S

] JOURNAL OF
2 SYSTEMS

L% ARCHITECTURE
ELSEVIER Journal of Systems Architecture 43 (1997) 229-243

Reconciling chained and unchained transactional support for
distributed systems

George Samaras *™ ", Andrew Citron *, Ajay Kshemkalyani °

* IBM Distributed Systems Architecture, IBM Corporation, P.O. Box 12195, Research Triangle Park, NC 27709, USA
° Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

Abstract

Distributed transactions require transaction processing support either from their communications protocols or from
protocols at some higher layer. One of the earliest ‘*industrial-strength’’ distributed transactional support systems was
provided by SNA (LUG.1 and LUG.2). As OSI began specifying the flows for transactional support, the notion of unchained
transactional support as opposed to the chained nature of LU6.2 transactions gradually developed. OSI/TP supports both
chained and unchained transactions. This makes the coexistence of applications requiring both kinds of transaction
processing support on a platform that supports only chained transactions problematic and reduces the interoperability of
communication protocols providing transactional support. This paper addresses the above problems by identifying the extra
functionality provided by unchained transactions over chained transactions. It then shows how a protocol /platform (i.e.,
IBM’s SNA) that provides only chained transactional support can provide the functionality of unchained transactions, and
without using the notion of chained or unchained transactions at the API. The paper also describes an efficient way by which
protocols providing only chained support can provide the functionality of unchained transactions using the X /Open TX API
based on OSI TP’s Chained and Unchained Functional Units.

Keywords: Context management; Transaction processing; Databases; Distributed processing; LU6.2

1. Introduction (TP) support, also termed transactional support, ei-
ther from their underlying communication protocols
(e.g., LU6.2’s SNA), or from some layer above the
communications protocols (e.g., Tuxedo’s Transac-
tion Manager above TCP /IP). The transactional sup-
port available to the distributed transaction depends
on the platform and/or the various communication

* Corresponding author. Email: csamara@turing.cs.ucy.ac.cy. protocols used. Until recently, only protocols such as

A transaction is defined to provide the properties
of atomicity, consistency, integrity, and durability
(A.C.LD.) for any work it performs [10,5]. Dis-
tributed transactions require transaction processing

1383-7621/0165-6074 /97 /$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved.
Pl $1383-7621(96)00109-9

230 G. Sumaras et al. / Journc! of Systems Architecture 43 (1997) 229-243

SNA [6] and TMF [18] were used to support dis-
tributed transactions in homogeneous systems. Even
though OSI TP [20] represents ongoing work for
supporting transaction processing in an open envi-
ronment, the variety of transactional support pro-
vided by various protocols /platforms will continue
to exist.

A specific transaction is delimited by a transac-
tion boundary, viz., the beginning and end of the
transaction. This notion is important because it re-
lates to the concept of a transaction ID (TRANID),
and in certain protocols defines the transaction state
of the different distributed resources.

Two dominant paradigms to demarcate the bound-
aries of a transaction have emerged chained and
unchained transactions. The X/Open [19,1] API,
based on OSI, [13] exposes both paradigms. Existing
proprietary /open communication protocols do not
necessarily support both chained and unchained
transaction processing. SNA’s LU6.2 provides only
chained support, while OSI/TP supports both
chained and unchained. The non-uniformity of trans-
actional support poses the two problems of TP sup-
port mismatch and incompatibility of TP protocols.
The first problem arises when a distributed applica-
tion requiring a particular kind of transactional sup-
port is not able to run because the underlying com-
munication protocol /platform does not provide that
support. This makes the coexistence of applications
requiring both kinds of transactional support over a
network problematic. The second problem can arise
when a distributed application is not able to perform
protected work because the participating nodes are in
different networks, each of which supports different
communication protocols/platforms that possibly
provide no common TP support. This reduces the
interoperability of transactional support across proto-
cols /platforms.

Enhancing the communication protocols/plat-
forms to support both chained and unchained trans-
actional paradigms is not a practical solution because
of its high cost and migration problems. The goal of

achieving the coexistence of the two transactional
paradigms within a network, and the interoperability
of networks for transactional support should be at-
tained by minimal changes to the communication
protocols /platforms. This paper presents a solution
to this problem by showing how the chained transac-
tional model can emulate the unchained transactional
model and vice versa.

This paper shows that the emulation of the chained
paradigm by an unchained transaction can be per-
formed without any changes to the line flows of the
communication protocols. The emulation of the un-
chained paradigm by a chained transaction can be
performed by using four features. To demonstrate the
viability of this approach and explain the features of
the solution, a realistic example is very useful.

A most appropriate example is SNA's LU6.2
which is the dominant protocol used for distributed
transaction processing in the industry. Therefore, the
solution is explained with reference to SNA’s LU6.2.
SNA’s LU6.2 traditionally supports only chained
transactions using the presumed-nothing (PN) feature
[9] but has been enhanced with these four features to
support unchained transactions.

+ The first feature involves the notion of context
and context management [2], which is a way of
locally managing various activities within appli-
cation programs, and resources with low over-
head.

+ The second feature provides for a nonblocking
commit (sync point) call or a threading facility.
The third feature enhances the transactional sup-
port of a communication protocol/platform to
permit a participating application program to
specify that it does not wish to participate in a
transaction if it does not perform any work. This
feature requires a 1-bit indicator on a communica-
tion protocol line flow and is provided by LU6.2’s
presumed abort design [11,15,9.8].

