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In large distributed systems, event abstraction becomes an important issue in order to represent
interactions and reason at the right level of abstraction. Abstract events are collections of more
elementary events, which provide a view of the system execution at an appropriate level of
granularity. Understanding how two abstract events relate to each other is a fundamental problem
for knowledge representation and reasoning in a complex system. In this paper, we study how
two abstract events in a distributed system are related to each other in terms of the more
elementary causality relation. Specifically, we analyze the ways in which two abstract events can
be related to each other orthogonally, that is, identify all the possible mutually independent
relations by which two such events could be related to each other. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

In large distributed systems, event abstraction becomes an important issue in
order to represent interactions and reason at the right level of abstraction. Abstract
events are collections of more elementary events, which provide a view of the
system execution at an appropriate level of granularity. Understanding how two
abstract events relate to each other is a fundamental problem for knowledge
representation and reasoning in such a complex distributed system. This problem
is of interest across philosophy, physics, artificial intelligence, computer science,
and psychology.2

Hamblin8 and Allen2 showed that two linear time durations or intervals that
are colocated can be related in one of 13 possible ways. These 13 relations form
an orthogonal set of relations, i.e., the intervals must be related by one and only
one of these relations, implying that the conjunction of any two relations is the
empty relation. Orthogonal relations are important because they identify all pos-
sible mutually exclusive relations that can possibly hold between any given pair of
intervals and because all possible relationships between two intervals that can exist
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in the face of uncertain knowledge can be expressed in terms of the irreducible
orthogonal relationships.2 This set of 13 orthogonal relations between a pair of
linear colocated intervals has been used very extensively in the literature on
artificial intelligence. For example, Ref. 5 developed a theory of temporal reason-
ing using semi-intervals which arise when there is uncertain and imprecise knowl-
edge of intervals, using the 13 orthogonal relations of Allen. Examples of other
uses of the 13 orthogonal relations between colocated linear intervals include Refs.
3, 4, 6, 7, and 15–19.

The literature surveyed above considered the interactions and relative place-
ment of time intervals, each of which can be viewed as a linearly ordered set of
time instants. An additional assumption was that time was continuous, and hence
the time intervals satisfy the density axiom, i.e., @t1, t2 � X, where X is a time
interval, ?t � X � (t1 � t � t2) ∨ (t2 � t � t1).

Our objective is to study how two abstract events in a distributed system are
related to each other in terms of the more elementary causality relation.14 The
relativistic space-time model is an appropriate model of a distributed system for
this study. Specifically, we analyze the ways in which two abstract events can be
related to each other orthogonally, that is, identify all the possible mutually
independent relations by which two such events could be related to each other.12

The results of this paper differ from the work surveyed above in the following main
aspect. The abstract events we deal with form a partial order of more elementary
events, unlike the time intervals which linearly order the component time instants.
The partial order among the elementary events is given by the causality relation
and is used as a building block to formulate the orthogonal relations Additionally,
the system model explicitly models individual events/actions that occur at different
processes in the execution of a complex distributed system, and hence models
discrete events in addition to continuous events.

The work is motivated by the fact that in a distributed system, abstract events,
wherein at least some of the component elementary events of the abstract event
occur concurrently, are of great interest in simplifying the reasoning about distrib-
uted executions. Henceforth, we also term such abstract events as poset (partially
ordered set) events.10 Such poset events accurately model collaborative activity
among multiple CPU subsystems in a distributed system, for various applications
like navigation, planning, robotics, mobile computing, coordination among multi-
ple participants in a virtual reality environment, and agent-based distributed
cooperating programs. As a specific example, multiple roving mobile agents that
can communicate only by message passing need to synchronize their actions in an
adversarial environment. Causality between poset events has been studied in Ref.
10 wherein a spectrum of fine-grained causality relations between poset events was
presented, along with an axiom system to reason with such relations. These
relations provide a precise handle to express and represent a naturally occurring or
enforce a desired fine-grained level of causality or synchronization among the coop-
erating agents. However, these relations are not orthogonal relations. In this paper, we
present a methodology for deriving orthogonal relations between poset events.

