
A Proactive, Cost-aware, Optimized Data Replication Strategy in
Geo-distributed Cloud Datastores

Ta-Yuan Hsu
University of Illinois at Chicago

Chicago, Illinois
thsu4@uic.edu

Ajay D. Kshemkalyani
University of Illinois at Chicago

Chicago, Illinois
ajay@uic.edu

Abstract
Geo-replicated cloud datastores adopt the replication methodology
by placing multiple data replicas at suitable storage zones. This
can provide reliable services to customers with high availability,
low access latency, low system cost, and decreased bandwidth con-
sumption. However, this has the potential to increase the whole
system overheads of maintaining more resource replicas, and to
also degrade the system utilization due to unnecessary storage
space cost. Thus, it is important to determine the suitable replica-
tion zones on-the-fly to increase the availability of data resources
and maximize the system utilization. Specifically, it is essential to
determine the appropriate number of replicas for different data
resources at each zone in a particular time interval. We propose
Cost Optimization Replica Placement (CORP) algorithms to enable
state-of-art proactive provisioning replication of data resources
based on an one-step look-ahead workload behavior pattern fore-
cast over the distributed data storage infrastructure using statistical
techniques. The experimental results show the cost effectiveness of
the proposed replication strategies.

CCS Concepts
• Networks→ Cloud computing; Network simulations; • Infor-
mation systems→Remote replication; •Computingmethod-
ologies → Distributed algorithms.

Keywords
data replication; workload prediction; cloud storage; social net-
works
ACM Reference Format:
Ta-Yuan Hsu and Ajay D. Kshemkalyani. 2019. A Proactive, Cost-aware,
Optimized Data Replication Strategy in Geo-distributed Cloud Datastores.
In Proceedings of the IEEE/ACM 12th International Conference on Utility and
Cloud Computing (UCC ’19), December 2–5, 2019, Auckland, New Zealand.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3344341.3368799

1 Introduction
The delivery of cloud computing resources as a utility provides
users with flexible services in a transparent manner, with cheap

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368799

costs and more customized operations. One may pay for such de-
mand resources to cloud data providers (CDPs) as per their usage
like a utility. As outsourcing continues to rise in popularity, the
widespread adoption of cloud-based data services in distributed
systems raises the challenges of providing high availability and
efficient access to resources due to the larger scale. Data replica-
tion is commonly used in data intensive applications (e.g., social
networks) to reduce access latency and enhance the data avail-
ability and reliability by provisioning appropriate replicas of data
resources situated at different geographical locations. However,
the overheads of loading and maintaining these replicas become
higher and expensive. Thus, a fine balance of the advantages and
overheads of replication is needed.

Static replication of data resources in dynamic environments
having time-varying workloads is ineffective for optimizing system
utilization. For example, the operating behaviors of social media
applications vary based on different time intervals (e.g., morning
vs. afternoon; Monday vs. Sunday). For example, for a specific time
period, it is not required to create replicas for those data items with
lower requested frequency in that time period. Adaptive data repli-
cation algorithms can address the above issue by enabling dynamic
provisioning of data resources to applications based upon the pat-
terns of workload traces. Practically, there are three fundamental
issues in respect to the dynamic replication process. The first is to
select which data items need to be replicated. The second is to select
howmany replicas should be loaded in the whole cloud system. The
third is to decide the locations where the replicas should be placed.
Two different dynamic provisioning approaches are widely used.
Reactive approaches pre-define thresholds to specify the solutions
to the above issues. Proactive approaches monitor, predict, and
capture changes in workload patterns to manipulate data resource
placement.