The fourth feature provides a means of sending

**out-of-band’” or ‘‘expedited data’ [7].

Two solutions that use the first two features are

G. Samarus et al. / Journal of Systems Architecture 43 (1997) 229-243 231

presented to let an application perform some work at
a ‘‘chained”” remote site in between two global
transactions, and have that work excluded from those
transactions. However, these solutions require more
flows than does the OSI TP solution. Another solu-
tion that uses all four existing features is as efficient
as the OSI TP solution and it uses SNA’s API, not
X/Open’s TX. If emulating the unchained paradigm
requires using the X /Open API, the first three of the
above existing features are used in addition to a
small change to the local processing and a 1-bit
change to a commit line flow.

Section 2 presents a model of the system and of
distributed transactions. Section 3 describes context
management by the application. Section 4 defines the
chained and unchained transactional paradigms, dis-
cuss their functional difference, and illustrates how
LU6.2 can provide the functionality of unchained
transactions by giving three solutions. Section 5
describes how chained and unchained transactions
can coexist even if the underlying transactional sup-
port is of one type only. In particular, it shows how
SNA’s LU6.2 can support the functionality of un-
chained transactions using the chained/unchained
interface of X/Open even though SNA LU6.2 is
traditionally viewed as providing only chained trans-
action support. Section 6 gives concluding remarks.

2. Distributed transaction execution

A distributed system consists of a set of comput-
ing nodes linked by a communications network, The
nodes of the system cooperate with each other in
order to process distributed computations. For the
purpose of cooperation, the nodes communicate by
exchanging messages via the communications net-
work.

A user’s application program initiates or partici-
pates in a distributed computation, which consists of
a set of transactions executed serially. A transaction
consists of a set of operations that are executed to

perform a particular logical task, generally making
changes to data resources such as databases or files
(the work performed on behalf of a transaction is
also known as protected work). The changes to
these resources must be committed or aborted atomi-
cally before the next transaction in the series can be
initiated. This is achieved by a commit protocol.

A distributed computation is associated with a
tree of processes ' that is created as the application
executes. The process tree links the processes that
perform the transactions of the distributed computa-
tion. Processes may be created at remote nodes (and
even locally) in response to the data access require-
ments imposed by the application. Consequently, a
creator-createe relationship exists between the pro-
cesses. The tree may grow as new sites are accessed
by the transactions. Subtrees may disappear either in
response to application logic or because of site and
communication link failures.

The dominant models supporting distributed
transactions are the hierarchical model, such as that
usually associated with client/server computing and
the peer-to-peer model that supports a more general
model of computation [6]. In the client/server model,
all the transactions (i.e., f,,...,%.t,) constituting the
distributed computation ¢ are initiated and commit-
ted by the root process. The server processes partici-
pate in the computation by executing requests from
their client. In the peer environment, however, each
process has the same privileges and rights as any
other process in the process tree. Any program can
initiate or commit a transaction. Two programs can
initiate work independently with or without any
communication between them. This is in contrast to
the hierarchical model, where the client starts the
transaction and the servers wait until they get re-

"In the rest of the paper, whenever we refer to a process, we
are not necessarily referring to a process as defined by the
operating system. A process may in fact be a lightweight thread, a
context, or a thread of control (XOPEN model).

232 G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243

I Application —l
COMMIT,
Resourc ABORT o
Verbs Comrhunication
Verbs
TMJLRM TM|CR
LRM -- CRM --
Local Communi] =
Resources cations

[Application
COMMIT,
Communfcation ABORT Resaource
Verbs erbs
T™_ICRM T™|LRM
CRM -- LRM --
- | Communi- Local
cations Resources

Fig. 1. Components involved in a transaction and a transaction commit tree.

quests from clients or other servers. The
coordinator-subordinate relationship is established at
the beginning of commit processing and endures
only for the current transaction.

As shown in Fig. 1(a) process participating in a
transaction accesses local resources such as data
bases and files. A remote request is sent via the
communication network to a remote process, which
can access either local resources or additional remote
resources.

Once the computations of a transaction are com-
pleted, the application instructs the transaction man-
ager (TM) of its site to initiate and coordinate the
commit protocol. Two types of components partici-
pate in the commit protocol under the coordination
of the TM at each site: Local Resource Managers
(LRMs) such as database and file managers, which
have responsibility for the state of their resources
only, and Communication Resource Managers
(CRMs), which manage communication resources
such as conversations that enable a TM and local
processes to communicate with remote TMs and
remote processes. The CRM embodies the communi-
cation protocol and provides a local view of the
remote processes and remote TMs.

The TMs that participate in the commit process-

ing include one coordinator and one or more subor-
dinates. The coordinator is the TM acting on behalf
of the process that initiates a commit operation; a
subordinate is either an LRM or a remote TM that is
represented at the site of the coordinator through a
CRM. Remote TMs may also have subordinate LRMs
and TMs. The coordinator coordinates the final out-
come of the commit processing by arriving at a
COMMIT or ABORT decision and propagating that
decision to all subordinates. Subordinate TMs propa-
gate the decision to their subordinate TMs or LRMs.
The commit operation employs the well-known
two-phase commit (2PC) protocol [4,12].

3. Context management

Context management is a local application-sup-
port mechanism that permits applications to manage
logically separate pieces of work within a single
locus of execution (e.g., a thread or a process) [2,17].
Context management can be used for a wide range of
functions such as addressing ‘‘loopback’ in dis-
tributed database operations, and enabling a server to
serve a large number of clients. Multiple contexts of
an application can exist within a single locus of

G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243 233

execution (process or thread) without involving most
of the operating-system process/thread overhead,
such as delays in process start-up, forking and dis-
patching multiple processes, locking mechanisms for
accessing shared tables, and extra storage. Two needs
for context management as defined above are de-
scribed next.

+ Pre-started application programs can accept more
than one incoming conversation. Each incoming
conversation is independent of the other incoming
conversations accepted by the application pro-
gram. Server application programs need the abil-
ity, and an API, to switch between the contexts
represented by the incoming conversations.

