# Orthogonal Relations for Reasoning about Posets 

Ajay D. Kshemkalyani,*, ${ }^{*}$ Roshan Kamath ${ }^{2}$<br>${ }^{1}$ Department of Computer Science, 851 South Morgan Street, University of Illinois at Chicago, Chicago, IL 60607-7053<br>${ }^{2}$ Motorola Inc., 1501 W. Shure Drive, Arlington Heights, IL 60004


#### Abstract

In large distributed systems, event abstraction becomes an important issue in order to represent interactions and reason at the right level of abstraction. Abstract events are collections of more elementary events, which provide a view of the system execution at an appropriate level of granularity. Understanding how two abstract events relate to each other is a fundamental problem for knowledge representation and reasoning in a complex system. In this paper, we study how two abstract events in a distributed system are related to each other in terms of the more elementary causality relation. Specifically, we analyze the ways in which two abstract events can be related to each other orthogonally, that is, identify all the possible mutually independent relations by which two such events could be related to each other. © 2002 Wiley Periodicals, Inc.


## 1. INTRODUCTION

In large distributed systems, event abstraction becomes an important issue in order to represent interactions and reason at the right level of abstraction. Abstract events are collections of more elementary events, which provide a view of the system execution at an appropriate level of granularity. Understanding how two abstract events relate to each other is a fundamental problem for knowledge representation and reasoning in such a complex distributed system. This problem is of interest across philosophy, physics, artificial intelligence, computer science, and psychology. ${ }^{2}$

Hamblin ${ }^{8}$ and Allen ${ }^{2}$ showed that two linear time durations or intervals that are colocated can be related in one of 13 possible ways. These 13 relations form an orthogonal set of relations, i.e., the intervals must be related by one and only one of these relations, implying that the conjunction of any two relations is the empty relation. Orthogonal relations are important because they identify all possible mutually exclusive relations that can possibly hold between any given pair of intervals and because all possible relationships between two intervals that can exist
*Author to whom all correspondence should be addressed: e-mail: ajayk@cs.uic.edu.
in the face of uncertain knowledge can be expressed in terms of the irreducible orthogonal relationships. ${ }^{2}$ This set of 13 orthogonal relations between a pair of linear colocated intervals has been used very extensively in the literature on artificial intelligence. For example, Ref. 5 developed a theory of temporal reasoning using semi-intervals which arise when there is uncertain and imprecise knowledge of intervals, using the 13 orthogonal relations of Allen. Examples of other uses of the 13 orthogonal relations between colocated linear intervals include Refs. $3,4,6,7$, and 15-19.

The literature surveyed above considered the interactions and relative placement of time intervals, each of which can be viewed as a linearly ordered set of time instants. An additional assumption was that time was continuous, and hence the time intervals satisfy the density axiom, i.e., $\forall t_{1}, t_{2} \in X$, where $X$ is a time interval, $\exists t \in X \mid\left(t_{1}<t<t_{2}\right) \vee\left(t_{2}<t<t_{1}\right)$.

Our objective is to study how two abstract events in a distributed system are related to each other in terms of the more elementary causality relation. ${ }^{14}$ The relativistic space-time model is an appropriate model of a distributed system for this study. Specifically, we analyze the ways in which two abstract events can be related to each other orthogonally, that is, identify all the possible mutually independent relations by which two such events could be related to each other. ${ }^{12}$ The results of this paper differ from the work surveyed above in the following main aspect. The abstract events we deal with form a partial order of more elementary events, unlike the time intervals which linearly order the component time instants. The partial order among the elementary events is given by the causality relation and is used as a building block to formulate the orthogonal relations Additionally, the system model explicitly models individual events/actions that occur at different processes in the execution of a complex distributed system, and hence models discrete events in addition to continuous events.

The work is motivated by the fact that in a distributed system, abstract events, wherein at least some of the component elementary events of the abstract event occur concurrently, are of great interest in simplifying the reasoning about distributed executions. Henceforth, we also term such abstract events as poset (partially ordered set) events. ${ }^{10}$ Such poset events accurately model collaborative activity among multiple CPU subsystems in a distributed system, for various applications like navigation, planning, robotics, mobile computing, coordination among multiple participants in a virtual reality environment, and agent-based distributed cooperating programs. As a specific example, multiple roving mobile agents that can communicate only by message passing need to synchronize their actions in an adversarial environment. Causality between poset events has been studied in Ref. 10 wherein a spectrum of fine-grained causality relations between poset events was presented, along with an axiom system to reason with such relations. These relations provide a precise handle to express and represent a naturally occurring or enforce a desired fine-grained level of causality or synchronization among the cooperating agents. However, these relations are not orthogonal relations. In this paper, we present a methodology for deriving orthogonal relations between poset events.