Contributions: In this paper, we consider the problem of opti-
mizing the cost on the distributed data storage systems. We propose
Cost Optimization Replica Placement (CORP) algorithm and de-
sign a proactive provisioning replication scheme across multiple
CDPs. According to current data resource allocation and historical
changes in workload patterns, our replication framework, com-
posed of CDPs, is designed to employ the autoregressive integrated
moving average (ARIMA) model to concretely predict how many
data access requests are made in the near future. CDP can dynam-
ically deploy required data replicas in suitable geo-locations for
serving the predicted requests. Since caching has potential for per-
formance benefits, we also extend CORP as CORP (+cache) for
different data-intensive workloads. We further propose the optimal
placement solution to evaluate CORP (+cache) in steady states. We
conduct an evaluation of cost-effectiveness of our CORP algorithms

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

143

https://doi.org/10.1145/3344341.3368799
https://doi.org/10.1145/3344341.3368799

via trace-driven CloudSim simulator toolkit and realistic workload
traces from Twitter. Results show that CORP with cache mecha-
nism can highly reduce the total system cost in comparison to the
stand-alone caching strategy and static partial replication.

The rest of this paper is organized as follows. Section 2 presents
related work. Section 3 gives the application and system mod-
els that support our workload prediction architecture. Section 4
gives our proposed approach along with the details of CORP and
CORP(+cache) algorithms. Section 5 shows the simulation experi-
ments along with the cost effectiveness evaluation of the algorithms
in comparison with other traditional approaches for the same time
slot system. It also evaluates CORP (+cache) with respect to the
optimal placement strategy and illustrates the trade-off between
them. Section 6 gives a discussion and concludes.

2 Related Work
The challenge of dynamic resource management and allocation in
distributed systems and cloud environments has been dealt with
via several reactive approaches. Evaluated from different kinds of
users’ access patterns, six replication strategies are proposed for
hierarchically distributed data grids in an initial work on dynamic
data replication [19]. The users’ dynamic and distributed nature
has been used in [18] to design suitable replica placement strategies
in the grid environment. A dynamic data replication mechanism
called Latest Access Largest Weight (LALW) is proposed in [7]. A
dynamic distributed cloud data replication algorithm CDRM is pro-
posed in [25]. CDRM is a cost-effective framework for replication
designed on the HDFS platform in a cloud storage system. Dynamic
data replication strategy (D2RS) in hierarchical cloud environments
to improve system availability is proposed in [23]. Combined with
a checkpoint strategy, the above algorithm is extended as a new
algorithm called Dynamic Adaptive Fault-tolerance (DAFT) in [22].
It can dynamically provision and deliver computing resources in
a transparent manner to achieve higher availability, performance,
and reliability. Based on D2RS, the concept of knapsack has been
used in [9] to optimize the cost of data replication between data
centers without impacting the data availability. Because of pricing
differences among different resources across cloud data stores, a
lightweight heuristic solution to minimize monetary cost of the ap-
plication in hot-spot or cold-spot objects is proposed in [15]. Based
on the above system framework, an optimal offline algorithm and
two online algorithms are further proposed in [16]. The offline algo-
rithm is provided to minimize the cost of different access operations
and potential migration, while satisfying eventual consistency and
latency. The two online algorithms (deterministic and randomized)
are designed to make a trade-off between residential and migra-
tion costs and dynamically select storage classes with provable
performance guarantees. Based on the scale of applications, and
dynamic workloads, the models proposed in [20] optimize request
response time during normal operations to meet SLA (scalability, la-
tency, and availability) requirements. A hierarchical data replication
strategy (HDRS) proposed in [14] can dynamically store replicas,
based on the access load and labeling technique, to offer high data
availability and low bandwidth consumption, while satisfying QoS
requirements and storage capacity constraints.

The weakness of reactive replication approaches is their inabil-
ity to anticipate the unexpected changes in workload. Since the
workload changes in cloud environments follow patterns that may
vary from time to time, proactive methods can overcome the above
deficiency by pre-deciding the correct amount of resources before
the expected increase or decrease of demand. An approach to the
problem of workload prediction based on identifying similar past
occurrences of the current short-term workload history in public
clouds is proposed in [6]. An event-aware strategy to more ef-
fectively predict workload bursts by exploiting prior knowledge
associated with scheduled events is proposed in [21]. Artificial neu-
ral networks (ANN) and linear regression were used to develop
prediction-based resource measurement and provisioning strategies
in [11]. A cloud workload prediction module for SaaS providers
based on the ARIMA model is proposed in [3]. This model can meet
the QoS with a cost-effective amount of resources by estimating
the future requirements.

