, where, and how data structures are maintained. The

fourth algorithm, for the asynchronous model, has a space usage

of O(D log∆) bits at each robot and uses O(∆D ) steps, where D
is the graph diameter. The fifth algorithm, for the asynchronous

model, has a space usage of O(max(logk, log∆)) bits at each robot

and uses O((m − n)k) steps.

CCS CONCEPTS
•Computingmethodologies→Distributed algorithms; •Math-
ematics of computing → Graph algorithms; • Computer sys-
tems organization → Robotics;

KEYWORDS
distributed algorithm, dispersion, graph algorithm, graph explo-

ration, mobile robot, collective robot exploration
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1 INTRODUCTION
1.1 Background and Motivation
The problem of dispersion of mobile robots, which requires the

robots to spread out evenly in a region, has been explored in the
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literature [15]. The dispersion problem on graphs, formulated by

Augustine and Moses Jr. [3], requires k robots placed arbitrarily

at the n nodes of an anonymous graph, where k ≤ n, to coordi-

nate with each other to reach a final configuration in which each

robot is at a distinct node of the graph. This problem has various

applications; for example, an intrinsic application of dispersion has

been shown to be the relocation of self-driven electric cars (robots)

to recharge stations (nodes) [3]. Recharging is a time-consuming

process and it is better to search for a vacant recharge station than

to wait. In general, the problem is applicable whenever we want

to minimize the total cost of k agents sharing n resources, located

at various places, subject to the constraint that the cost of moving

an agent to a different resource is much smaller than the cost of

multiple agents sharing a resource.

The dispersion problem is also important due to its relationship

to graph exploration by mobile robots, scattering on a graph, and

load balancing on a graph. These are fundamental problems that

have been well-studied by varying the system model and assump-

tions. Although some works consider these problems in general

graphs, others consider specific graphs like grids, trees, and rings.

1.2 Our Results
Our results assume that robots have no visibility and can only com-

municate with other robots present at the same node as themselves.

The robots are deterministic, and are distinguishable. The undi-

rected graph, withm edges, n nodes, diameter D, and degree ∆, is
anonymous, i.e., nodes have no labels. Nodes also do not have any

memory but the ports (leading to incident edges) at a node have

locally unique labels.

We provide five efficient algorithms to solve dispersion in both

the synchronous and asynchronous system models. The following

is an overview of our algorithms; the upper bound results are given

in Table 1.

(1) For the synchronous model, we present algorithm Helping-
Sync which needs O(k log∆) bits per robot and O(m) steps
time complexity; for this synchronous algorithm, we assume

robots knowm if termination is to be achieved. In this al-

gorithm, docked robots, defined as robots that have reached

their nodes in the final configuration, help visiting robots by

maintaining data structures on their behalf.

(2) Algorithm Helping-Async is the asynchronous version of

Helping-Sync and has the same time complexity O(m) and
same space complexity ofO(k log∆) bits per robot; however
this algorithm requires each docked robot to remain active

and help other visiting robots.

(3) Algorithm Independent-Async has the same complexity (O(m)
time steps and O(k log∆) bits per robot) and features as Al-

gorithm Helping-Async; it differs in what, how, and where
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Table 1: Comparison of the proposed algorithms for dispersion on graphs.

Algorithm Model Memory Requirement Time Termination

at Each Robot (in bits) Complexity

Helping-Sync Sync. O(k log ∆) O(m) steps need to knowm for termination

Helping-Async Async. O(k log ∆) O(m) steps no termination

Independent-Async Async. O(k log ∆) O(m) steps no termination

Independent-Bounded-Async Async. O(D log ∆) O(∆D ) steps termination

Tree-Switching-Async Async. O(max(logk, log∆)) O((m − n)k) steps no termination

data structures are maintained. Here, each robot maintains

its own data structures, as opposed to Helping-Async where
docked robots help visiting robots by maintaining data struc-

tures on their behalf.

(4) Algorithm Independent-Bounded-Async has a bit complexity

of O(D log∆) at each robot and a time complexity O(∆D )
steps. Unlike the earlier asynchronous algorithms, this algo-

rithm is guaranteed to terminate. Each robot runs its algo-

rithm independently and there is no helping among robots.

(5) Algorithm Tree-Switching-Async has a bit complexity of O(-
max(logk, log∆)) bits at each robot and a time complexity

O((m − n)k) steps. The algorithm instance run by a robot is

dependent on the algorithm instances run by other robots,

and a robot switches between these algorithm instances in a

structured manner. The algorithm requires a docked robot

to remain active and help visiting robots.

Although the asynchronous algorithmsHelping-Async, Independent-
Async, and Tree-Switching-Async, technically speaking, do not ter-

minate because the docked robots need to be awake to relay local

information to visiting robots, we state their time complexity. This

is because at most the time complexity number of steps are required

for each robot to perform active computations and movements until

it docks at a node; after that, a docked robot merely passively helps

visiting robots (until they find a node to dock).

1.3 Related Work
The dispersion problem on graphs was formulated by Augustine

and Moses Jr. [3]. They showed a lower bound of Ω(D) on the time

complexity, and an independent lower bound of Ω(log n) bits per
robot, to solve dispersion. They then gave several dispersion algo-

rithms for specific types of graphs for the synchronous computation

model. Besides giving dispersion algorithms for paths, rings, trees,

rooted trees (a rooted tree has all the robots at the same node in

the initial configuration), and rooted graphs (a rooted graph has all

the robots at the same node in the initial configuration), they gave

two algorithms for general graphs in which the robots can be at

arbitrary nodes in the initial configuration. The first algorithm uses

O(log n) bits at each robot and O(∆D ) rounds, whereas the second
algorithm uses O(n log n) bits at each robot and O(m) rounds. We

claim that both these algorithms are incorrect. Both algorithms use

variants of Depth First Search (DFS), but may backtrack incorrectly.