+ A distributed transaction can loop back to a site
that already has been *‘infected’’with that transac-
tion. In this situation, the TRANID does not
uniquely identify the unit-of-work instance at the
site. Further, if the application program has a
conversation with another application program on
its own node, the combination of TRANID and
conversation correlator (an identifier for the con-
versation — the same concept as branch ID in
OSI/TP) is also not unique. So a third identifier
is needed. The process_ID does not suffice be-
cause a process can accept multiple incoming
conversations and have multiple logical threads of
control. The context ID identifies the logical
thread of control. Context ID, TRANID, and con-
versation correlator uniquely identify a unit-of-
work instance at a node °
Context ID is similar to process ID except that

when one operating system process acts on behalf of

many different incoming conversations, the operat-

ing-system process ID is not a unique identifier.
When an application program uses context man-

agement, the context manager keeps track of the

2 The RPC model does not use the notion of context, because it
offers less parallelism in processing; i.e.. one of the two communi-
cating partners is suspended at any time.

various contexts, allows the application program to
create and set a context for work, and allows an
application program to switch contexts when appro-
priate. The context manager shares the notion of
contexts with the RMs and the application program.
This is similar to X/Open where all the RMs and
TMs have to share the notion of ‘*thread-of-control”’.

While context management provides additional
functions, such as flexibility and avoidance of pro-
cess switching to the application program, it also
imposes extra burden on the application program.
The application program has to keep track of the
progress done in each context, and switch contexts to
meaningfully exploit the features of context manage-
ment. An application program can perform context
management by exploiting the functions provided by
the context manager using a suite of calls, described
subsequently.

When a thread (more generally, a locus of execu-
tion) is created, it is assigned a context. The context
can be a new one or an inherited one. A locus of
execution can create a new context using
Create_Context. The active context can be changed
to another context using Ser_Context. This results in
the locus of execution changing to the set context.

The notion of context provides a logical separa-
tion of work done by an application program; each
logically separate piece of work is done in a separate
context. Context is local to a system, and distributed
work done for the same transaction is not part of the
same context. When an application program is in-
volved in multiple transactions at a time, each trans-
action is done in a separate context at the application
program. The same context may be involved in
multiple transactions sequentially. The application
program assumes the responsibility of keeping track
of its various contexts, coordinating the data spaces
of the various contexts, and switching between con-
texts.

Context management enables an application pro-
gram to do work in different contexts, each of which
has a separate identity. Work performed by an appli-

234 G. Sumaras et al. / Journal of Systems Architecture 43 (1997) 229-243

cation program in one context is not considered to be
work performed by any other context of that applica-
tion program.

4. Chained and unchained transactions
4.1. Evolution

The notions of chained and unchained transaction
processing are confusing because they are used as
resource characteristics as well as API choices. This
section clarifies the notions, and furthermore shows
that the distinction between chained and unchained
transaction processing is a somewhat arbitrary and
artificial way of expressing a more elementary prop-
erty of transaction processing.

4.1.1. Chained transactional support

SNA’s LU6.2 transactional processing support was
shipped in 1981. A protected communication re-
source participating in a transaction was placed in
the next transaction as soon as the previous one was
committed. This was an optimization that worked
well because (a) it was essential to avoid sending the
extra data representing the new TRANID and (b) it
allowed different partners to initiate the next transac-
tion. This manner of using the protected conversation
led to the notion of a chained resource. A protected
resource is called chained if and only if the end of
participation in a global transaction implicitly places
the resource in the next global transaction and the
new TRANID is somehow made available to it. Any
work performed by the protected resource is always
part of a global transaction.

4.1.2. Unchained transactional support
In the mid 80s to early 90s, several other transac-
tion processing systems, e.g., TMF, Tuxedo and

> We will use ““application’” henceforth to mean application
program.

DEC’s ACMS, were built, and their implementation
influenced OSI TP’s definitions for transaction pro-
cessing [13]. OSI/TP’s unchained transactions came
about because in many transaction processing sys-
tems, it is necessary for the TM to broadcast the
transaction ID to the various resource managers, sO
the resource managers know to associate the thread
of control with the transaction ID. In these systems,
the TM waits for the application to instruct the TM
to broadcast a begin-transaction message. It is there-
fore possible for a thread of control to be outside a
global transaction. From this idea, OSI/TP transac-
tion-capable dialogs were given the ability to be used
inside or outside a global transaction, and the notion
of unchained resources formed. A protected resource
is called unchained if it fulfils the following two
requirements:

(1) The resource does protected work on behalf of
a global transaction only when it explicitly receives
notification of the beginning of the transaction and
the new TRANID.

(2) The resource does only unprotected work or
work that is not part of a global transaction outside
the boundaries of a global transaction, i.e.,
Begin_Transaction, End_Transaction (or commit).

Building on the idea that it was possible for a
thread of control doing protected work to be outside
a global transaction for a while, the X/Open API
designers designed the TX interface (an API) that
surfaced the chained /unchained paradigm to the ap-
plication program [19]. OSI TP provided both chained
and unchained resources (dialogues) in its specifica-
tions definition.

4.2. Unchained transactions: A functional require-
ment, or a proposed solution?

4.2.1. Unchained transactions

The difference between chained and unchained
transactions is the manner of demarcating the bound-
aries of a transaction by the application. An applica-

G. Samaras et al. / Journal of Systems Architecture 43 (1997} 229-243 235

tion is said to follow the unchained paradigm if it
fulfils the following two requirements:

(1) The application does protected work on behalf
of a global transaction only when it explicitly speci-
fies the beginning (and end) of the transaction.

(2) The application can do only unprotected work,
or work that is not part of the global transaction,
outside the boundaries of a global transaction, i.e.,
Begin_Transaction, End_Transaction (or commit).