Section 2 gives the system model. Section 3 gives the main results and Section 4 concludes.


Figure 1. Poset event $X$ and its proxies $L_{X}$ and $U_{X}$. The proxies defined by Definition 4 are shown by dashed lines. The proxies defined by Definition 5 are shown by dotted lines.

## 2. SYSTEM MODEL AND PRELIMINARIES

A poset event structure model $(E, \prec)$, where $\prec$ is an irreflexive partial ordering representing the causality relation on the event set $E$, is used for the space-time model for a system execution, as in Refs. 9, 10, 11, and 13. E is partitioned into local executions at coordinates in the space dimensions. Each $E_{i}$ is a linearly ordered set of events in partition $i$ and corresponds to the execution of events by a distinct process. An event $e$ in partition $i$ is denoted $e_{i}$. The causality relation on $E$ is the transitive closure of the local ordering relation on each $E_{i}$ and the ordering imposed by message send events and message receive events. ${ }^{14}$ In Refs. 9 and 10, poset events are defined as follows. Let $\mathscr{E}$ denote the power set of $E$. Let $\mathscr{A}(\neq \varnothing) \subseteq(\mathscr{E}-\varnothing) . \mathscr{A}$ is the set of all the sets that represent a higher level grouping of the events of $E$ of interest to an application. Each element $A$ of $\mathscr{A}$ is a subset of $E$, and is termed an abstract or a poset event.

The causality relations between a pair of poset events were formulated in Ref. 10 using the notion of proxies. Each poset event $X$ was defined to have two proxies-the set of its least elements $L_{X}$, and the set of its greatest elements $U_{X}$. These proxies were the equivalents of the beginning and end instants of the linearly ordered interval. Two alternate definitions of proxies were given: (i) Definition 4, ${ }^{10}$ viz., $L_{X}=\left\{e_{i} \in X \mid \forall e_{i}^{\prime} \in X, e_{i} \preceq e_{i}^{\prime}\right\}$ and $U_{X}=\left\{e_{i} \in X \mid \forall e_{i}^{\prime} \in X, e_{i} \succeq\right.$ $\left.e_{i}^{\prime}\right\}$, and (ii) Definition 5, ${ }^{10}$ viz., $L_{X}=\left\{e \in X \mid \forall e^{\prime} \in X, e \ngtr e^{\prime}\right\}$ and $U_{X}=$ $\left\{e \in X \mid \forall e^{\prime} \in X, e \nless e^{\prime}\right\}$, were used to define the proxies. Figure 1 depicts the proxies of $X$ and shows the difference between the two definitions. In the figure, the time axis goes from left to right, and the lines with arrows denote the messages that impose causality across different processes (points in space). Depending on the problem domain, an application chooses and consistently uses one definition of proxy. For example, for events in a distributed sensor/robot system, where the various sensors/robots cooperate to perform loosely synchronized actions, the former definition is more suitable to represent the start and end of interactions. When different mobile agents invoke services offered by other agents/servers in a

Table I. Relations in Refs. 9 and 10.

| Relation $r$ | Expression for $r(X, Y)$ |
| :--- | ---: |
| $R 1$ | $\forall x \in X \forall y \in Y, x \prec y$ |
| $R 1^{\prime}(=R 1)$ | $\forall y \in Y \forall x \in X, x \prec y$ |
| $R 2$ | $\forall x \in X \exists y \in Y, x \prec y$ |
| $R 2^{\prime}$ | $\exists y \in Y \forall x \in X, x \prec y$ |
| $R 3$ | $\exists x \in X \forall y \in Y, x \prec y$ |
| $R 3^{\prime}$ | $\forall y \in Y \exists x \in X, x \prec y$ |
| $R 4$ | $\exists x \in X \exists y \in Y, x \prec y$ |
| $R 4^{\prime}(=R 4)$ | $\exists y \in Y \exists x \in X, x \prec y$ |

nested RPC form, the latter definition is more suitable to represent the start and end of interactions.