This can lead to getting caught in cycles while backtracking and fail-

ure in searching the graph completely. The problems arise because

the algorithms fail to coordinate correctly concurrent searches of

the graph by different robots, which interfere with one another.

The backtracking strategy is not consistent with the forward explo-

ration strategy. Further, while backtracking from a node, a robot

uses the parent pointer of the docked robot without any coordi-

nation. Acknowledging these errors that we pointed out [16], the

authors gave revised versions of these algorithms in a revised report

[2]. Their revision to the first algorithm, havingO(mn+n2) rounds,
and our Tree-Switching-Async algorithm use some similar ideas.

The dispersion problem on graphs is closest to the problem of

graph exploration by robots. In the graph exploration problem, the

objective is to visit all the nodes of the graph. There are many

results for this problem. Several works assume specific topologies

such as trees [1, 12]. For general graphs, the results depend on the

different system models and assumptions such as the following.

(1) what parameters of the graph are known to the robots,

(2) whether the graph is anonymous,

(3) whether memory is allowed at robots [13],

(4) whether memory is allowed at the nodes [8],

(5) whether knowledge of the incoming ports through which a

robot enters nodes is allowed [13],

(6) whether exploration is by a single robot or cooperating

robots [6, 7, 10],

(7) if exploration is by multiple robots, whether robots are al-

lowed to communicate under the local communicationmodel

or the global communication model [6, 7, 10],

(8) if exploration is by multiple robots, whether robots are colo-

cated or dispersed in the initial configuration,

(9) whether we are designing a solution that is time optimal, or

space optimal,

(10) whether termination of the robot is required or it is to per-

petually traverse the graph [17].

We now review a few of the closest results. Fraigniaud et al. [13]

showed that using only memory at a robot, the robot can explore

an anonymous graph using θ (D log∆) bits based on a D-depth re-

stricted DFS. They did not analyze the time complexity, which turns

out to be

∑D
i=1O(∆

i ) = O(∆D ). Their algorithm has no mechanism

to avoid getting caught in cycles and the only way out of cycles is

the depth-restriction on the DFS. The robot also requires knowl-

edge ofD to terminate. Reingold [20] gave a log-space deterministic

algorithm for exploring undirected graphs. The space complexity

is the best possible because the exploration of undirected graphs

requires Ω(log n) space [13]. Cohen et al. [8] gave two DFS-based

algorithms with O(1) memory at the nodes. The first algorithm

uses O(1) memory at the robot and 2 bits memory at each node to

traverse the graph. The 2 bits memory at each node is initialized

by short labels in a pre-processing phase which takes time O(mD).
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Thereafter, each traversal of the graph takes up to 20m time steps.

The second algorithm uses O(log∆) bits at the robot and 1 bit at

each node to traverse the graph. The 1 bit memory at each node

is initialized by short labels in a pre-processing phase which takes

time O(mD). Thereafter, each traversal of the graph takes up to

O(∆10m) time steps. The problem of how much knowledge a robot

has to have a priori, termed as advice that is provided by an oracle,

in order to explore the graph in a given time, using a deterministic

algorithm was considered in [14].

Dereniowski et al. [10] studied the trade-off between graph ex-

ploration time and number of robots, assuming that (i) nodes have

unique identifiers, (ii) when visiting a node, a list of all its neigh-

bors is also known, (iii) all the robots are located at one node in

the initial configuration, (iv) robots have unique identifiers, and

(v) there is no bound on the memory of robots, which construct

a map of the previously visited subgraph. The authors considered

results in both the local communication model, as well as the global

communication model. The main contribution is an exploration

strategy for a polynomial number of robots Dn1+ϵ < n2+ϵ to ex-

plore graphs in an asymptotically optimal number of steps O(D).
Using the Rotor-Router algorithm allowing only log∆ bits per node,

an oblivious robot (i.e., robot is not allowed any memory) that also

has no knowledge of the entry port when it enters a node, can

explore an anonymous port-labeled graph in 2mD time steps [4, 23].

Menc et al. [18] proved a lower bound of Ω(mD) on the exploration

time steps for the Rotor-Router algorithm.

The dispersion problem is similar to the problem of scattering or

uniform deployment of k robots on a n node graph. The scattering

problem was examined on rings [11], and on grids [5], under differ-

ent system assumptions than those that we make for the dispersion

problem.

The dispersion problem is also similar to the load balancing

problem, wherein a given load has to be (re-)distributed among

several processors. In this analogy, the robots are the load, and

it is these active loads rather than the passive nodes that make

decisions about movements in the graph. Load balancing in graphs

has been studied extensively. Load balancing algorithms use either

a diffusion-based approach [9, 19, 21], which is somewhat similar

to our algorithms, or a dimension-exchange approach [22] wherein

a node can balance with either a single neighbor in a round, or

concurrently with all its neighbors in a round.

2 SYSTEM MODEL
We are given an undirected graph G with n nodes,m edges, and

diameter D. The maximum degree of any node is ∆. The graph is

anonymous, i.e., nodes do not have unique identifiers. At any node,

its incident edges are uniquely identified by a label in the range

[0,δ − 1], where δ is the degree of that node. We refer to this label

of an edge at a node as the port number at that node. We assume

no correlation between the two port numbers of an edge. There is

no memory at the nodes.

In our algorithms, we consider both the synchronous model

and the asynchronous model. In the synchronous model, there is a

global clock that coordinates the processing of the robots in rounds.