4.2.2. Chained transactions

An application is said to follow the chained
paradigm if and only if the application enters a
global transaction implicitly when it indicates the
end of the previous global transaction. Any protected
work done by the application is always part of a
global transaction.

Unchained transactions offer more flexibility to
the application in coordinating activities with the
partner program but they permit chance of error
causing violation of A.C.LD. properties. (Clearly,
the notion of chained and unchained resources is an
artifact from implementations of chained and un-
chained resources because it deals with how and
when RMs are notified of TRANIDs. It does not
affect the functionality or requirements of applica-
tions. More discussion on chained and unchained
resources follows in the next section.)

4.2.3. Unchained transactions: A proposed solution
for a functional requirement

There have been recent requirements that SNA’s
LU6.2, which traditionally provides ‘‘chained’’
transactional support, should provide unchained
transactional support similar to OSI TP’s unchained
dialogs. However, this is a loosely stated require-
ment because the essential functionality difference
between unchained and chained transactions is not
whether or not the application needs to specify the
beginning and end of each transaction. The essential
Sfuncrionality difference is whether or not the applica-
tion can use the same protected dialog to do pro-

tected work and other work (unprotected work or
protected work outside the global transaction of the
application). The precise requirement on SNA’s
LU6.2 is that it should be possible for an application
to have a protected conversation, in which the part-
ner did protected work, or unprotected work that was
outside the global transaction that local application
was in. Without the notion of context management
LU6.2’s protected conversation could not be used by
the application to do any protected work outside the
global transaction associated with that conversation.

4.3. SNA LU6.2’s counter-solutions to unchained
transactions

Fortunately, recent enhancements to LLU6.2 have
equipped it to meet the function offered by OSI TP’s
unchained transactions. Understanding the require-
ment was particularly important because in a truly
peer-to-peer environment such as LU6.2, where any
peer can initiate or terminate a transaction, and
where some resource managers can or cannot be
used outside a global transaction, adding the un-
chained support is not particularly pretty, simple, or
easy to use.

LU6.2 can provide the user the function implied
by unchained transactions by building on the func-
tions already added to LU6.2. LU6.2’s solution does
not use the notion of chained and unchained transac-
tions nor the chained/unchained API required by
OSI TP and X/Open. The solution uses context
management [2,17], and LU6.2’s presumed-abort op-
timization [15,9,8] and expedited data [7] In fact,
LU6.2’s solution goes beyond the requirement and
provides more than does the chained/unchained
paradigm. LU6.2 can allow unprotected work and
protected work outside the global transaction to oc-
cur concurrently with protected work in a global
transaction, using the same protected conversation.
We present the more flexible solution, and present
two more solutions that refine it to progressively
give the exact semantics of unchained transactions.

236 G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243

Application 1

Application 2

I c22

Context
C11

Context
C21

Fig. 2. Functionality of unchained transactions using *"chained’" resources. (This can be achieved using multiple contexts within Application

2)

The following notation will be used for identify-
ing contexts: Cij is the jth context of application i.
We will consider applications 1 and 2, which are at
sites 1 and 2, respectively, as shown in Fig. 2.
Applications 1 and 2 communicate through CRMs
(not shown in Fig. 2). Application 1 can do protected
work in context C11 with context C21 of Applica-
tion 2. Application 1 can also do unprotected work in
the same context with a context other than C21 of
Application 2.

4.3.1. Solution 1

This solution uses local context management, and
multithreading or nonblocking support. Consider the
following scenario: Application 1 executing in Con-
text C11 has a protected conversation with Applica-
tion 2 in Context C21. Application 1 sends a mes-
sage to Application 2 indicating ‘‘change context
and do work X outside of the global transaction’’.
Application 2 then begins a new context C22, does
the work, (commits it if the work is part of some
transaction), and replies to Application 1 ‘‘the work
is done’’. Application 2 switches context to C21 and
resumes work in the global transaction. When Appli-
cation 1 issues the commit, the protected work that
was done in the original context C21 at Application
2 gets committed, but the work done in the other
context C22 is not affected by these 2PC flows.

4n flows, where n is the number of server pro-
cesses participating in the global transaction, are
required for committing the protected work. The
work done concurrently by Application 2 outside this

global transaction using the same conversation did
not contribute to any message overhead. The solution
permits work that is part of a global transaction, as
well as work (protected or unprotected) outside that
global transaction simultaneously to use the same
conversation; hence it is more general than the
chained /unchained paradigm. Note that Application
2 may of its own accord switch context and initiate
protected work (with a different partner) or unpro-
tected work.

4.3.2. Solution 2

This solution uses local context management, and
multithreading or nonblocking support to achieve the
semantics of unchained transactions. Unprotected
work or work outside a global transaction is serially
performed after protected work, on the same conver-
sation.

Consider the following modification of the previ-
ous scenario: Application | executing in context C11
has a protected conversation with Application 2,
context C21, and commits a transaction. Application
1 sends a message to Application 2 indicating
““Change context and do work X outside of the
global transaction’’. Application 2 then begins a new
context C22, does the work (commits it if the work
is part of a transaction), and replies to Application I:
‘‘the work is done’’. Application 2 switches context
to C21. Application 1 meanwhile does protected
work on another branch of the transaction tree. Then
Application 1 issues the commit. Application 2, con-
text C21, can vote read-only in the voting phase if

G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243 237

all applications in its subtree also vote read-only It
can vote read-only even if protected work was done,
because it was not done in the context of the global
transaction. This commit uses only 2n flows for
Application 2’s subtree. However, with OSI TP’s
unchained transactional paradigm no flows are in-
volved to Application 2 or its subtree. These flows
can be eliminated in SNA’s LU6.2 by using the
recently added ‘‘expedited data” and L.U6.2 pre-
sumed-abort enhancements, described below.