Section 2 gives the system model. Section 3 gives the main results and Section
4 concludes.
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2. SYSTEM MODEL AND PRELIMINARIES

A poset event structure model (E, ≺), where ≺ is an irreflexive partial
ordering representing the causality relation on the event set E, is used for the
space-time model for a system execution, as in Refs. 9, 10, 11, and 13. E is
partitioned into local executions at coordinates in the space dimensions. Each Ei is
a linearly ordered set of events in partition i and corresponds to the execution of
events by a distinct process. An event e in partition i is denoted ei. The causality
relation on E is the transitive closure of the local ordering relation on each Ei and
the ordering imposed by message send events and message receive events.14 In
Refs. 9 and 10, poset events are defined as follows. Let � denote the power set of
E. Let � (�A) � (� � A). � is the set of all the sets that represent a higher level
grouping of the events of E of interest to an application. Each element A of � is
a subset of E, and is termed an abstract or a poset event.

The causality relations between a pair of poset events were formulated in Ref.
10 using the notion of proxies. Each poset event X was defined to have two
proxies—the set of its least elements LX, and the set of its greatest elements UX.
These proxies were the equivalents of the beginning and end instants of the linearly
ordered interval. Two alternate definitions of proxies were given: (i) Definition 4,10

viz., LX � {ei � X � @e�i � X, ei � e�i} and UX � {ei � X � @e�i � X, ei �
e�i}, and (ii) Definition 5,10 viz., LX � {e � X � @e� � X, e � e�} and UX �
{e � X � @e� � X, e � e�}, were used to define the proxies. Figure 1 depicts the
proxies of X and shows the difference between the two definitions. In the figure,
the time axis goes from left to right, and the lines with arrows denote the messages
that impose causality across different processes (points in space). Depending on the
problem domain, an application chooses and consistently uses one definition of
proxy. For example, for events in a distributed sensor/robot system, where the
various sensors/robots cooperate to perform loosely synchronized actions, the
former definition is more suitable to represent the start and end of interactions.
When different mobile agents invoke services offered by other agents/servers in a

Figure 1. Poset event X and its proxies LX and UX. The proxies defined by Definition 4 are
shown by dashed lines. The proxies defined by Definition 5 are shown by dotted lines.

ORTHOGONAL RELATIONS FOR REASONING ABOUT POSETS 1103



nested RPC form, the latter definition is more suitable to represent the start and end
of interactions.

The causality relations in Ref. 10 were defined using the following two
aspects of specifying the relations, based on the concept of proxies. (i) As there is
a choice of two proxies of X and choice of two proxies of Y, there are four
combinations between the proxies. (ii) The eight causality relations (six of which
are distinct) in Table I can be specified for each combination, thus yielding 32
relations (24 of which are distinct) between X and Y. The set of these causality
relations is denoted �. The following nomenclature was adopted to name the
relations in �. Relation R?#(X, Y) was such that ? was a value from {R1, R2, R3,
R4} and indicated the choice of proxies of X and Y, whereas # indicated how the
chosen proxies were related to each other, and took a value from {a, a�, b, b�, c,
c�, d, d�}, where R1, R1�, R2, R2�, R3, R3�, R4, R4� were renamed a, a�, b,
b�, c, c�, d, d�, respectively, to avoid confusion with this usage of the relations
R1–R4�. The set of relations � between poset events was comprehensive using
first-order predicate logic and only the ≺ relation between elementary atomic
events.