The causality relations in Ref. 10 were defined using the following two aspects of specifying the relations, based on the concept of proxies. (i) As there is a choice of two proxies of $X$ and choice of two proxies of $Y$, there are four combinations between the proxies. (ii) The eight causality relations (six of which are distinct) in Table I can be specified for each combination, thus yielding 32 relations ( 24 of which are distinct) between $X$ and $Y$. The set of these causality relations is denoted $\mathscr{R}$. The following nomenclature was adopted to name the relations in $\mathscr{R}$. Relation $R$ ? \# $(X, Y)$ was such that ? was a value from $\{R 1, R 2, R 3$, $R 4\}$ and indicated the choice of proxies of $X$ and $Y$, whereas \# indicated how the chosen proxies were related to each other, and took a value from $\left\{a, a^{\prime}, b, b^{\prime}, c\right.$, $\left.c^{\prime}, d, d^{\prime}\right\}$, where $R 1, R 1^{\prime}, R 2, R 2^{\prime}, R 3, R 3^{\prime}, R 4, R 4^{\prime}$ were renamed $a, a^{\prime}, b$, $b^{\prime}, c, c^{\prime}, d, d^{\prime}$, respectively, to avoid confusion with this usage of the relations $R 1-R 4^{\prime}$. The set of relations $\mathscr{R}$ between poset events was comprehensive using first-order predicate logic and only the $\prec$ relation between elementary atomic events.

In this paper, the label $\mathscr{R}$ is used to denote the set of the above relations when the discussion is common to the relations defined using either definition of proxies, viz., Definition 4 or $5 .{ }^{10}$ If the distinction matters, the notations $\mathscr{R}^{{ }^{i}}$ and $\mathscr{R}^{<}$are used to denote the sets of relations that result when Definition 4 and 5 of proxies, ${ }^{10}$ respectively, are used. Intuitively, $\mathscr{R}^{<_{i}}$ indicates the set of relations resulting when the proxies are defined using the $\prec$ relation on each $E_{i}$, and $\mathscr{R}^{\prec}$ indicates the set of relations resulting when the proxies are defined using the $\prec$ relation on $E$. Both $\mathscr{R}^{\prec}$ and $\mathscr{R}^{{ }^{{ }_{i}}}$ form a hierarchy of dependent relations as shown in Figure 2.

A set of axioms to reason with the relations in $\mathscr{R}^{\prec}$ was given in Ref. 10. The set of axioms was complete in the sense that (i) given any $R(X, Y)$, the axioms gave all enumerations of relations $r(X, Y)$ and $r^{\prime}(Y, X)$, for $r, r^{\prime}, R \in \mathscr{R}^{\prec}$, and (ii) given $r_{1}(X, Y) \wedge r_{2}(Y, Z)$, the axioms gave all relations $r(X, Z)$ [and from (i), all $\left.r^{\prime}(Z, X)\right], \forall r \forall r^{\prime} \forall r_{1} \forall r_{2} \in \mathscr{R}^{\prec}$. Hence, the axioms could be used to derive all possible implications from any given predicates on relations in $\mathscr{R}^{\prec}$.

In the next section, we give a methodology to enumerate the set of orthogonal relations for $\mathscr{R}$. The results of implementing this methodology for $\mathscr{R}^{\prec}$ using the axioms of Ref. 10 are then given. In this paper, we also modify that axiom system


Figure 2. Hierarchy of causality relations, ordered by "is a subrelation of". ${ }^{10}$ An edge from $r 1$ to $r 2$ indicates that $r 2$ is a subrelation of $r 1$.
of Ref. 10 so as to make it applicable to $\mathscr{R}^{<_{i}}$. We then apply the above methodology to enumerate the set of orthogonal relations for $\mathscr{R}^{<_{i}}$ and give the results.

## 3. ORTHOGONAL RELATIONS

We now propose a method to derive and enumerate the orthogonal relations between any pair of poset events, using the set of dependent relations $\mathscr{R}$. We also present the numerical results of enumerating the orthogonal relations for $\mathscr{R}^{<}$and $\mathscr{R}^{<_{i}}$ based on the appropriate axiom system. Specifically, for $\mathscr{R}^{\prec}$, we use axioms XP1-XP14 given in Ref. 10. For $\mathscr{R}^{{ }^{<}}$, we use axioms XP1-XP6 and eight new axioms $\mathrm{XP}^{<_{i}}-\mathrm{XP}^{2} 4^{<_{i}}$. The results of the two enumerations were obtained by implementing the methodology in XSB Prolog.

The algorithm proposed here has the following two steps to create a (complete and mutually independent) set of orthogonal relations from the set of dependent relations $\mathscr{R}$.

1. Identify all possible combinations of relations $r(X, Y) \in \mathscr{R}$ that can hold simultaneously for a given $X$ and $Y$.
2. For each of the identified combinations of relations $r(X, Y)$, identify all combinations of $r(Y, X)$ that can simultaneously hold for the same $X$ and $Y$.