3 System Cost Model
3.1 Adaptive Cloud Data Provider Architecture
Our intention is to design a system architecture that can support
modern social web storage services. The whole framework is a
hierarchical geo-distributed cloud data store system composed of
multiple geographically distributed store servers (see Figure 1).
They are deployed in different zones dispersed across the world.
(e.g., TX state is one zone). For simplicity, each zone employs only
one store server (ZS). Multiple ZSs, which are connected with lower
network access cost, constitute a Geo-Data Cluster (GDC). Multiple
GDCs are fully connected by WANs with higher network access
cost. Each cloud data object is replicated in a subset of these ZSs.
Since we focus on geo-replication, each zone hosts at most one
replica (this may be straightforwardly extended asmultiple replicas).
Each ZS hosts one Cloud Data Provider (CDP) to manage cloud
data replication for end-user access services. The top layer of CDP
receives access requests, which are processed by the middleware
layer. The system architecture model of CDP is schematized in
Figure 2, where it presents the key components of our approach.
This is patterned along [3, 5].

CDP

CDP CDP

CDP

GDC

GDC

GDC

GDC

GDC

GDC

Figure 1: System Architecture.

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

144

The target applications are social media applications, such as
Instagram or Twitter. When a user creates a data object (e.g., a post,
a tweet, or a photo) on his connecting ZS, this ZS and its binding
GDC are referred to as the master ZS (MZS) and the master GDC
(MGDC) of that data object, respectively. The MZS in the MGDC
always stores this object until it is deleted by its creating user. A data
object may be replicated across different zones in the same GDC
or different GDCs . If a zone replicates an object to store it locally,
this zone is called a replica zone of this object (the corresponding
ZS is a replica ZS). Otherwise, it is a nonreplica zone. We denote a
replica ZS h by δ [h] = 1. Thus, if ZS h is a nonreplica ZS, δ [h] = 0.
When there exists at least one replica zone for an object in a GDC ,
this GDC is called a replica GDC of this object. For an object, the
master zone and themaster GDC are always a replica zone and a
replica GDC , respectively. We also denote a replica GDC d by α[d]
= 1; for a nonreplica GDC d , α[d] = 0.

User access requests are passed to the local ZS. If that ZS does
not store a replica, it invokes a remote access request to retrieve
the data object from other ZSs with replicas in the same GDC or
different GDCs . Apparently, as the number of replicas of a data
object increases, the data availability and utilization become higher;
but the operational cost of maintaining and creating more repli-
cas also increases. Furthermore, if the number and placement of
replicas are inappropriate, the problem of poor QoS arises. Our ap-
proach is based on access request workload prediction. The major
components of CDP, shown in Figure 2, are explained:

• Workload−based Predictor (WP) : Performs an estimation
of future access demand to the local ZS for the target data
object. The prediction approach utilizes the auto-regressive
integrated moving average model (ARIMA). For the MZS,
the future demand estimate is directly passed to the local
CORP, specified in the next step. For other ZSs, the demand
estimate information will be transferred to the CORP of the
MZS.
• CORP Alдorithm (CORP) :We propose theCORP algorithm
that performs cost optimization to determine the replica
placement locations of the target data object based on the
predicted future access demand fromWP. CORP returns an
optimal replica allocation pattern for the next time interval
to minimize the total system cost (details in Section 4.1). For
a target data object, CORP runs only in the corresponding
MZS.
• Cloud Data Provisioner : 1) It receives access requests from
Access Control and forwards them to the local ZS. 2) For the
MZS of a target data object, it accepts an updated replica
allocation pattern from CORP to figure out the migration
process and to deploy suitable replicas on a periodic basis.

The function of WP designed in this paper realizes access work-
load prediction using the universal ARIMA time series forecasting
approach [8] for the next time interval. ARIMA has been applied
to the underlying workload fitting models in [1, 24], where the
web-based workloads present strong autocorrelation.