In this paper, the label � is used to denote the set of the above relations when
the discussion is common to the relations defined using either definition of proxies,
viz., Definition 4 or 5.10 If the distinction matters, the notations �≺i and �≺ are
used to denote the sets of relations that result when Definition 4 and 5 of proxies,10

respectively, are used. Intuitively, �≺i indicates the set of relations resulting when
the proxies are defined using the ≺ relation on each Ei, and �≺ indicates the set
of relations resulting when the proxies are defined using the ≺ relation on E. Both
�≺ and �≺i form a hierarchy of dependent relations as shown in Figure 2.

A set of axioms to reason with the relations in �≺ was given in Ref. 10. The
set of axioms was complete in the sense that (i) given any R(X, Y), the axioms
gave all enumerations of relations r(X, Y) and r�(Y, X), for r, r�, R � �≺, and
(ii) given r1(X, Y) ∧ r2(Y, Z), the axioms gave all relations r(X, Z) [and from (i),
all r�(Z, X)], @r @r� @r1 @r2 � �≺. Hence, the axioms could be used to derive
all possible implications from any given predicates on relations in �≺.

In the next section, we give a methodology to enumerate the set of orthogonal
relations for �. The results of implementing this methodology for �≺ using the
axioms of Ref. 10 are then given. In this paper, we also modify that axiom system

Table I. Relations in Refs. 9 and 10.

Relation r Expression for r(X, Y)

R1 @x � X @y � Y, x ≺ y
R1� (�R1) @y � Y @x � X, x ≺ y
R2 @x � X ?y � Y, x ≺ y
R2� ?y � Y @x � X, x ≺ y
R3 ?x � X @y � Y, x ≺ y
R3� @y � Y ?x � X, x ≺ y
R4 ?x � X ?y � Y, x ≺ y
R4� (�R4) ?y � Y ?x � X, x ≺ y
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of Ref. 10 so as to make it applicable to �≺i. We then apply the above method-
ology to enumerate the set of orthogonal relations for �≺i and give the results.

3. ORTHOGONAL RELATIONS

We now propose a method to derive and enumerate the orthogonal relations
between any pair of poset events, using the set of dependent relations �. We also
present the numerical results of enumerating the orthogonal relations for �≺ and
�≺i based on the appropriate axiom system. Specifically, for �≺, we use axioms
XP1–XP14 given in Ref. 10. For �≺i, we use axioms XP1–XP6 and eight new
axioms XP7≺i–XP14≺i. The results of the two enumerations were obtained by
implementing the methodology in XSB Prolog.

The algorithm proposed here has the following two steps to create a (complete
and mutually independent) set of orthogonal relations from the set of dependent
relations �.

1. Identify all possible combinations of relations r(X, Y) � � that can hold simulta-
neously for a given X and Y.

2. For each of the identified combinations of relations r(X, Y), identify all combinations
of r(Y, X) that can simultaneously hold for the same X and Y.

3.1. Step 1: All Possible Relations r(X, Y)

As a first step, we identify all the combinations of relations r(X, Y), for r �
�, that hold between poset events X and Y. Note that by construction, (�, �),
where � is the relation “is a subrelation of,” is a lattice as illustrated in Figure 2.

Figure 2. Hierarchy of causality relations, ordered by “is a subrelation of”.10 An edge from r1
to r2 indicates that r2 is a subrelation of r1.
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For a given pair of posets X and Y, it may be the case that a combination of the
relations in � may hold. Specifically, if R(X, Y) holds, then @R� � R � R�, R�(X,
Y) holds. Thus, if R(X, Y) holds, then for each R� in the upward-closed subset* of
�, R�(X, Y) holds. In the partial order (�, �), all upward-closed subsets of �
correspond exactly to the combinations of relations in � that can hold concurrently
for a given pair of poset events. It follows from the result on page 400 of Ref. 1
that there is a 1–1 correspondence between the set of all upward-closed subsets of
a partial order and the set of antichains† in the partial order. Therefore, an
enumeration of the antichains in (�, �) gives an enumeration of the upward-closed
subsets of (�, �), which corresponds to all the combinations of the relations in �
that can hold for a pair of poset events. Let ��� be the set of all such antichains.
A member of ���, denoted rac(X, Y), is an antichain of � and can be expressed
as the conjunction of the members of the antichain, each of which is a member of
�. The number of antichains in ��� was computed by the implementation of
axioms XP1–XP6 (given below), to be as follows. There are 1, 24, 147, 350, 341,
168, 44, 2, and 0 antichains of size 0–8, respectively, giving a total of 1077
antichains. The antichain of size 0 denotes the empty-set upward-closed subset of
�, equivalent to R4d(X, Y), where R4d(X, Y) denotes that R4d(X, Y) is false. It
can be observed from Figure 2 that the size of the largest antichain is 7.