### 3.1. Step 1: All Possible Relations $r(X, Y)$

As a first step, we identify all the combinations of relations $r(X, Y)$, for $r \in$ $\mathscr{R}$, that hold between poset events $X$ and $Y$. Note that by construction, $(\mathscr{R}, \sqsubseteq)$, where $\sqsubseteq$ is the relation "is a subrelation of," is a lattice as illustrated in Figure 2.

For a given pair of posets $X$ and $Y$, it may be the case that a combination of the relations in $\mathscr{R}$ may hold. Specifically, if $R(X, Y)$ holds, then $\forall R^{\prime} \mid R \sqsubseteq R^{\prime}, R^{\prime}(X$, $Y$ ) holds. Thus, if $R(X, Y)$ holds, then for each $R^{\prime}$ in the upward-closed subset* of $\mathscr{R}, R^{\prime}(X, Y)$ holds. In the partial order ( $\left.\mathscr{R}, \sqsubseteq\right)$, all upward-closed subsets of $\mathscr{R}$ correspond exactly to the combinations of relations in $\mathscr{R}$ that can hold concurrently for a given pair of poset events. It follows from the result on page 400 of Ref. 1 that there is a $1-1$ correspondence between the set of all upward-closed subsets of a partial order and the set of antichains ${ }^{\dagger}$ in the partial order. Therefore, an enumeration of the antichains in $(\mathscr{R}, \sqsubseteq)$ gives an enumeration of the upward-closed subsets of ( $\mathscr{R}, \sqsubseteq$ ), which corresponds to all the combinations of the relations in $\mathscr{R}$ that can hold for a pair of poset events. Let $\mathscr{R} \mathscr{A} \mathscr{C}$ be the set of all such antichains. A member of $\mathscr{R} \mathscr{A} \mathscr{C}$, denoted $\operatorname{rac}(X, Y)$, is an antichain of $\mathscr{R}$ and can be expressed as the conjunction of the members of the antichain, each of which is a member of $\mathscr{R}$. The number of antichains in $\mathscr{R} \mathscr{A} \mathscr{C}$ was computed by the implementation of axioms XP1-XP6 (given below), to be as follows. There are 1, 24, 147, 350, 341, $168,44,2$, and 0 antichains of size $0-8$, respectively, giving a total of 1077 antichains. The antichain of size 0 denotes the empty-set upward-closed subset of $\mathscr{R}$, equivalent to $\overline{R 4 d}(X, Y)$, where $\overline{R 4 d}(X, Y)$ denotes that $R 4 d(X, Y)$ is false. It can be observed from Figure 2 that the size of the largest antichain is 7.

The specific axioms XP1-XP6 from Ref. 10 are reproduced here. $V_{1}=\{1$, $2,3,4\}, V_{2}=\left\{a, b, b^{\prime}, c, c^{\prime}, d\right\}$, and the relation $\|\left(r_{1}, r_{2}\right)$ stands for $\not \ddagger\left(r_{1}\right.$, $\left.r_{2}\right) \wedge \nsubseteq\left(r_{2}, r_{1}\right)$.

XP1: $R 1$ ? $\sqsubseteq ~ R 2$ ? $\sqsubseteq ~ R 4$ ?, where ? is instantiated from $V_{2}$.
XP2: $R 1$ ? $\sqsubseteq R 3$ ? $\sqsubseteq R 4$ ?, where ? is instantiated from $V_{2}$.
XP3: $R 2$ ? $\| R 3$ \#, where ? and \# are separately instantiated from $V_{2}$.
XP4: $R ? a \sqsubseteq R ? b^{\prime} \sqsubseteq R ? b \sqsubseteq R ? d$, where ? is instantiated from $V_{1}$.
XP5: $R$ ? $a \sqsubseteq R ? c \sqsubseteq R ? c^{\prime} \sqsubseteq R$ ? $d$, where ? is instantiated from $V_{1}$.
XP6: $R ? b\left\|R ? c^{\prime}, R ? b^{\prime}\right\| R ? c^{\prime}, R ? b\left\|R ? c, R ? b^{\prime}\right\| R ? c$, where ? is instantiated from $V_{1}$.