At the end of each time interval, the data of historical workload
traces during that time interval will be retrieved and transferred
as the number of access requests by the Workload-based Predictor.
The numbers of observed access requests for a sequence of time

Cloud Data Provider (CDP)

Workload-based
Predictor

Access Control

Predicted Access
Request Rate

Cloud Data
Provisioner

Accepted
user

access
requests

Estimated number &
locations of Replicas

M
id

d
le

w
a

re

Historical
Workload Traces

Replica
Deployment

CDP

CDP

CDP

Accepted Remote
 Workload Traces R1

R2

CORP Algorithm

Figure 2: Architecture for adaptive cloud data provider.

intervals compose a time series to fit the ARIMAmodel estimator. It
is implemented as a cyclic shift operation, where the actual number
of access requests at the last prediction cycle is added to the time
series while the oldest value is discarded. Once the access requested
time series is completed, the ARIMA model-fitting process is per-
formed with the Box-Jenkins approach [8]. Based on this approach,
the time series can be made to be stationary by differencing d times
but remains nonstationary after differencing d − 1 times (called
"integrated process").

Lags of the stationarized series in the forecasting model are
called autoregressive terms. An autoregressive model (AR) is a
linear regression of the current value of the series against one or
more prior values of the series. The value of p lags in AR is called
the order of the AR model. Lags of the forecasting errors are called
moving-average terms. A moving average (MA) model is a linear
regression of the current value of the series against the white noise
or random shocks of one or more prior values of the series. The
value of q lags in MA is called the order of the MA model. The Box-
Jenkins ARIMA(p,d ,q) model is a combination of the integrated AR
and MA models For selecting the suitable predictors in ARIMA,
Akaike’s Information Criterion (AIC) is used to determine the orders
of p and q. AIC is defined as

AIC = −2Loд(L) + 2(p + q + k + 1) (1)

where L is the likelihood of the data, k may be one or zero (k =
1 if c , 0 and k = 0 if c = 0). The value of c is the average of the
changes between consecutive observations. The corrected AIC with
n parameters for ARIMA can be written as

AICc = AIC +
2(p + q + k + 1)(p + q + k + 2)

T − p − q − k − 2 (2)

By minimizing AICc, p and q can be obtained. Using the above
method to determine the orders of p, d , and q for the ARIMA model,
the historical workload data is fit to the model to be used in WP,
of which the output outcome is the predicted access request rate
for the next coming time interval. The length of the time interval
can be flexibly adjusted for different applications. According to the
evaluation in [17], an interval of dozens of minutes could suit the
selected cloud provider well.

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

145

WorkloadEngine

ARIMAWorkload
Predictor

Forecasting
Modeler

DataLoadingGate

CyclicQueue

Figure 3: Diagram for ARIMA workload-based predictor.

3.2 ARIMA Configuration
Fig. 3 presents the diagram of theWP function. TheWokloadEnдine
is the key component in the WP. The DataLoadinдGate is responsi-
ble for addingworkload data into theCyclicQueue and to trigger the
change of themost recent workload traces. TheCyclicQueue , which
is composed of a queue object, is used to store the received work-
load data, which is modeled as a time series with a finite length. The
length of theCyclicQueue is equal to the number of past time inter-
vals influencing the prediction result. AfterARIMAWorkloadPredictor
creates a suitable ARIMA model, the workload prediction is accom-
plished by ForecastinдModeler .ARIMAWorkloadPredictor and Fore-
castinдModeler are realized by R packages [10], which is a statis-
tical analysis program kit. They are not only capable of training
a fitting model for a time series, but output a predicted value (the
predicted number of access requests in the next time interval) fed
back into theWorkloadEnдine . The predicted value will be used
in CORP algorithm we propose to allocate replicas with the cost
optimization. This procedure is discussed in the later subsections.