The specific axioms XP1–XP6 from Ref. 10 are reproduced here. V1 � {1,
2, 3, 4}, V2 � {a, b, b�, c, c�, d}, and the relation �(r1, r2) stands for �� (r1,
r2) ∧ �� (r2, r1).

XP1: R1? � R2? � R4?, where ? is instantiated from V2.
XP2: R1? � R3? � R4?, where ? is instantiated from V2.
XP3: R2?�R3#, where ? and # are separately instantiated from V2.
XP4: R?a � R?b� � R?b � R?d, where ? is instantiated from V1.
XP5: R?a � R?c � R?c� � R?d, where ? is instantiated from V1.
XP6: R?b�R?c�, R?b��R?c�, R?b�R?c, R?b��R?c, where ? is instantiated from

V1.

3.2. Step 2: Relations r�(Y, X), Given That Certain r(X, Y) Hold

The computed combinations of relations in �, viz., antichains in (�, �), are
useful to determine all the orthogonal relations that can exist between any two
poset events. For each of the ����� antichains that hold between X and Y, there
are potentially ����� antichains that hold between Y and X, thus leading to a
potential �����2 orthogonal relations between X and Y. Several of these relations
will be illegal because they contradict the relations r(X, Y). The objective is to
determine exactly all the orthogonal relations that are admissible by the axiom
system. For each rac1(X, Y), where rac1 � ���, determine which rac2(Y, X)
can hold, where rac2 � ���, using the axiom system which allows the

*A set ℜ � � is upward-closed if and only if, for every r, r� � �, (r � ℜ ∧ r � r�)
f r� � ℜ.

†A set ℜ is an antichain if and only if for every r and r� in ℜ, r �� r� ∧ r� �� r.
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derivation of all r�(Y, X) from any r(X, Y), where r, r� � �. Then each
conjunction of an antichain rac1(X, Y) and a compatible antichain rac2(Y, X) is
orthogonal from every other such conjunction; denote this set of conjunctions as
��, which then represents all the possible orthogonal relations between two
posets, based on the ≺ relation among elementary events.

Let us denote the sets of orthogonal relations obtained for relations in �≺ and
�≺i by ��≺ and ��≺i, respectively.

3.2.1. Relations ��≺

Axioms XP7–XP14 along with XP1–XP6 were used to determine all the
orthogonal relations ��≺, counted in Table II. Axioms XP7–XP14 are reproduced
below with labels XP7≺–XP14≺:

XP7≺. R1a(X, Y) ∨ R1b(X, Y) ∨ R1b�(X, Y) ∨ R1c(X, Y) ∨ R1c�(X, Y) f
R4d(Y, X).