In any round, a robot stationed at a node does some computation,

perhaps after communication with local robots, and then optionally

does a move along one of the incident edges to an adjacent node.

Multiple robots can move along an edge in a round. However, we

assume that each edge is a single-lane edge, in the sense that robots

can move along the edge sequentially. As a result, if multiple robots

make a move along an edge, they will enter the node in sequential

order which can be captured by a real-time synchronized clock.

In the asynchronous model, there is no global mechanism that

coordinates the round numbers of the robots. Thus, each robot

executes its rounds/iterations at an independent pace. When a

robot determines that it will occupy a particular node in the final

configuration, it docks at that node (by entering state = settled).
The k robots are distinguished from each other by a unique

⌈log k⌉-bit label from the range [1,k]. The robots are also endowed
with a real-time synchronized clock. A robot can communicate only

with other robots that are present at the same node as itself. No

robot initially has knowledge of the graph or its parameters n,m, D,
and ∆. We assume each robot knows k , which is upper-bounded by

n, in Helping-Sync, Helping-Async, and Independent-Async. In our

synchronous algorithms (Helping-Sync, and the synchronous ver-

sions of algorithms Independent-Async and Tree-Switching-Async),
we assume a robot has knowledge of the parameterm if we want

to achieve local termination of the code after a robot has docked at

a node in the final configuration. For the asynchronous algorithms

Helping-Async, Independent-Async, and Tree-Switching-Async, the
main for loop could be replaced by a while-true loop. This is

because a robot breaks out of the loop once it docks at a node, and

is guaranteed to dock within a finite, bounded number of steps.

When robots contend to dock at a node, they invoke a MU-

TEX(node) call that guarantees that only one robot succeeds in

docking. The MUTEX call returns the identifier of the robot that

has docked. The MUTEX may be implemented in various ways.

For example, the earliest robot (among the contending robots) that

arrived at the node can win the MUTEX; if there is a tie in case of

multiple robots arriving simultaneously along different ports, then

the tie is broken by choosing the robot arriving along the lowest

numbered port as the winner. Or, in the synchronous model, the

robots can compare their labels and the robot with the smallest

label wins the MUTEX. Or the MUTEX can be implemented by a

hardware device to which the winner robot physically connects

when it docks.

Problem Description: We are given an initial configuration of k
robots, where k ≤ n, distributed arbitrarily at then nodes of a graph.

The robots need to move around to reach a final configuration in

which there is at most one robot at any node in the graph.

2.1 Bounds and their Analysis
For the graph dispersion problem, a lower bound of Ω(D) on the

running time was shown in [3]. (Note that this prior work [3]

required k = n whereas we allow k ≤ n.) We present a different

lower bound.

Theorem 2.1. The dispersion problem on graphs requires Ω(k)
steps as its running time.

Proof. Consider a line graph and all k robots colocated at one

end node in the initial configuration. In order for the robots to dock

at distinct nodes, some robot must travel k − 1 hops. □
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A lower bound of Ω(log n) bits on the memory of robots was

shown in [3]. In the rest of this section, we analyze the memory

bound of robots assuming that a O(m) time algorithm, based on

DFS, is to be used. There are two challenges:

(1) To determine whether a node has been visited before. Note

that nodes have no memory in our system model. Although

there are n nodes, we observe that a node has been visited

before if and only if there is a robot docked at the node and

there is a record of having encountered that robot before.

As there are k(≤ n) robots, it suffices to track whether or

not each of the k robots has been encountered before. This

imposes a bound of O(k) bits.
(2) If it is determined that a node has been visited before, back-

tracking is in order to meet theO(m) time bound. During the

backtracking phase, to determine which port to use for back-

tracking requires identifying the parent node from which

that robot first entered a particular node. Such a parent node

can be identified by the local port number of the edge lead-

ing to the parent node. A port at a node can be encoded in

log ∆ bits. Further, we need to track ports at at most k − 1
nodes because only a node with a docked robot requires

other visiting robots to backtrack, and up to k − 1 nodes

may be occupied by docked robots. This imposes a bound of

O(k log∆) bits.

Thus, the overall bound on memory at a robot is O(k log∆) bits,
assuming a O(m) time algorithm. The algorithms Helping-Sync,
Helping-Async, and Independent-Async that we propose meet these

bounds.

As part of the robot memory-running time tradeoff, we also pro-

pose (i) algorithm Independent-Bounded-Async that usesO(D log∆)
bits at each robot with a running time of O(∆D ), and (ii) algorithm

Tree-Switching-Async that uses O(max(logk, log∆)) bits at each
robot and a running time of O((m − n)k).

3 DISPERSION USING HELPING IN THE
SYNCHRONOUS MODEL

In Algorithm 1 (Helping-Sync), each robot begins a DFS-variant tra-

versal of the graph, seeking to identify a node where no other robot

has docked. If multiple robots arrive at a node at which no other

robot is docked in a particular round, they use the MUTEX(node)

function, explained in Section 2, to uniquely determine which of

those robots can dock at the node. The other robots continue their

search for a free node. During this search, a robot needs to de-

termine if the node it visits has been visited before by it. (This is

needed to determine whether to backtrack to avoid getting caught

in cycles, or continue its forward exploration of the graph.) A node

has been visited before if and only if the robot docked there has

encountered the visiting robot after it docked. A robot that docks at

a node helps other robots to determine whether they have visited

this node before. A robot that docks initializes and maintains a

boolean array visited[1,k]. It sets visited[j] to true if and only if it

has encountered robot j after docking. It helps a visiting robot j by
communicating to it the value visited[j].