4.3.3. LU6.2’s presumed abort

With LU6.2’s presumed abort, it is possible to
leave a partner out of a commit or backout operation
if it does not participate during a transaction
[7,8,14,15]. An application context is characterized
by its potential to participate in the next transaction
as OK to leave out or not ok to leave out. Specifi-
cally:
- An application context is OK-to-leave-out if it
can be suspended until needed. It will be sus-
pended indefinitely until the transaction associ-
ated with it receives the new TRANID for further
transaction processing. Hence, this application
context can participate in applications running in
unchained mode without having the associated
LU6.2 conversation terminated at the end of each
global transaction.
If an application context is not OK-to-leave-out
from the next transaction, then the local transac-
tion manager has already received the new
TRANID and the application context can start
processing independent of its initiator (in a

4Read~only is a two-phase commit optimization, where an
agent votes read-only during the first phase of the synchronization
operation, indicating that it had not performed any work during
the global transaction and therefore does not care whether the
transaction commits or backs out.

chained mode). This application context is not

suspended and is essentially chained.

An application context can specify itself as OK-
ro-leave-out using the Set_Syncpt_Options call. The
TM at the partner is informed of this setting on the
YES vote in the voting phase of the commit flow
and the setting goes into effect from the next transac-
tion. LU6.2 with the presumed abort enhancement
implies that the partner that has declared itself OK-
to-leave-out can be left out of subsequent transac-
tions with this program until it is asked to participate
in a transaction with this program. Even in the
peer-to-peer structure, the partner application context
is prohibited from independently initiating work for
the next transaction within this context.

4.3.3.1. Expedited dara. Expedited data, also known
as out-of-band data, support in LU6.2 [7]: Expedited
data is defined as being outside of transactional
control. An application can use expedited data to do
unprotected work with the partner in a context other
than the suspended context at the OK-to-leave-out
partner. LU6.2’s API permits the application to send
and receive expedited data by using SEND_EX-
PEDITED_DATA and RECEIVE_EXPEDITED_
DATA verbs, respectively.

Using expedited data, 86 bytes can be sent or
received with an API call °. For transmitting larger
volumes of data, the application has to perform its
own segmenting.

4.3.3.2. Solution 3. This solution uses local context
management, multithreading or nonblocking support
for commit calls, LU6.2’s presumed abort, and expe-
dited data.

Consider this scenario, which is a modification of
the previous one: Application 1 executing in context

* This restriction has been placed due to APPN segmentation.

238 G. Sumaras et al. / Journal of Systems Architecture 43 (19971229-243

C11 has a protected conversation with Application
2’s context C21 and commits a transaction. During
the commit, Application 2’s context C21 declares
itself ‘*OK-to-leave-out’’. Application 1 sends an
expedited data message to Application 2 indicating
“Change context and do work X outside of the
global transaction’’. Application 2 then begins a new
context C22, does the work, (commits it if the work
is part of a transaction), and replies to Application I:
““The work is done’” using expedited data. Applica-
tion 2 switches context to C21. When context C11
of Application 1 issues a commit, the LU6.2 CRM at
Application 1 deduces that the conversation was not
used for (transactional) work outside the global
transaction of context C11 because only the expe-
dited send and receive verbs were used, and this
particular conversation would not be sent any 2PC
flows. Later, if Application 1 does any subsequent
protected work on this conversation and then com-
mits it, the work that was done using the expedited
flows is not included because it was done in a
different context, C22, at Application 2. The work
done in context C22 may persist even if the global
transaction involving Application 1 and Application
2’s context C21 is backed out. This approach pro-
vides the unchained functionality without additional
protocol changes and migration problems and it
avoids the read-only flows.

As in the previous solutions, Application 2 may
of its own accord switch context and initiate pro-
tected work (with a different partner) or unprotected
work, because only the context that was declared
**OK-to-leave-out’ is suspended.

This solution is as efficient as OSI TP’s solution
but it does not use the TX API of X /Open; rather, it
uses the already defined LU6.2 API. A drawback of
this solution is that the application has to do its own
segmenting. If LU6.2 were required to provide the
functionality of OSI TP’s unchained transactions us-
ing X/Open’s TX APIL it could do so by using
nonblocking support, context management, LU6.2’s
Presumed Abort feature, some changes to the local

TM-CRM interface, and a 1-bit change to the Pre-
pare flow. The next section describes this solution.

5. Enhancing chained / unchained CRMs to sup-
port X /Open’s unchained /chained API

The application specifies the boundaries of a
transaction in a manner compatible with the chosen
transactional support — chained or unchained, using
Set_Transaction_Control of the TX interface or CPIC
{19,3], or an enhanced SET_SYNCPOINT_OP-
TIONSQ of LUS6.2 [7].

A chained (unchained) application running over
OSI TP accesses the Chained (Unchained) Func-
tional Unit [13]. This choice is a one-time decision
for a dialog. Hence, it follows that OSI TP classifies
its dialog services as chained /unchained resources; a
resource is chained or unchained for its lifetime. A
chained resource supports chained applications; an
unchained resource supports unchained applications.

Although chained /unchained is an application
characteristic, it may also be viewed as a resource
characteristic; however, the two are independent. A
resource should be capable of either chained or
unchained support or both (e.g., LU6.2 resources
with the OK-to-leave-out enhancement). The
chained /unchained classification of resources is
somewhat simplistic because it is really the combina-
tion of the TM and RM that together supports the
application’s choice of chained/unchained opera-
tion. The application preference and resource man-
ager characteristic interact. Chained versus un-
chained should be defined based on the application
preference, and the resource manager and transaction
manager can adapt in such a way that the resource
manager’s characteristic is largely hidden from the
application.