### 3.2. Step 2: Relations $\boldsymbol{r}^{\prime}(\boldsymbol{Y}, \boldsymbol{X})$, Given That Certain $\boldsymbol{r}(\boldsymbol{X}, \boldsymbol{Y})$ Hold

The computed combinations of relations in $\mathscr{R}$, viz., antichains in ( $\mathscr{R}, \sqsubseteq$ ), are useful to determine all the orthogonal relations that can exist between any two poset events. For each of the $|\mathscr{R} \mathscr{A} \mathscr{C}|$ antichains that hold between $X$ and $Y$, there are potentially $|\mathscr{R} \mathscr{A} \mathscr{C}|$ antichains that hold between $Y$ and $X$, thus leading to a potential $|\mathscr{R} \mathscr{A} \mathscr{C}|^{2}$ orthogonal relations between $X$ and $Y$. Several of these relations will be illegal because they contradict the relations $r(X, Y)$. The objective is to determine exactly all the orthogonal relations that are admissible by the axiom system. For each $\operatorname{rac} 1(X, Y)$, where $\operatorname{rac} 1 \in \mathscr{R} \mathscr{A} \mathscr{C}$, determine which $\operatorname{rac} 2(Y, X)$ can hold, where $\operatorname{rac} 2 \in \mathscr{R} \mathscr{A} \mathscr{C}$, using the axiom system which allows the

[^0]Table II．Number of orthogonal relations in $\mathscr{R} O^{〔}$ ，classified based on size of antichains．

| Size／number <br> of $\operatorname{rac}(X, Y)$ <br> antichains | Number of antichains $\operatorname{rac}(Y, X)$ of size $s=0 \ldots 7$ |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $s=0$ | $s=1$ | $s=2$ | $s=3$ | $s=4$ | $s=5$ | $s=6$ | $s=7$ | $\sum_{s=0}^{7}$ col $_{s}$ |
| $0 / 1$ | 1 | 24 | 147 | 350 | 341 | 168 | 44 | 2 | 1077 |
| $1 / 24$ | 24 | 261 | 898 | 1285 | 822 | 264 | 34 | 1 | 3589 |
| $2 / 147$ | 147 | 898 | 1911 | 1683 | 642 | 130 | 4 | 0 | 5415 |
| $3 / 350$ | 350 | 1285 | 1683 | 937 | 180 | 8 | 0 | 0 | 4443 |
| $4 / 341$ | 341 | 822 | 642 | 180 | 18 | 0 | 0 | 0 | 2003 |
| $5 / 168$ | 168 | 264 | 130 | 8 | 0 | 0 | 0 | 0 | 570 |
| $6 / 44$ | 44 | 34 | 4 | 0 | 0 | 0 | 0 | 0 | 82 |
| $7 / 2$ | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |

derivation of all $r^{\prime}(Y, X)$ from any $r(X, Y)$ ，where $r, r^{\prime} \in \mathscr{R}$ ．Then each conjunction of an antichain $\operatorname{rac} 1(X, Y)$ and a compatible antichain $\operatorname{rac} 2(Y, X)$ is orthogonal from every other such conjunction；denote this set of conjunctions as $\mathscr{R O}$ ，which then represents all the possible orthogonal relations between two posets，based on the $\prec$ relation among elementary events．

Let us denote the sets of orthogonal relations obtained for relations in $\mathscr{R}^{\prec}$ and $\mathscr{R}^{\prec_{i}}$ by $\mathscr{R} O^{\prec}$ and $\mathscr{R} O^{\prec_{i}}$ ，respectively．

## 3．2．1．Relations $\mathscr{R O}^{〔}$

Axioms XP7－XP14 along with XP1－XP6 were used to determine all the orthogonal relations $\mathscr{R} 0^{\prec}$ ，counted in Table II．Axioms XP7－XP14 are reproduced below with labels $\mathrm{XP7}^{<}-\mathrm{XP} 14^{〔}$ ：

```
XP7 \({ }^{\prec} . R 1 a(X, Y) \vee R 1 b(X, Y) \vee R 1 b^{\prime}(X, Y) \vee R 1 c(X, Y) \vee R 1 c^{\prime}(X, Y) \Rightarrow\) \(\overline{R 4 d}(Y, X)\) ．
```