In order for a robot to determine whether to backtrack from

a (already visited) node or resume forward exploration, it needs

to know the port leading to the DFS-parent node of the current

node. It is helped in determining this as follows. A robot that docks

initializes and maintains an array entry_port[1,k]. Subsequently,
when a robot j first visits the node, determined using visited[j] = 0

of the docked node, the entry_port[j] entry of the docked robot is

set to the entry port used by the visiting robot. The docked robot

also communicates entry_port[j] (in addition to visited[j]) to a

visiting robot j to help it determine whether to backtrack further

or resume forward exploration.

A robot uses the following variables:

• port_entered and parent_ptr of type port can take values

from {−1, 0, 1, . . . , logδ−1} (⌈log(∆+1)⌉ bits each);port_ent-
ered indicates the port through which the robot entered the

current node on the latest visit whereas parent_ptr is used
to track the port through which the robot entered the current

node on the first visit;

• state (2 bits) can take values from {explore, backtrack, and
settled}; and
• seen (1 bit) is a boolean to track whether the current node

has been seen/visited before.

• round is used as a round counter (log m = O(log n) bits).

In addition, a robot initializes the following two arrays once it docks

at a node and enters state settled :

• visited[1,k] of type boolean (k bits), and

• entry_port[1,k] of type port (k ⌈log(∆ + 1)⌉ bits).

The semantics of these two arrays was explained above.

In Algorithm 1, lines (3-7): a docked robot i helps visiting robot j
by sending it visited[j] and entry_port[j], and updating the locally
maintained visited[j] and entry_port[j] if this is the first visit of
the robot j.

When robot i visits a node where some robot j is already docked,
it receives visited[i] and entry_port[i] from j (line 13). If i has
state = explore and the node is already visited, i backtracks through
port_entered (lines 16, 17). Whereas if the node is not already vis-

ited (lines 14, 15), i sends port_entered to j which records it in

entry_port[i] (line 7). Robot i contends for the MUTEX (line 19) if

there is no robot docked at the node. If i wins theMUTEX and docks,

it initializes the data structures visited[1,k] and port_entered[i,k]
and for other robots j concurrently at this node in this round, it fills

in their entries in the newly created data structures (lines 19-24).

Whereas if i loses the MUTEX contention, it sends port_entered
to the winner of MUTEX (lines 25, 26). If i has not backtracked
and not docked, state = explore . In this case (line 27), i increases
port_entered in a modulo fashion (mod δ ) and moves forward to

the next node, but switches state to backtrack if the port to move

forward (new value of port_entered) is the same as the entry port

(in line 15, parent_ptr was set to the old value of port_entered ,
which was set to the entry port in line 10) (lines 28-31).

If i has state = backtrack when it visits a node (line 32), it

implies some robot j is already docked, and i receivesvisited[i] and
entry_port[i] from j (line 33). Robot i increases port_entered in a

modulo fashion (mod δ ) and moves forwards to the next node while

switching state to explore , unless the port tomove along (new value

of port_entered) is the parent pointer port (set to entry_port[i]),
in which case i keeps state as backtrack and backtracks instead of

moving forward (lines 34-37).
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Algorithm 1 Helping-Sync, synchronous execution, code at robot i

1: Initialize: port_entered ← −1; state ← explore;parent_ptr ← −1; seen ← 0

2: for round = 0, 4m − 2(n − 1) do
3: if state = settled then
4: for all other robot j on the node do
5: send visited[j] and entry_port[j] to j ▷ docked robot sends info to visiting robots

6: if visited[j] = 0 then ▷ docked robot updates info for previously unseen robots

7: visited[j] ← 1; entry_port[j] ← receive port_entered from j

8: else
9: if round > 0 then
10: port_entered,parent_ptr ← entry port; seen ← 0

11: if state = explore then ▷ forward exploration mode

12: if node has a robot j docked in an earlier round then
13: seen,parent_ptr ← receive visited[i], entry_port[i] from j ▷ receive info from docked robot

14: if seen = 0 then ▷ send info to previously unseen docked robot

15: parent_ptr ← port_entered ; send port_entered to j

16: if seen = 1 then
17: state ← backtrack ; move through port_entered

18: else
19: if i = (r ←)winner (MUTEX (node)) then ▷ i wins MUTEX contention

20: i docks at node; state ← settled
21: Initialize visited[1,k] ← 0; entry_port[1,k] ← −1
22: for all robot j on the node do ▷ winner i updates info for loser robots

23: entry_port[j] ← receive port_entered from j
24: visited[j] ← 1

25: else ▷ i loses MUTEX contention

26: send port_entered to r ▷ loser sends info to winner of MUTEX

27: if state = explore then
28: port_entered ← (port_entered + 1) mod δ
29: if port_entered = parent_ptr then
30: state ← backtrack
31: move through port_entered

32: else if state = backtrack then ▷ backtrack mode

33: seen,parent_ptr ← receive visited[i], entry_port[i] from docked robot j ▷ receive info from docked robot

34: port_entered ← (port_entered + 1) mod δ
35: if port_entered , parent_ptr then
36: state ← explore

37: move through port_entered

Theorem 3.1. Algorithm 1 (Helping-Sync) achieves dispersion in
a synchronous system in O(m) rounds with O(k log∆) bits at each
robot.

Proof. Observe that each robot executes a variant of a DFS in

the search for a free node. Each robot may need to traverse each

edge of its DFS tree two times (once forward, once backward),

and each non-tree edge four times (once for exploration in each

direction, and once for backtracking in each direction). So for a

total of 4(m − (n − 1)) + 2(n − 1) = 4m − 2n + 2 times. The robot

executes for these many rounds, so the running time is O(m).
From the description and analysis of the variables above, it fol-

lows that the memory of each robot is bounded by O(k log∆) bits.
To show that dispersion is achieved in 4m−2n+2 rounds, observe

that the k robots do a collective search of the graph, using individual

DFS variants. Within 4m−2n+2 rounds, if a robot is not yet docked,
it will visit each node at least once, and since k ≤ n, each robot will

find a free node and dock there. □

Note that although a robot may dock at a node, it needs to be

active for the rest of the 4m − 2n + 2 rounds of the algorithm in

order to help other robots which might visit this node.