If an application in unchained mode were to
access chained resources (e.g., LU6.2 presumed-
nothing conversations), the conversation resources
would have to be terminated at the end of the

G. Sumaras et al. / Journal of Systems Architecture 43 (1997} 229-243 239

transaction (i.e., after commit time) to preserve the
application’s unchained mode. If this happens, how-
ever, the portion of the transaction tree that is subor-
dinate to those chained resources will also be dis-
mantled, which is not desirable. In this section, we
show how an LU6.2 conversation (which is thought
of as being chained) is capable of unchained support
that is specified through X/Open’s TX chained /un-
chained API. Thus, an unchained application can run
on LU6.2 without having to dismantle the subtree
after each commit.

The solution presented next is a generalized solu-
tion in that it details how any TM and CRM that are
traditionally thought of as offering only one type of
TP support can be enhanced to support both chained
and unchained transactions. Using the presented so-
lution, an application that is written assuming chained
(unchained) TP support and using X/Open’s API
can run over a network that has been enhanced to
support both unchained and chained transaction pro-
cessing. The discussion is directly applicable to
LU6.2 with some architecture change.

5.1. Enhancing unchained transactional support for
chained applications

Consider an application written in a chained man-
ner executing in a transaction denoted by TRANID,
using unchained resources. When the application
issues a Commit, the TM processes the 2PC proto-
col. After the 2PC, the application is implicitly in the
next protected unit of work. However, the underlying
protocol (CRM) is unchained and assumes that sub-
sequent work is unprotected unless it is told other-
wise. The TM that knows that the application run-
ning in chained mode will not issue the
Begin_Transaction call, it has to explicitly send a
Begin_Transaction(lnew TRANID) to the unchained
partner through the CRM. This action explicitly
places the partner in the next unit of protected work.
Thus, the application running in a chained manner

can run over an underlying protocol that offers only
unchained support.

5.2. Enhancing chained transactional support (LU6.2
resources) for unchained applications

It needs to be shown that an application can
perform unprotected or out-of-a-global-transaction
work with its partner in between protected work on
the same conversation, when the TP support offered
by the underlying protocol (CRM) is for chained
transactions only. The CRM that follows the chain-
ing mode should behave as shown in Fig. 3, based
on the information provided by the TM, to support
both chained and unchained applications.

An application running in unchained mode can
exclude its partner that has specified itself OK-to-
leave-out from further (protected) work by not issu-
ing Begin_Transaction, and hence not causing the
TM to generate, and the CRM to send, a TRANID to
the partner. Although this prevents the partner from
doing work on behalf of a global transaction, we
would like the partner whose context is suspended,
to do work outside a global transaction (i.e., unpro-
tected work, or protected work outside the global
transaction). This can be achieved by having the
partner do work in a different context. Consider the
sequence of actions in the following specific exam-
ple:

1 Applications 1 and 2 do protected work using
contexts C11 and C2I, respectively. Application 1
issues an End_Transaction (or commit) for context
C11 to its TM. This initiates the 2PC flows for
context C11. On the YES vote in the voting phase of
the commit flow, Application 2, context C21 indi-
cates using the 1-bit modifier in the YES vote mes-
sage that it is OK-to-leave-out from the next transac-
tion. Thus, after commitment, Application 2’s con-
text C21 is suspended until it gets involved in the
next transaction by the arrival of a new TRANID
from the partner CRM.

2 Then context C11 of Application 1 requests

240

G. Sumaras et al. / Journal of Systems Architecture 43 (1997) 229-243

Receive data from application:

If (this is the first data is to be sent after a Commit to a partner CRM that has specified its
current context OK-to-leave-out) or (this is the first data is to be sent to a partner CRM):
then query TM for chaining mode of application

If application is in unchained mode
then tforward dala to partner CRM

else get TRANID from TM and forward to partner CRM before forwarding data

else forward data to partner CRM

Receive data from partner CRM:

If (no TRANID precedes data received from partner):

then forward data to local application

else begin new transaction using received TRANID /* process as usual */

Receive Begin_Transaction(TRANID) from TM:

CRM forwards TRANID (o the partner CRM

Fig. 3. Local modifications to a chained CRM to behave as an unchained CRM.

Application 2 to perform work outside the global
transaction, as follows.

Context C11 at Application 1 sends data to its
partner, Application 2. The first part of the data
contains application data that tells the partner to
issue ‘‘Create_Context{(C2#*)"" and ‘‘Set_Con-
text(C2+)’". This application data tells the part-
ner to create and make active a new context (e.g.,
C22).

When site 1’s CRM processes the ‘‘send’” com-
mand, it checks with the local TM whether the
application is running in chained mode.

TM at site 1 informs the local CRM that the
application is running in unchained mode.

The CRM at site 1 forwards the data to the
partner CRM at site 2 without supplying any
TRANID.

CRM at site 2 receives the data from the partner
CRM without any TRANID. The current context
C21 at the CRM is OK-to-leave-out (therefore
suspended) and will not be involved in any global
transaction until it is assigned a new TRANID by

its parent in the transaction tree. Therefore, the
CRM forwards the data received to the local
application. Even though context C21 is sus-
pended, the nonblocking support permits another
application context to receive the data from the
local CRM. The application at site 2 issues Cre-
ate_Context(C2 *) and Set_Context{C2 *), which
are the first instructions in the data received from
the CRM of Application 1. Create_Context(C2)
causes context C22 to be generated by the con-
text manager. Set_Context(C2) causes Applica-
tion 2 to change its context from C21 to C22,
and perform work for the partner application that
1s running in context C11.