3.3 Prediction Complexity
Several approaches can be applied for ARIMA model fitting. The fit-
ting process used in this paper is based on the Hyndman-Khandakar
algorithm [10]. It contains three major steps: (i) determine the order
of differencing needed for stationarity; (ii) apply differentiation to
the time series d times; (iii) decide the best fit model. The first step
implements Kwiatkowski-Phillips-Schmidt-shin tests [12] used by
R package. The time complexity of step (i) is O(n2) (where n is the
number of training time series instances from the workload data).
The second step requires O(n) to perform d differentiations to the
original time series values. The complete fitting process in the third
step can be implemented with O(kn2) for k iterations. Because k
is a finite value (independent of n), the total time complexity in
(iii) can be counted as O(n2). Once the ARIMA model is ready, the
prediction process for the next one time interval can be accom-
plished with O(max(p,q)), where p and q are the orders of AR and
MA components, respectively.

4 Cost Optimization Replica Placement (CORP)
4.1 CORP Algorithm
We consider a time-slotted system, where the time is divided into
slots with equal length time interval ∆t and slot k ∈ [1. . . T] is
referred to as the discrete time period [k∆t ,(k + 1)∆t]. Let GDCi
= {h1,h2,. . .,hni } be a data storage cluster composed of ni zones.
Let B = {obj1,obj2,. . .,objl } be the replicated data object set of a
zone h. The costs incurred in time slot k include the following five
components in each zone h. (i) storage cost S defines the cost of

maintaining a data object replica per unit size per unit time. (ii)
network costOдdc (h) defines the data object transfer cost between
different GDCs per unit size. (iii) network cost Oin (h) defines the
data object transfer cost within the same GDC per unit size. (iv)
Get transaction cost tд denotes the cost of issuing an object Get
request. (v) Put transaction cost tp denotes the cost of issuing an
object Put request.

After creating an object z in time slot k , each zone maintains
a detailed access record for this object. The access record is rep-
resented as 3-tuple ⟨ GNk [z][h], PNk [z][h], Vk [z] ⟩. These are the
number of Gets and Puts , and the size for the requests for object z
in zone h in time slot k in the system. Let ANk [z][h] be the sum of
GNk [z][h] and PNk [z][h]. ANk [z] means the total access number
of requesting object z in time slot k . ANk (z,d) denotes the total
access request number in GDC d for an object in time slot k .

ANk (z,d) =
∑

zone h in d

ANk [z][h] (3)

Let Rk [z] be the replica factor for object z in time slot k (the
replica factor represents how many replicas of object z will be
made). It hinges on the object access request traces per time slot
for each zone. In order to determine the optimal placement of
deploying object replicas so as to minimize the overall system costs,
we introduce the following cost functions for a replicated data
object/ or a comment (z) created in zone h ofGDC d with size of V
in time slot k . For ease of notation and without loss of generality,
we ignore the indices k and z in the following.
• Replication Cost. Since we consider modern social media ser-

vices, there are two types of data − objects (e.g., a photo) and
comment messages (e.g., a replying comment) − that should be
replicated. Once a user creates an object or replies a comment, the
system may need to replicate this object or comment to other zones
in the same GDC d or in other GDCs . Thus, the replication cost
contains two different network transfer costs. The first is the cost
of replicating an object between different zones, which reside in
different GDCs . We define r [d] as the number of replica zones for
an object z in GDC d .

r [d] =
∑

ZS l in d

δ [l] (4)

, where δ [l] = 1 if a zone l is a replica zone; otherwise, δ [l] = 0.
Each ZS stores a Boolean vector δ [] for each object to track the
registry of the object replicas distributed over the replica ZSs. By
this bookkeeping implementation, the framework (each ZS) knows
exactly which ZSs store which objects. The network transfer cost
per unit data size for replicating object z from ZS h to these replica
zones in GDC d ′ , d is α[d ′] (Oдdc + (r [d ′] − 1)× Oin). Note that
here if r [d ′] > 0, α[d ′] = 1; otherwise, α[d ′] = 0. We define the First
Network Transfer Cost per unit data size as

FNTC =
∑
d ′,d

α[d ′]{Oдdc + (r [d ′] − 1) ×Oin } (5)

, where α[d ′] = 1 if GDC d ′ includes at least one replica zone;
otherwise, α[d ′] = 0.