4 DISPERSION USING HELPING IN THE
ASYNCHRONOUS MODEL

Algorithm Helping-Async (Algorithm 2) adapts Algorithm Helping-
Sync to an asynchronous system but uses the same variables. When

a robot arrives at a node, either another robot is docked or not

docked at that node; in the latter case, if multiple robots arrive at

about the same time, then function MUTEX(node) selects one of
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Algorithm 2 Helping-Async, asynchronous execution, code at robot i

1: Initialize: port_entered ← −1; state ← explore;parent_ptr ← −1; seen ← 0

2: for count = 0, 4m − 2(n − 1) do
3: if count > 0 then
4: port_entered,parent_ptr ← entry port; seen ← 0

5: if state = explore then ▷ forward exploration mode

6: if node has a robot j docked then
7: seen,parent_ptr ← receive visited[i], entry_port[i] from j ▷ receive info from docked robot

8: if seen = 0 then ▷ send info to previously unseen docked robot

9: parent_ptr ← port_entered ; send port_entered to j

10: if seen = 1 then
11: state ← backtrack ; move through port_entered

12: else
13: if i = (r ←)winner (MUTEX (node)) then ▷ i wins MUTEX contention

14: i docks at node; state ← settled
15: Initialize visited[1,k] ← 0; entry_port[1,k] ← −1; break()
16: else
17: seen,parent_ptr ← receive visited[i], entry_port[i] from r ▷ receive info from docked winner robot

18: if seen = 0 then ▷ send info to previously unseen docked winner robot

19: parent_ptr ← port_entered ; send port_entered to r

20: port_entered ← (port_entered + 1) mod δ
21: if port_entered = parent_ptr then
22: state ← backtrack
23: move through port_entered
24: else if state = backtrack then ▷ backtrack mode

25: seen,parent_ptr ← receive visited[i], entry_port[i] from docked robot j ▷ receive info from docked robot

26: port_entered ← (port_entered + 1) mod δ
27: if port_entered , parent_ptr then
28: state ← explore

29: move through port_entered

30: repeat ▷ state = settled
31: for all other robot j that is/arrives at the node do
32: send visited[j] and entry_port[j] to j ▷ docked robot sends info to visiting/loser robot

33: if visited[j] = 0 then
34: visited[j] ← 1; entry_port[j] ← receive port_entered from j ▷ docked robot updates info for previously unseen robot

35: until true

them to dock. Lines (17-18) are seemingly redundant but are given

so that a docked robot can interact uniformly with both newly

arrived and concurrently arrived robots.

Theorem 4.1. Algorithm 2 (Helping-Async) achieves dispersion
(without termination) in an asynchronous system in O(m) steps with
O(k log∆) bits at each robot.

Proof. The proof is similar to that of Theorem 3.1. The differ-

ence is that due to the nature of the asynchronous system, a docked

robot needs to loop forever, waiting to help any other robot that

might arrive at the node later. Thus, termination is not possible. □

5 INDEPENDENT DISPERSION IN THE
ASYNCHRONOUS MODEL

In Algorithm 3 (Independent-Async) for the asynchronousmodel, the

traversal of the graph by each robot is the same as in the previous

two algorithms. However, there is no helping of undocked robots by

docked robots. In addition to port_entered and state , an undocked

robot maintains the following additional data structures:

• array of booleanvisited[1,k] to determine by checkingvisit-
ed[r ]whether it has visited the node where robot r is docked.
• stack of type port number, to determine the parent pointer

of the nodes it has visited. Specifically, the port numbers in

the stack (from top to bottom) help the robot to backtrack

from the current node all the way to its origin node in the

initial configuration. When a robot explores the graph in a

step, the entry port number into the current node get pushed

onto the stack, and as a robot backtracks in a step, the port

number gets popped from the stack. In addition, the top

of the stack entry is used for determining whether a robot

should switch from backtracking state to explore state, or

switch from explore state to backtracking state.

223



Efficient Dispersion of Mobile Robots on Graphs ICDCN ’19, January 4–7, 2019, Bangalore, India

Algorithm 3 Independent-Async, asynchronous execution, code

at robot i

1: Initialize: port_entered ← −1; state ← explore;
visited[1,k] ← 0; stack ←⊥

2: for count = 0, 4m − 2(n − 1) do
3: if count > 0 then
4: port_entered ← entry port

5: if state = explore then
6: if node is free then
7: if i = winner (MUTEX (node)) then
8: i docks at node; state ← settled ; break()

9: if j is docked at node AND visited[j] = 0 then
10: visited[j] ← 1

11: push(stack,port_entered)
12: port_entered ← (port_entered + 1) mod δ
13: if port_entered = top(stack) then
14: state ← backtrack ;pop(stack)

15: move through port_entered
16: else if j is docked at node AND visited[j] = 1 then
17: state ← backtrack ; move through port_entered

18: else if state = backtrack then
19: port_entered ← (port_entered + 1) mod δ
20: if port_entered , top(stack) then
21: state ← explore
22: else
23: pop(stack)

24: move through port_entered

Thus, undocked robots are largely independent of docked robots.

However, even in this algorithm, a docked robot cannot terminate;

it needs to stay up so that it can relay its label r to a visiting un-

docked robot, which can then look up visited[r ], and if necessary,

manipulate its stack , in order to take further actions for exploring

the graph. This action of docked robots (once they enter settled
state) is not explicitly shown in the Algorithm 3 pseudo-code.