$\mathbf{X P 8}^{\prec} . R 1 d(X, Y) \Rightarrow \overline{R 4 b}(Y, X) \wedge \overline{R 4 c^{\prime}}(Y, X)$ ．
XP9 ${ }^{〔} . R 2 a(X, Y) \vee R 2 b(X, Y) \vee R 2 b^{\prime}(X, Y) \vee R 2 c(X, Y) \vee R 2 c^{\prime}(X, Y) \Rightarrow$ $\operatorname{R2d}(Y, X)$ ．
$\mathbf{X P 1 0}{ }^{〔} . R 2 d(X, Y) \Rightarrow \overline{R 2 b}(Y, X) \wedge \overline{R 2 c^{\prime}}(Y, X)$ ．
XP11 ${ }^{〔} R 3 a(X, Y) \vee R 3 b(X, Y) \vee R 3 b^{\prime}(X, Y) \vee R 3 c(X, Y) \vee R 3 c^{\prime}(X, Y) \Rightarrow$ $\overline{R 3 d}(Y, X)$ ．
$\mathbf{X P 1 2}{ }^{\prec} . R 3 d(X, Y) \Rightarrow \overline{R 3 b}(Y, X) \wedge \overline{R 3 c^{\prime}}(Y, X)$ ．
XP13 ${ }^{\prec}$ ．$R 4 a(X, Y) \vee R 4 b(X, Y) \vee R 4 b^{\prime}(X, Y) \vee R 4 c(X, Y) \vee R 4 c^{\prime}(X, Y) \Rightarrow$ $R 1 d(Y, X)$ ．
$\mathbf{X P 1 4}{ }^{\prec} . R 4 d(X, Y) \Rightarrow \overline{R 1 b}(Y, X) \wedge \overline{R 1 c^{\prime}}(Y, X)$ ．
Table II consists of three parts，marked by high－level column headers．The first part categorizes the $|\mathscr{R} \mathscr{A} \mathscr{C}(X, Y)|$ antichains of Figure 2，based on size which ranges from 0 to 7 ．Each row $i, i \in[0 \ldots 7]$ ，in the entire table is used to compute the orthogonal relations in which antichains $\operatorname{rac}(X, Y)$ have size $i$ ．Consider any row $i$ ．For each antichain $\operatorname{rac}(X, Y)$ of size $i$ ，the number of the corresponding legal（as
per $\left.\mathrm{XP}^{\prec}-\mathrm{XP} 14^{\prec}\right)$ antichains $\operatorname{rac}(Y, X)$ of size $s, s \in[0, \ldots, 7]$, are added to column $s$ in the second part of the table. The entry in row $i$ in the last part of the table sums up the row entries of columns $s=0$ through $s=7$ of that row, and gives the total number of orthogonal relations in which antichains $\operatorname{rac}(X, Y)$ have size $i$. The total number of orthogonal relations in $\mathscr{R} O^{<}$is 17,185 .

Note that $\mathscr{R} \mathscr{A} \mathscr{C}$ needs to consider all the antichains in $\mathscr{R}$, not just the maximal antichains, because even a subset of a maximal antichain identifies a different upward-closed subset of $\mathscr{P}$ than does the maximal antichain, indicating a different set of relations that hold. Also note that for any $\operatorname{rac} 1(X, Y)$, all relations in the upward-closed subset of $\mathscr{R}$ hold and those not in the upward-closed subset do not hold. Thus, for any $\operatorname{rac} 1(X, Y)$, there is a bit-vector of size 24 where each bit corresponds to a relation in $\mathscr{R}$, such that there is a " 1 " for each relation in the upward-closed subset of $\operatorname{rac} 1(X, Y)$ and a " 0 " for each relation not in the upward-closed subset of $\operatorname{rac} 1(X, Y)$. Analogously, for any $\operatorname{rac} 2(Y, X)$ that is compatible with $\operatorname{rac} 1(X, Y)$ as per the axioms, there is a bit-vector of size 24 where each bit corresponds to a relation in $\mathscr{R}$, such that there is a " 1 " for each relation in the upward-closed subset of $\operatorname{rac} 2(Y, X)$ and a " 0 " for each relation not in the upward-closed subset of $\operatorname{rac} 2(Y, X)$. Each orthogonal relation can thus be represented by a 48 -bit vector.

Example. For the $\operatorname{rac} 1(X, Y)$ antichain $R 2 b(X, Y) \wedge R 2 c(X, Y) \wedge R 3 a(X, Y)$ of size three, the axioms XP7 ${ }^{\prec}-\mathrm{XP} 14^{\prec}$ give $\overline{R 2 d}(Y, X) \wedge \overline{R 3 d}(Y, X)$. The only possible antichains $\operatorname{rac} 2(Y, X)$ can be from the set of relations $\{R 4 *(Y, X)\}$-this gives 11 possible antichains $\operatorname{rac} 2(Y, X)$, counting the antichain of size 0 , that are compatible with $\operatorname{rac} 1(X, Y)$. Each of these 11 combinations of $\operatorname{rac} 2(Y, X)$ with $\operatorname{rac} 1(X, Y)$ yields a unique 48 -bit vector.