Observe that no TRANID has been assigned to
this work, hence this work is outside the global
transaction and it can be unprotected. It can also be
protected, but outside the global transaction and
unrelated to the original distributed computation.
Context C21 of Application 2 remains suspended
and cannot participate in this work or any other
work. Furthermore, note that the applications are

G. Sumaras et al. / Journal of Systems Architecture 43 (1997) 229-243 241

designed to cooperate and understand the context
management AP

3 To get Application 2 back to the global transac-
tion, Application 1, which is executing in context
Cl11, causes Application 2 to execute
Set_Context(C21). Receiving this command can also
serve as an indication that no more work is to arrive
for context C22. Application 2 can then take any
appropriate steps to terminate the work performed in
context C22 (i.e., commit that work if protected),
and changes context to C21. Application 1 issues a
Begin_Transaction in context C11. When it sends
data to Application 2, the CRM for Application 1
forwards the data to Application 2’s CRM along
with the TRANID supplied by the local TM for
Application 1. The TM at site 2 starts a transaction
with the newly arrived TRANID in the current con-
text, viz., context C21 of Application 2.

The work performed in step 2 (by Application 2
in context C22 with context C11 of Application 1)
was not included in the commit operation in step 3.
because it was not part of the distributed computa-
tion associated with contexts C11 and C21. This
was possible because:

- Using the OK-to-leave-out bit in the YES/NO
vote of the 2PC protocol, the CRM for Applica-
tion 2 could specify that the current context was
OK-to-leave-out of the next transaction(s); i.e., it
would be suspended, until it was told to do some
protected work by the partner application.

- The protected work in the global transaction would
be identified by the partner sending a new
TRANID; hence, until the new TRANID was
sent, all work done would be considered unpro-
tected or outside the global transaction. The
change in the local CRM processing ensured that
any request for work outside the global transac-
tion would not be sent with a new TRANID to
the partner.

- The application could perform work even when
its context was suspended by changing to a differ-

ent context that was not suspended; this was
facilitated using context management calls and
nonblocking support. Thus, suspension of the ap-
plication was restricted to the context in which
the application had declared itself OK-to-leave-out
and the nonblocking support enabled the applica-
tion to regain control in spite of the suspended
context.

Observe that to resume global protected work in
step 3, it was the application’s responsibility to
switch context back to the appropriate value before
commencing work on behalf of a global transaction.

The application running over the TX interface can
change the chaining mode from chained to un-
chained and vice-versa using Ser_Transaction_Con-
trol. This can be supported by the underlying system
supporting only chained transactions and enhanced
as described in Fig. 3 by one of the following two
mechanisms:

An application protocol that uses application data

can be used between the two partner systems to

negotiate the chaining mode. The selected chain-
ing mode goes into effect at the time the next
transaction in that context is begun.

- One bit on the Prepare flow conveys to the
partner TM /CRM whether the system application
wants the chained or unchained mode for the next
transaction. If this bit indicates that the applica-
tion has chosen the chained mode, then the trans-
action proceeds as usual. If this bit indicates that
the application has chosen the unchained mode,
then the partner CRM (and its subtree) must vote
OK-to-leave-out on the YES vote in the voting
phase of the commit protocol in order that the
transaction can progress. However, if the partner
(and its subtree) do not vote OK-to-leave-out,
then the partner and its subtree has to be disman-
tled because they are implicitly choosing the
chained mode despite the request on the Prepare
flow to choose the unchained mode.

Thus, using the existing OK-to-leave-out bit on
the 2PC flows to specify that the application repre-

242 G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243

sented by the CRM was OK-to-leave-out, context
management and nonblocking support, applications
running in chained and unchained modes can run
over protocols that have support for only chained
transactions if the following changes are made.
SNA’s LU6.2 needs to modify some local interaction
between the TM and the CRM, and have a new bit
on the Prepare flow to support X/Open’'s TX APIL
An unchained application written for OSI TP using
X/Open’s API could then run over LU6.2 and SNA
without dismantling the LU6.2 subtree at each com-
mit/abort time.

6. Conclusions

The classification of transaction processing modes
into chained and unchained is shown to be one way
of expressing the hitherto poorly-understood require-
ment that protected conversations also allow work
outside the global transaction with no additional
overhead. LU6.2 protected conversations, which were
believed not to allow work outside the global trans-
action, were demonstrated as being capable of allow-
ing such work. It was shown that simply by using
context management and nonblocking support, local
platform-specific features, LU6.2 satisfies this re-
quirement (see solution 1 and solution 2). However,
these solutions require some flows that are avoided
in OSI TP. Therefore, another solution that addition-
ally uses the presumed-abort and expedited-data fea-
tures of the LU6.2 architecture was presented and
shown to be as efficient as the OSI TP solution (see
solution 3). Thus, LU6.2 already satisfies the re-
quirement using its own API of expedited data, not
the X/Open chained /unchained AP].

However, if the somewhat artificial manner of
expressing this requirement in the form of chained
and unchained transactions were imposed on LU6.2
through X/Open’s API, some changes to the TM
and XA + interface would be needed along with a
new bit on the Prepare flow. In demonstrating the

viability of supporting the chained/unchained API
over LU6.2, it was shown more generally that an
application running in unchained mode can run over
any protocol /platform offering only chained transac-
tional support by supporting four features — the
OK-to-leave-out bit in the YES /NO vote flow of the
2PC protocol, the transaction_control bit on the Pre-
pare flow, context management support, and non-
blocking support — and small changes to the local
CRM processing. It was also shown that an applica-
tion running in a chained mode can run over any
protocol /platform offering only unchained transac-
tional support with no changes to the protocol.

Thus, the problems caused by communication
protocols / platforms offering different kinds of trans-
actional support can be resolved efficiently by using
the strategy described in this paper. In particular, for
SNA’s LU6.2 with the presumed-abort enhancement,
no changes to the protocols are required (unless the
chained /unchained API is required) because the
LU6.2 architecture already has the features to sup-
port this strategy. The solution enables the applica-
tions written for unchained transactional support to
execute over the large installed base of LU6.2 and
SNA networks that offer only chained transactional
support.