In addition to the port_entered (⌈log(∆ + 1)⌉ bits) and state
(two bits) variables used by the previous algorithms, the boolean

visited[1,k] array takes O(k) bits and the stack takes O(k log∆)
bits, because the maximum depth of the stack is k−1, the maximum

number of nodes at which there is a docked robot encountered.

In Algorithm 3, when robot i visits a node and state = explore
(line 5):

(1) (lines 6-8): if the node is free, i contends for the MUTEX to

dock. If i wins, it docks and breaks from the loop.

(2) (lines 9-15): if (possibly after having lostMUTEX contention,)

i finds that robot j is docked at the node but the node has not
been visited before, robot i marksvisited[j] as true and incre-
ments port_entered in a modulo fashion (mod δ ). If the new
value of port_entered equals its old value, i changes state
to backtrack and moves through port_entered ; else the old
value of port_entered is pushed onto the stack and i moves

through port_entered to continue the forward exploration

of the graph.

(3) (lines 16-17): if a robot j is docked and the node has been

visited before, robot i backtracks.

When robot i visits a node and state = backtrack (line 18), robot i
increments port_entered in a modulo fashion (mod δ ) and moves

forward to the next node while switching state to explore , unless
the port it is going to move along is the parent pointer port (the

top of the stack), in which case i keeps state as backtrack and pops

the top of the stack before moving along (lines 19-24).

Theorem 5.1. Algorithm 3 (Independent-Async) achieves disper-
sion (without termination) in an asynchronous system in O(m) steps
with O(k log∆) bits at each robot.

Proof. Dispersion is achieved because each robot traverses an

independently built DFS tree. The proof that the running time is

O(m), or more specifically 4m − 2n + 2 steps, is similar to that of

Theorem 3.1. From the description and analysis of the variables

above, it follows that the memory of each robot is bounded by

O(k log∆) bits.
Note that due to the nature of the asynchronous system, a docked

robot needs to loop forever, waiting to relay its label to any other

robot that might arrive at the node later. (This action is not explicitly

shown in Algorithm 3.) Thus, termination is not possible. □

It is possible to transform the algorithm into its synchronous

version, Independent-Sync. In the synchronous algorithm, a robot

can terminate after 4m − 2(n − 1) rounds, as it is guaranteed that

every other robot would have found a free node by then.

6 DEPTH-BOUNDED INDEPENDENT
DISPERSION IN THE ASYNCHRONOUS
MODEL

Algorithm 4 (Independent-Bounded-Async) improves on the memory

requirement of Algorithm 3 (Independent-Async) (assuming D < k).
It leverages the idea that a d-depth-bounded search of the graph

can reduce the size of the stack from a maximum of k entries to

a maximum of d entries, while being able to explore all the nodes

in the graph as long as d ≥ D (the diameter of the graph). Since D
is not known, the algorithm at each robot runs increasing-depth-

bounded searches. The algorithms run by the different robots are

independent. Note that we cannot use the idea of curtailing the

search if a robot visits a node that it has already visited. If we

curtailed the search using that idea, we may not be able to discover

shorter paths through already visited nodes, and we will be unable

to reach all the nodes of the graph. Thus, this algorithm cannot use

the visited array and is fundamentally different from Algorithm

Independent-Async and the previous algorithms. Since we cannot

curtail the search if a node has been visited before and we do an

exhaustive search along every path rooted at the start node, there

is redundancy in the algorithm and the time complexity is higher

than the O(m) steps of the prior algorithms. The algorithm can be

seen as a modification of the algorithm by Fraigniaud et al. [13]

and incurs the same space and time complexity.

In addition to the variables port_entered , state , and stack of

Algorithm Independent-Async, the variablesdepth anddepth_bound
(⌈log (D + 1)⌉ bits) are used to track the current depth of the robot

in the graph exploration, and the current depth bound, respectively.
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Algorithm 4 Independent-Bounded-Async, asynchronous execu-

tion, code at robot i

1: Initialize: port_entered ← −1; state ← explore; depth ← −1;
depth_bound ← 1; stack ←⊥

2: while true do
3: if depth > −1 then
4: port_entered ← entry port

5: if state = explore then
6: depth ← depth + 1
7: if node is free then
8: if i = winner (MUTEX (node)) then
9: i docks at node; state ← settled ; break()

10: if depth < depth_bound then
11: push(stack,port_entered)
12: port_entered ← (port_entered + 1) mod δ
13: if port_entered = top(stack) then
14: state ← backtrack ;pop(stack)

15: move through port_entered
16: else if depth = depth_bound then
17: state ← backtrack ; move through port_entered

18: else if state = backtrack then
19: depth ← depth − 1
20: port_entered ← (port_entered + 1) mod δ
21: if top(stack) = −1 AND port_entered = 0 then
22: depth_bound = depth_bound + 1

23: if port_entered , top(stack) then
24: state ← explore
25: else
26: pop(stack)

27: move through port_entered

Theorem 6.1. Algorithm 4 (Independent-Bounded-Async) achieves
dispersion in an asynchronous system inO(∆D ) steps withO(D log∆)
bits at each robot.

Proof. The algorithm uses an increasing depth-bounded search

of the graph. When the depth becomes D (the diameter), it is guar-

anteed that all nodes of the graph will be visited, and since k ≤ n,
each robot will find a free node and successfully dock there. Thus

the algorithm terminates and dispersion is achieved. The running

time is

∑D
i=1 ∆

i
which is bounded by O(∆D ).