The second cost is the cost of replicating an object between zones
within the sameGDC d . Thus, the Second Network Transfer Cost

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

146

per unit data size equals to

SNTC = (r [d] − 1) ×Oin (6)

Since the data size of object z replicated is V , the total replication
cost for creating this object (or replying to this comment) equals to

V × (FNTC + SNTC) (7)

• Storage Cost. The storage cost of an object z in zone h in time
slot k with data size V equals to

SC(h) = S ×V × ∆t × δ [h] (8)

• Get Cost. In our system, there are three different sub-cases
for an object Get request, each of which corresponds to a Get cost
function. Consider zone h issues GN [h] Get requests for object z
in time slot k . First, zone h stores a replica of object z. TheGet cost
equals to

GN [h] × tд (9)
Second, zone h does not store a replica of object z, but some other
ZSs store this object z in the same GDC d . The Get cost equals to

GN [h] × (2tд +V ×Oin) (10)

Third, zone h does not store a replica of object z and no other zones
store this object z in the same GDC d . The Get cost equals to

GN [h] × (2tд +V ×Oдdc) (11)

• Put Cost. Similar to Get cost functions, there are also three
Put cost functions, each of which corresponds to one of the above
sub-cases. Consider zone h issues PN [h] Put requests for object z
in time slot k , each of which needs to retrieve object z and replicate
comment messageM with size ofm. First, ZS h stores a replica of
object z. The Put cost equals to

PN [h] × (tp +m × (FNTC + SNTC)) (12)
Second, ZS h does not store a replica of object z, but some other
ZSs store this object z in the same GDC d . The Put cost equals to

PN [h] × (tp + tд +V ×Oin +m × (FNTC + SNTC)) (13)

Third, ZS h does not store a replica of object z and no other zones
store this object z in the same GDC d . The Put cost equals to

PN [h] × (tp + tд +V ×Oдdc +m × FNTC) (14)

Besides, when ZS h in GDC d is a replica ZS of object z, it leads
to additional Put cost due to comment update messages from other
remote ZS.

RUM =

(tp +m × (β[d ′] ×Oдdc + ¬β[d ′] ×Oin)) ×
∑
d ′,d

∑
zs i in d ′

PN [i]

+(tp +m ×Oin)
∑

zs i,h in d

PN [i]

(15)

, where β[d ′] = 0, if r [d ′] > 1. Otherwise, if r [d ′] = 1, β[d ′] = 1. Note
that RUM is counted based on the point of view of incoming trans-
mission. Therefore, RUM cannot be directly expressed by FNTC
and SNTC.
• Other Costs. The cost of Delete to remove objects is free. Post

transactions are considered as Put transactions. The Post cost is
equal to the Put cost.Copy requests are implemented for replicating
objects or object migration. A Copy request is composed of a Get

transaction and a Put transaction. The cost of Copy equals to Put
cost + Get cost.

Based on the above cost definitions, we can introduce three
different cost functions as to an object z for a zone h in time slot
k . First, zone h stores a replica of object z. The total zone cost for
accessing the replica stored locally, defined as SLC(h), is equal to

SLC(h) = S ×V × ∆t +GN [h] × tд
+PN [h] × (tp +m × (FNTC + SNTC)) + RUM

(16)

Second, zone h does not store a replica of object z, but some other
ZSs store this object z in the same GDC d . The total zone cost
for accessing a remote replica stored in a different ZS, defined as
RLC(h), is equal to

RLC(h) = GN [h] × (2tд +V ×Oin) + PN [h]×
(tp + tд +V ×Oin +m × (FNTC + SNTC))

(17)

Third, zone h does not store a replica of object z and no other
zones store this object z in the same GDC d . The total zone cost
for accessing a remote replica stored in a different GDC , defined as
RC(h), is equal to

RC(h) = GN [h] × (2tд +V ×Oдdc) + PN [h]×
(tp + tд +V ×Oдdc +m × FNTC)

(18)

Therefore, the fundamental zone cost function ZCz,k of object z
for ZS h in time slot k can be summed up with Storage Cost (SC),
Transaction Cost (TC), and Network Transmission Cost (NTC). (For
simplicity, we do not specify the subscripts z and k for SC, TC, NTC,
and ZC.)