References

[1] E. Braginsky, The X /Open DTP effort, in: Proc. 4th Inter-
nat. Workshop on High Performance Transaction Systems,
Asilomar, 1991.

[2] A. Ciuon, Context manager, in: Proc. 4th Internat. Work-
shop on High Performance Transaction Systems, Asilomar,
1993.

[3] Common Program Interface Communications Specification,
Working draft of SC31-6180-01, IBM, 1993.

[4] J.N. Gray, Notes on data base operating systems: in: R.
Bayer, R. Graham and G. Seegmuller, eds., Operating Sys-
tems — An Advanced Course, Lecture Notes in Computer
Science, Vol. 60 (Springer, Berlin, 1978).

(5] T. Haerder and A. Reuter, Principles of transaction oriented
database recovery — A taxonomy, Comput. Surveys 15 (4)
(1983).

G. Samaras et al. / Journal of Systems Architecture 43 (1997) 229-243 243

[6] Systems Network Architecture LU6.2 Reference: Peer Proto-
cols, Document Number SC31-6808-1, IBM, 1990.

[7] Systems Network Architecture: Transaction Programmers’
Reference Manual for LU Type 6.2, Document Number
SC30-3084-5, IBM, 1993.

[8] IBM Database System DB2, Version 3, Document Number
GC26-4886, 1BM, 1994.

[9] Systems Network Architecture. SYNC Point Services Archi-
tecture Reference, Document Number SC31-8134, IBM,
September 1994. It presents in detail IBM’s Presumed Noth-
ing commit protocol. Authors: George Samaras, Kathryn
Britton, Andrew Citron.

[10] B.W. Lampson, Atomic transactions, in: B.W. Lampson, ed.,
Distributed Systems: Architecture and Implementation An
Advanced Course, Lecture Notes in Computer Science, Vol.
105 (Springer, Berlin, 1981) 246-265.

[11]) C. Mohan, K. Brriton, A. Citron and G. Samaras, General-
ized presumed abort: Marrying presumed abort and SNA's
LU6.2 commit protocols, in: Proc. 5th Internat. Workshop
on High Performance Transaction Systems (HPTS), Asilo-
mar, 1993; Also available as IBM Research Report, IBM
Almaden Research Center, 1991.

[12] C. Mohan, B. Lindsay and R. Obermarck, Transaction man-
agement in the R* distributed data base management system,
ACM Trans. Database Systems 11 (4) (1986).

[13] Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 1: OSI TP Model,
Part 2: OSI TP Service, ISO/IEC JTC 1 /SC 21 N, 1992.

[14] G. Samaras, K.. Britton, A. Citron and C. Mohan, Two-phase
commit optimizations and tradeoffs in the commercial envi-
ronment, in: Proc. 9th Internat. Conf. on Data Engineering,
Vienna, Austria, 1993.

[15] G. Samaras, K. Britton, A. Citron and C. Mohan, Enhancing
SNA’s LU6.2 Sync Point to include presumed abort protocol,
IBM Tech. Rept. TR29.1751, IBM Research Triangle Park,
1993.

{16] G. Samaras, A.D. Kshemkalyani and A. Citron, Reconciling
communication protocol support for chained and unchained
transactions, in: Proc. 2nd Internat. Conf. on Computer
Applications to Engineering Systems, Cyprus, 1993.

[17] G. Samaras, A. Kshemlakyani and A. Citron, Context man-
agement and its applications to distributed transactions, in:
Proc. 16th IEEE Internat. Conf. on Distributed Computing
Systems, Hong Kong, 1996.

[18] The Tandem Database Group, NonStop SQL: A distributed,
high-performance, high-availability implementation of SQL,
in: Proc. 2nd Internat. Workshop on High Performance
Transaction Systems, Asilomar, 1987.

[19] Distributed TP: (a) The TX Specification P209, (b) The XA
Specification C193 6/91, (c) The XA + Specification $201,
X /Open Consortium, November 1992, February 1992, April
1993.

[20] F. Upton 1V, OSI distributed transaction processing, An
overview, in: Proc. 4th Internat. Workshop on High Perfor-
mance Transaction Systems, Asilomar, 1991.

George Samaras received a Ph.D. in
computer science from Rensselaer Poly-
technic Institute, USA. He is currently
an assistant professor at the university
of Cyprus. He was previously at IBM
Research Triangle Park, USA. He served
as the lead architect of IBM’s dis-
tributed commit architecture (LU6.2
Sync Point). His research interest in-
clude transaction processing, databases,
mobile computing, object-oriented tech-
nology and real-time systems. He also
served on several of IBM’s internal in-
ternational standards committees.

Andy Citron holds six software patents
related to distributed data processing.
He is currently doing multimedia PC
software development for the Mwave
Digital Signal Processor. Prior to tat he
was the lead architect for the IBM’s
APPC SNA Communication protocols.
He works at IBM’s Research Triangle
Park facility in North Carolina. He holds
an MS in Computer systems from SUNY
at Binghamton.

Ajay D. Kshemkalyani received the B.
Tech. degree in computer science and
engineering from the Indian Institute of
Technology, Bombay, India, in 1987,
and the M.S. and Ph.D degrees in com-
puter and information science from the
Ohio State University, USA, in 1988
and 1991, respectively. He is currently
an Advisory Programmer in IBM at Re-
search Triangle Park, North Carolina,
USA. He is also an Adjunct Assistant
Professor in Electrical and Computer
Engineering at North Carolina State
University. His current research interests include distributed com-
puting, operating systems, computer architecture, and networking.
He is a member of the ACM and a Senior Member of the IEEE
Computer Society.