From the description and analysis of the variables above, observe

that stack requires O(D log∆) bits and depth and depth_bound re-

quire ⌈log (D+1)⌉ bits. port_entered and state require ⌈log (∆+1)⌉
and two bits, respectively. Thus, it follows that the memory of each

robot is bounded by O(D log∆) bits. □

It is possible to transform the algorithm into its synchronous

version, Independent-Bounded-Sync. In the synchronous algorithm,

a robot can terminate within O(∆D ) rounds, as soon as it docks.

7 PRIORITIZED TREE-SWITCHING BASED
DISPERSION IN THE ASYNCHRONOUS
MODEL

In the previous algorithms, each robot performed a separate DFS

and the parent_ptrs for up to k − 1 DFSs had to be stored at a

docked robot, or a traversing robot had to track up to the k − 1

parent_ptrs for its own DFS. Algorithm 5 (Tree-Switching-Async)
usesO(max(logk, log∆)) bits at each robot.With such limitedmem-

ory,O(1)parent_ptrs can be stored. Asmultiple robots pass through

a docked robot’s node, whichDFS tree’sparent_ptr should be stored
at the docked robot? As a traversing robot encounters different

docked robots, each associated with a possibly different DFS, with

which tree and its local parent_ptr should it associate? It is critical

to ensure that the robots coordinate in associating with a DFS tree

and its local parent_ptrs. We solve this challenge as follows.

In addition toport_entered , state ,parent_ptr (set by a docked ro-
bot), anddepth used by previous algorithms, the variablevirtual_id
taken from the domain of robot identifiers (⌈logk⌉ bits) is used to

track the DFS tree instance the robot is associated with currently.

The virtual_id is initialized to the robot identifier.

To achieve dispersion with limited memoryO(max(logk, log∆)),
robots perform DFS like before; however, they do not perform

independent DFSs. Rather, a strict priority order (a total order) is

defined on the robot identifiers, and hence on the DFS tree instances

which are tracked by thevirtual_ids. As a robot traverses the graph,
it induces a DFS tree identified by its virtual_id . Whenever two

robots (a docked robot and a traversing robot) meet, their DFS trees

intersect. The lower priority robot abandons its partially computed

DFS tree and switches to the higher priority DFS tree. (If the two

priorities, i.e., virtual_ids, are the same the robots share the same

tree; no switch is needed. ) In doing a switch, the lower priority

robot (i) updates itsvirtual_id to the higher priority, (ii) updates its

depth variable to the new depth in the higher priority tree, and (iii)

updates its parent_ptr (if docked) to port_entered of the traversing

robot or its port_entered (if traversing) to parent_ptr of the docked
robot. If the traversing robot (whether in explore or backtrack state)
does the switch, it then continues the DFS in the newly-switched-to

tree as if it had just entered that node where the switch occurs in

explore state for the first time. Note that multiple robots may be

executing the same tree instance possibly in different parts of the

graph if they share the same virtual_id .
A virtual_id of a robot is the highest priority virtual_id of any

robot (including itself) encountered until now in its traversal and

docked durations. The virtual_id of a robot may be transitively

inherited from other robots. We define a higher priority to be a

lower valuedvirtual_id . The total order on thevirtual_ids bounds
the number of times a robot is forced to switch trees, to k − 1.

In addition to tracking only the highest-seen priority virtual_id ,
a robot also tracks its current depth depth in the corresponding tree,

and a docked robot also tracks its parent_ptr in the correspond-

ing tree. This parent_ptr stores the information for backtracking

on the tree corresponding to the local virtual_id . virtual_id =
r .virtual_id after line 12 (after or without a switch). The depth and

r .depth after line 12 are used to determine whether the visiting

robot should backtrack.
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Algorithm 5 Tree-Switching-Async, asynchronous execution, code at robot i . At any node, the docked robot, if any, is denoted r .

1: Initialize: port_entered ← −1; state ← explore;parent_ptr ← −1; virtual_id ← i; depth ← −1
2: for count = 0, (4m − 2n + 2) ∗ (k − 1) do
3: if count > 0 then
4: port_entered ← entry port

5: if state = explore then ▷ graph exploration mode

6: depth ← depth + 1
7: if i = (r ←)winner (MUTEX (node)) then
8: i docks at node; parent_ptr ← port_entered ; state ← settled ; break()

9: if virtual_id > r .virtual_id then ▷ i switches to tree of r
10: virtual_id ← r .virtual_id ; depth ← r .depth; port_entered ← r .parent_ptr
11: else if virtual_id < r .virtual_id then ▷ r switches to tree of i
12: r .parent_ptr ← port_entered ; r .virtual_id ← virtual_id ; r .depth ← depth

13: if depth = r .depth then ▷ i and r share same tree (possibly after switch); arrived on tree edge

14: port_entered ← (port_entered + 1) mod δ
15: if port_entered = r .parent_ptr then
16: state ← backtrack
17: else if depth , r .depth then ▷ i and r share same tree (no switch); arrived on back edge

18: state ← backtrack
19: else if state = backtrack then ▷ backtracking mode

20: depth ← depth − 1
21: if virtual_id > r .virtual_id then ▷ i switches to tree of r ; virtual_id < r .virtual_id not possible

22: virtual_id ← r .virtual_id ; depth ← r .depth; port_entered ← r .parent_ptr

23: port_entered ← (port_entered + 1) mod δ ▷ i and r share same tree (possibly after switch) and same depth

24: if port_entered , r .parent_ptr then
25: state ← explore

26: move through port_entered

27: repeat ▷ state = settled
28: if any other robot arrives at the node then
29: participate in the algorithm assuming the role of the docked robot r

30: until true

• If the depths are the same (this happens certainly if there

was a switch or possibly if there was no switch), the visiting

robot is deemed to have arrived on a tree edge in exploration

mode and should continue as usual (lines 14-16,26).