XP8≺. R1d(X, Y) f R4b(Y, X) ∧ R4c�(Y, X).
XP9≺. R2a(X, Y) ∨ R2b(X, Y) ∨ R2b�(X, Y) ∨ R2c(X, Y) ∨ R2c�(X, Y) f

R2d(Y, X).
XP10≺. R2d(X, Y) f R2b(Y, X) ∧ R2c�(Y, X).
XP11≺. R3a(X, Y) ∨ R3b(X, Y) ∨ R3b�(X, Y) ∨ R3c(X, Y) ∨ R3c�(X, Y) f

R3d(Y, X).
XP12≺. R3d(X, Y) f R3b(Y, X) ∧ R3c�(Y, X).
XP13≺. R4a(X, Y) ∨ R4b(X, Y) ∨ R4b�(X, Y) ∨ R4c(X, Y) ∨ R4c�(X, Y) f

R1d(Y, X).
XP14≺. R4d(X, Y) f R1b(Y, X) ∧ R1c�(Y, X).

Table II consists of three parts, marked by high-level column headers. The first part
categorizes the ����(X, Y)� antichains of Figure 2, based on size which ranges
from 0 to 7. Each row i, i � [0 . . . 7], in the entire table is used to compute the
orthogonal relations in which antichains rac(X, Y) have size i. Consider any row
i. For each antichain rac(X, Y) of size i, the number of the corresponding legal (as

Table II. Number of orthogonal relations in ��≺, classified based on size of antichains.

Size/number
of rac(X, Y)
antichains

Number of antichains rac(Y, X) of size s � 0 . . . 7

¥s�0
7 colss � 0 s � 1 s � 2 s � 3 s � 4 s � 5 s � 6 s � 7

0/1 1 24 147 350 341 168 44 2 1077
1/24 24 261 898 1285 822 264 34 1 3589
2/147 147 898 1911 1683 642 130 4 0 5415
3/350 350 1285 1683 937 180 8 0 0 4443
4/341 341 822 642 180 18 0 0 0 2003
5/168 168 264 130 8 0 0 0 0 570
6/44 44 34 4 0 0 0 0 0 82
7/2 2 1 0 0 0 0 0 0 3
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per XP7≺–XP14≺) antichains rac(Y, X) of size s, s � [0, . . . , 7], are added to
column s in the second part of the table. The entry in row i in the last part of the
table sums up the row entries of columns s � 0 through s � 7 of that row, and
gives the total number of orthogonal relations in which antichains rac(X, Y) have
size i. The total number of orthogonal relations in ��≺ is 17,185.

Note that ��� needs to consider all the antichains in �, not just the maximal
antichains, because even a subset of a maximal antichain identifies a different
upward-closed subset of � than does the maximal antichain, indicating a different
set of relations that hold. Also note that for any rac1(X, Y), all relations in the
upward-closed subset of � hold and those not in the upward-closed subset do not
hold. Thus, for any rac1(X, Y), there is a bit-vector of size 24 where each bit
corresponds to a relation in �, such that there is a “1” for each relation in the
upward-closed subset of rac1(X, Y) and a “0” for each relation not in the
upward-closed subset of rac1(X, Y). Analogously, for any rac2(Y, X) that is
compatible with rac1(X, Y) as per the axioms, there is a bit-vector of size 24
where each bit corresponds to a relation in �, such that there is a “1” for each
relation in the upward-closed subset of rac2(Y, X) and a “0” for each relation not
in the upward-closed subset of rac2(Y, X). Each orthogonal relation can thus be
represented by a 48-bit vector.

Example. For the rac1(X, Y) antichain R2b(X, Y) ∧ R2c(X, Y) ∧ R3a(X, Y)
of size three, the axioms XP7≺–XP14≺ give R2d(Y, X) ∧ R3d(Y, X). The only
possible antichains rac2(Y, X) can be from the set of relations {R4�(Y, X)}—this
gives 11 possible antichains rac2(Y, X), counting the antichain of size 0, that are
compatible with rac1(X, Y). Each of these 11 combinations of rac2(Y, X) with
rac1(X, Y) yields a unique 48-bit vector.

3.2.2. Relations ��≺i

Observe that the axioms XP7–XP14 given in Ref. 10 are applicable only to
relations in �≺ which use Definition 5 of proxies,10 and not to relations in �≺i

which use Definition 4 of proxies.10 If proxies are defined by Definition 4 and not
Definition 5, then the axioms XP7–XP14 need to be replaced by the following
axioms XP7≺i–XP14≺i to obtain all the orthogonal relations ��≺i.