### 3.2.2. Relations $\mathscr{R O}^{-i}$

Observe that the axioms XP7-XP14 given in Ref. 10 are applicable only to relations in $\mathscr{R}^{<}$which use Definition 5 of proxies, ${ }^{10}$ and not to relations in $\mathscr{R}^{<_{i}}$ which use Definition 4 of proxies. ${ }^{10}$ If proxies are defined by Definition 4 and not Definition 5, then the axioms XP7-XP14 need to be replaced by the following axioms XP7 ${ }^{<i}-\mathrm{XP}^{2} 4^{<_{i}}$ to obtain all the orthogonal relations $\mathscr{R} 0^{<_{i}}$.
$X^{2} 7^{<_{i}} . R 1 a(X, Y) \Rightarrow R 4 d(Y, X) ; R 1 b(X, Y) \vee R 1 b^{\prime}(X, Y) \Rightarrow R 4 b(Y, X) ;$ $R 1 c(X, Y) \vee R 1 c^{\prime}(X, Y) \Rightarrow R 4 c^{\prime}(Y, X)$.
$\mathbf{X P 8}^{\prec_{i}} . R 1 d(X, Y) \Rightarrow \overline{R 4 a}(Y, X)$.
XP9 $^{<_{i} .} R 2 a(X, Y) \Rightarrow \overline{R 2 d}(Y, X) ; R 2 b(X, Y) \vee R 2 b^{\prime}(X, Y) \Rightarrow \overline{R 2 b}(Y, X) ;$ $R 2 c(X, Y) \vee R 2 c^{\prime}(X, Y) \Rightarrow \overline{R 2 c^{\prime}}(Y, X)$.
$\mathbf{X P 1 0}{ }^{<i} \cdot R 2 d(X, Y) \Rightarrow \overline{R 2 a}(Y, X)$.
$\mathbf{X P 1 1}{ }^{<i} . R 3 a(X, Y) \Rightarrow \overline{R 3 d}(Y, X) ; R 3 b(X, Y) \vee R 3 b^{\prime}(X, Y) \Rightarrow \overline{R 3 b}(Y, X)$; $R 3 c(X, Y) \vee R 3 c^{\prime}(X, Y) \Rightarrow R 3 c^{\prime}(Y, X)$.
XP12 ${ }^{<_{i}} . R 3 d(X, Y) \Rightarrow \overline{R 3 a}(Y, X)$.
$\mathbf{X P 1 3}{ }^{<_{i} .} . R 4 a(X, Y) \Rightarrow \overline{R 1 d}(Y, X) ; R 4 b(X, Y) \vee R 4 b^{\prime}(X, Y) \Rightarrow \overline{R 1 b}(Y, X)$; $R 4 c(X, Y) \vee R 4 c^{\prime}(X, Y) \Rightarrow R 1 c^{\prime}(Y, X)$.
XP14 ${ }^{<_{i}} . R 4 d(X, Y) \Rightarrow \overline{R 1 a}(Y, X)$.

Table III. Number of orthogonal relations in $\mathscr{R} O^{<i}$, classified based on size of antichains.

| Size/number <br> of $\operatorname{rac}(X, Y)$ <br> antichains | Number of antichains $\operatorname{rac}(Y, X)$ of size $s=0 \ldots 7$ |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $s=0$ | $s=1$ | $s=2$ | $s=3$ | $s=4$ | $s=5$ | $s=6$ | $s=7$ | $\sum_{s=0}^{7} \operatorname{col}_{s}$ |
| $0 / 1$ | 1 | 24 | 147 | 350 | 341 | 168 | 44 | 2 | 1077 |
| $1 / 24$ | 24 | 405 | 1926 | 3695 | 3084 | 1326 | 293 | 11 | 10764 |
| $2 / 147$ | 147 | 1926 | 7097 | 11493 | 7963 | 2768 | 527 | 18 | 31939 |
| $3 / 350$ | 350 | 3695 | 11493 | 16469 | 9406 | 2654 | 469 | 16 | 44552 |
| $4 / 341$ | 341 | 3084 | 7963 | 9406 | 4158 | 802 | 132 | 4 | 25890 |
| $5 / 168$ | 168 | 1326 | 2768 | 2654 | 802 | 18 | 0 | 0 | 7736 |
| $6 / 44$ | 44 | 293 | 527 | 469 | 132 | 0 | 0 | 0 | 1465 |
| $7 / 2$ | 2 | 11 | 18 | 16 | 4 | 0 | 0 | 0 | 51 |

 relations $\mathscr{R} 0^{<i}$, instead of axioms XP1-XP6 and XP7 ${ }^{〔-\text { XP14 }}{ }^{〔}$ that were used to obtain $\mathscr{R} 0^{\swarrow}$. Results analogous to those in Table II for $\mathscr{R} 0^{\swarrow}$ are obtained for $\mathscr{R} 0^{\swarrow_{i}}$ and shown in Table III. The total number of orthogonal relations in $\mathscr{R O}{ }^{\swarrow_{i}}$ is 123,474.