• Otherwise (the depths are unequal implying) no tree switch

happened and the visiting robot arrived on a back edge in

exploration mode, and therefore it should backtrack.

The depths will always be the same after line 22 (after or without a

switch) and the visiting robot is deemed to have arrived on a tree

edge in exploration mode (if a switch happened), or on a tree edge

or back edge in backtracking mode (if no switch happened).

In the asynchronous algorithm, we assume for simplicity that

if there is more than one visiting (undocked) robot at a node, they

execute their code serially. This can be implemented by the docked

robot using a token to communicate with each visiting robot. Thus,

a docked robot interacts with one visiting robot at a time.

Lemma 7.1. For any value of virtual_id , an undocked robot docks
or switches to a higher priority virtual_id within 4m − 2n + 2 steps.

Proof. We summarize the main steps of the proof.

(1) Consider an undocked robot with virtual_id vid . Until it
docks or switches to a higher priority virtual_id , it visits

nodes with a docked robot having virtual id vid (if lower

priority than vid , then r .virtual_id ← vid).
(2) r .depth is set correctly for all docked robotswith r .virtual_id-
= vid .

(3) The way that depth is updated, if depth = r .depth after line

6 or 20, then the robot has traversed a DFS tree edge (in

forward or backward direction), or has backtracked along

a back edge. And if depth , r .depth, then the robot has

traversed a back edge in explore mode. (In the algorithm,

a back edge gets traversed twice in opposite directions in

explore mode.)

(4) Correct identification of tree edges and back edges leads to

correct decisions about exploration and backtracking (acycli-

cally) on the tree associated with vid .
(5) When a robot switches to virtual_id vid at node v , there is

no free node from the root node of the tree associated with

vid up until the DFS search enters(ed) node v for the first

time. So right after the switch, the search continues from

(port_entered(= r .parent_ptr ) + 1) mod δ at node v .
(6) The DFS tree with virtual_id = vid is built/traversed cor-

rectly. A robot traverses each tree edge 2 times and each

back edge 4 times. Thus, leading to 4(m−(n− 1))+ 2(n− 1) =
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4m−2n+2 steps. Within these many steps, the robot will find

a free node and dock, or encounter a docked robot associated

with a higher priority tree and switch its virtual_id to that

higher priority.

□

Theorem 7.2. Algorithm 5 (Tree-Switching-Async) achieves dis-
persion (without termination) in an asynchronous system in O((m −
n)k) steps with O(max(logk, log∆)) bits at each robot.

Proof. From Lemma 7.1, for any value of virtual_id , a robot

docks or switches to a higher priority virtual_id tree within 4m −
2n + 2 steps. After each switch, it takes at most 4m − 2n + 2 steps
in the newly joined DFS tree before a robot finds a free node and

docks, or makes another switch. Such a switch can occur to a robot

at most k − 1 times due to the total order on the bounded set of

k identifiers. Thus, the runnning time is O((m − n)k) steps until
a robot docks. (However, a docked robot needs to loop forever to

cooperate with visiting robots. Thus, termination is not possible.)

Besides theport_entered (O(log∆) bits), state (2 bits),parent_ptr
(O(log∆) bits), anddepth (O(logk) bits) variables used in the earlier
algorithms, this algorithm also uses virtual_id (⌈logk⌉ bits). Thus,
the memory at each robot is O(max(logk, log∆)) bits. □

We can reduce the number of steps traversed by robots by using

the following optimization. A docked robot maintains a variable

port_f wd , initialized to (parent_ptr+1) mod δ when it docks (line
8) or changes its parent_ptr (line 12), to indicate the outgoing port

on which the next robot should traverse in the forward direction.

This port r .port_f wd is used for moving out of the node (line 26)

except if lines 17-18 are executed in which case the robot moves

out of port_entered . This port is used (instead of port_entered) to
compare with r .parent_ptr to determine the state (line 15, 24). The

code block (lines 23-25) is split into two cases: after line 20, (i)

virtual_id > r .virtual_id and (ii) virtual_id = r .virtual_id . For
the latter case (ii), the line 23 equivalent is replaced by:

r .port_f wd ← max(r .port_f wd, (port_entered+1) mod δ ) in the
ordered sequence ⟨r .parent_ptr +1, . . . ,δ −1, 0, . . . , r .parent_ptr ⟩.
Lines 14 and the equivalent of line 23 for case (i) are deleted.

It is possible to transform the algorithm into its synchronous

version, Tree-Switching-Sync. In the synchronous algorithm, a robot

can terminate within O((m − n)k) rounds, as it is guaranteed that

every other robot would have found a free node by then.

Unlike our algorithm, the revised algorithm [2] for synchro-

nous systems uses an extra (fourth) state,backtrack_to_root . When

robots decide to change their tree, those robots (excluding the

docked robot) backtrack to the root of the new tree. They then

begin a DFS from that root. The backtracking to the root, and

restarting the DFS from the root, adds overhead and complexity.

Also, a different condition is used to decide when to backtrack.

8 CONCLUSIONS
For the dispersion problem on graphs, we proposed five algorithms

for the synchronous and the asynchronous system models. It is a

challenge to design more space and time efficient algorithms.

We introduce the problem of ongoing dispersion on graphs. Rather
than a one-shot dispersion, a robot, after docking and recharging,

moves again on the graph (for an unspecified number of hops) and

after some time, finds itself at some node from where it wants to

search for an unoccupied node to dock again. Every time a docked

robot moves, it creates a free node. This cycle repeats. It would

be interesting to analyze our proposed algorithms and design new

algorithms for ongoing dispersion.
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