XP7≺i. R1a(X, Y) f R4d(Y, X); R1b(X, Y) ∨ R1b�(X, Y) f R4b(Y, X);
R1c(X, Y) ∨ R1c�(X, Y) f R4c�(Y, X).

XP8≺i. R1d(X, Y) f R4a(Y, X).
XP9≺i. R2a(X, Y) f R2d(Y, X); R2b(X, Y) ∨ R2b�(X, Y) f R2b(Y, X);

R2c(X, Y) ∨ R2c�(X, Y) f R2c�(Y, X).
XP10≺i. R2d(X, Y) f R2a(Y, X).
XP11≺i. R3a(X, Y) f R3d(Y, X); R3b(X, Y) ∨ R3b�(X, Y) f R3b(Y, X);

R3c(X, Y) ∨ R3c�(X, Y) f R3c�(Y, X).
XP12≺i. R3d(X, Y) f R3a(Y, X).
XP13≺i. R4a(X, Y) f R1d(Y, X); R4b(X, Y) ∨ R4b�(X, Y) f R1b(Y, X);

R4c(X, Y) ∨ R4c�(X, Y) f R1c�(Y, X).
XP14≺i. R4d(X, Y) f R1a(Y, X).
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Axioms XP1–XP6 and XP7≺i–XP14≺i are used to derive the orthogonal
relations ��≺i, instead of axioms XP1–XP6 and XP7≺–XP14≺ that were used to
obtain ��≺. Results analogous to those in Table II for ��≺ are obtained for ��≺i

and shown in Table III. The total number of orthogonal relations in ��≺i is
123,474.

4. CONCLUSIONS

Orthogonal relations between events provide an understanding of all possible
mutually exclusive relations that can hold between the events when complete and
precise knowledge is available. These form the basis of relational algebras, and
allow the derivation of relations to represent knowledge when imprecise and
incomplete information is available. Abstract events which are partially ordered
collections of elementary events are important when reasoning and representing
actions in complex distributed systems. We derived orthogonal relations ��
between abstract events using the space-time model for a distributed system.
Relations in �� are analogous to the 13 orthogonal relations between linear
intervals at a point in space.2 Relations in �� are also analogous to the following
sets of orthogonal relations based on the elementary causality relation. (i) the 3
orthogonal relations between 2 points in space-time (a ≺ b, b ≺ a, a � b ∧ b �
a), (ii) the 6 orthogonal relations between a linear interval and a point in space-
time,9 (iii) the 29 orthogonal relations between 2 linear intervals in space-time
using the dense model of time,9 and (iv) the 40 orthogonal relations between 2
linear intervals in space-time using the nondense model of time.9 We expect that
as distributed agent-based programs and applications become more common,
specific uses for these orthogonal relations between abstract events will emerge,
similar to the uses of the 13 orthogonal relations between colocated linear intervals.
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Table III. Number of orthogonal relations in ��≺i, classified based on size of antichains.

Size/number
of rac(X, Y)
antichains

Number of antichains rac(Y, X) of size s � 0 . . . 7

¥s�0
7 colss � 0 s � 1 s � 2 s � 3 s � 4 s � 5 s � 6 s � 7

0/1 1 24 147 350 341 168 44 2 1077
1/24 24 405 1926 3695 3084 1326 293 11 10764
2/147 147 1926 7097 11493 7963 2768 527 18 31939
3/350 350 3695 11493 16469 9406 2654 469 16 44552
4/341 341 3084 7963 9406 4158 802 132 4 25890
5/168 168 1326 2768 2654 802 18 0 0 7736
6/44 44 293 527 469 132 0 0 0 1465
7/2 2 11 18 16 4 0 0 0 51
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