## 4. CONCLUSIONS

Orthogonal relations between events provide an understanding of all possible mutually exclusive relations that can hold between the events when complete and precise knowledge is available. These form the basis of relational algebras, and allow the derivation of relations to represent knowledge when imprecise and incomplete information is available. Abstract events which are partially ordered collections of elementary events are important when reasoning and representing actions in complex distributed systems. We derived orthogonal relations $\mathscr{R O}$ between abstract events using the space-time model for a distributed system. Relations in $\mathscr{R O}$ are analogous to the 13 orthogonal relations between linear intervals at a point in space. ${ }^{2}$ Relations in $\mathscr{R O}$ are also analogous to the following sets of orthogonal relations based on the elementary causality relation. (i) the 3 orthogonal relations between 2 points in space-time ( $a \prec b, b \prec a, a \nless b \wedge b \nless$ $a$ ), (ii) the 6 orthogonal relations between a linear interval and a point in spacetime, ${ }^{9}$ (iii) the 29 orthogonal relations between 2 linear intervals in space-time using the dense model of time, ${ }^{9}$ and (iv) the 40 orthogonal relations between 2 linear intervals in space-time using the nondense model of time. ${ }^{9}$ We expect that as distributed agent-based programs and applications become more common, specific uses for these orthogonal relations between abstract events will emerge, similar to the uses of the 13 orthogonal relations between colocated linear intervals.

## Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. CCR-9875617 and EIA-9871345.

## References

1. Aigner M. Combinatorial theory. New York: Springer-Verlag; 1979.
2. Allen J. Maintaining knowledge about temporal intervals. Commun ACM 1983;26(11): 832-843.
3. Allen J. Towards a general theory of action and time. Artif Intell 1984;23:123-154.
4. Allen J. Time and time again: The many ways to represent time. Int J Intell Syst 1991;6(4):341-355.
5. Freksa C. Temporal reasoning based on semi-intervals. Artif Intell 1992;54:199-227.
6. Gerevini A, Schubert L. Efficient algorithms for qualitative reasoning about time. Artif Intell 1995;74:207-248.
7. Golumbic MC, Shamir R. Complexity and algorithms for reasoning about time: A graphtheoretic approach. JACM 1993;40(5):1108-1133.
8. Hamblin CL. Instants and intervals. In: Fraser JT, Haber FC, Muller GH, editors. The study of time. Berlin: Springer-Verlag; 1972. pp 324-332.
9. Kshemkalyani A. Temporal interactions of intervals in distributed systems. J Comput Syst Sci 1996;52(2):287-298.
10. Kshemkalyani A. Reasoning about causality between distributed nonatomic events. Artif Intell 1997;92:301-315.
11. Kshemkalyani AD. A framework for viewing atomic events in distributed computations. Theoretical Computer Science 1998;196(1-2):45-70.
12. Kshemkalyani AD, Kamath R. Orthogonal relations for reasoning about abstract events, 6th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNA1 2143, Springer, 726-735, 2001.
13. Lamport L. The mutual exclusion problem: part I-a theory of interprocess communication. JACM 1986;33(2):313-326.
14. Lamport L. Time, clocks, and the ordering of events in a distributed system. Commun ACM 1978;21(7):558-565.
15. Nebel B, Burckert H-J. Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra. J ACM 1995;42(1):43-66.
16. Rodriguez R, Anger F, Ford K. Temporal reasoning: a relativistic model. Int J Intell Syst 1991;6:237-254.
17. Terenziani P, Torasso P. Time, action-types, and causation. Comput Intell 1995;11(3): 529-552.
18. van Beek P. Reasoning about qualitative temporal information. Artif Intell 1992;58:297326.
19. van Beek P, Cohen R. Exact and approximate reasoning about temporal relations. Comput Intell 1990;6:132-144.

[^0]:    *A set $\Re \subseteq \mathscr{R}$ is upward-closed if and only if, for every $r, r^{\prime} \in \mathscr{R},\left(r \in \mathfrak{R} \wedge r \sqsubseteq r^{\prime}\right)$ $\Rightarrow r^{\prime} \in \mathfrak{R}$.
    ${ }^{\dagger} \mathrm{A}$ set $\Re$ is an antichain if and only if for every $r$ and $r^{\prime}$ in $\Re, r \nsubseteq r^{\prime} \wedge r^{\prime} \nsubseteq r$.