ZC(h) = SC(h) +TC(h) + NTC(h) (19)

The transaction cost of ZS h can be represented as

TC(h) = GN [h] × tд + PN [h] × tp + δ [h]
∑
d

∑
zs i

PN [i] × tp+

¬δ [h] × (GN [h] + PN [h]) × tд
(20)

The network transmission cost of ZS h can be represented as
NTC(h) = GN [h] × (¬δ [h] ×V × (α [d] ×Oin + ¬α [d] ×Oдdc))

+PN [h] × (¬δ [h] ×V × (α [d] ×Oin + ¬α [d] ×Oдdc)
+m × (FNTC + α [d] × SNTC))

+(m × (Oin +Oдdc)) ×
∑
d′,d

∑
zs i

PN [i] + (m ×Oin)
∑

zs i,h in d

PN [i]

(21)

For object z in time slot k , if zone h stores a replica of the object
(i.e., δ [h] = 1), SC(h) equals to SLC(h) in (16). If h is not a replica
zone but its bindingGDC d is a replica GDC (i.e., δ [h] = 0 and α[d]
= 1), SC(h) equals to RLC(h) in (17). If h’s binding GDC d is not a
replica GDC (i.e., δ [h] = 0 and α[d] = 0), SC(h) equals to RC(h) in
(18).

When the system assumes full replication, where all the data
objects are replicated in all the zones, the total system cost for one
object in a time slot equals to∑

d

∑
zone h in d

SLC(h) (22)

Although such full replication can reduce user access latency and
maximize data availability, it is infeasible because of the immense

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

147

size of the data stores and the large number of zones. Consider the
system under partial replication. Assume that there are r zones
with replicas of an object z in time slot k . The total system cost
TSC for object z in time slot k is equal to

TSC =
∑
d

∑
zone h in d

ZC(h) (23)

, where
∑
d
∑
zone h in d δ [h] = r .

4.2 Cost Optimization Problem
Given the above system cost model, our goal is to determine the
optimal distribution of replica placement for objects so as to mini-
mize the overall TSC for each time slot. This problem is defined as
follows.

∀h,δ [h]opt ← argmin
δ [h],∀h

TSC (24)

s.t. (repeated for ∀ k ∈ [1. . . T])
(a) δ [h =master] ← 1
(b)

∑
d

∑
zone h in d

1 = N (i.e., there are totally N zones in the system.)

In this cost optimization problem, GN , PN , V , andm for each
object in a time slot are known and the argmin is over the set of
δ [h] (h=1,· · · ,N), for which TSC attains the minimum value. Since
Oдdc is much higher than Oin , it is required to determine whether
each GDC is a replica GDC in the system. If a GDC is not selected
as a replica GDC , none of the zones of thisGDC will store replicas
of the object. On the other hand, if a GDC is assigned as a replica
GDC , then, the system needs to determine whether each ZSh in this
replica GDC is required to store a replica of the object. Intuitively,
this hinges on the comparison between SLC(h) and RLC(h), which
is defined as

DIF (h) = SLC(h) − RLC(h) (25)
Apparently, the value of DIF (h) can specify whether it is optimal
for a zone to store a replica of the object. However, when a zone
is selected as a replica zone, the cost of replying comments to the
associated object would increase. More precisely, DIF (h) should be
defined as

DI F (h) = S ×V × ∆t − AN [h] × (V ×Oin + tд)

+(m ×Oin + tp) ×
∑
d

∑
zone i,h

PN [i] (26)

Equation (26) reflects how a replica of the object in a zone affects the
system cost. Without a replica, one zone will increase the network
transfer costAN [h]×V ×Oin . With a replica, one zone will addition-
ally bring the storage cost and the comment update cost. Formally,
based on DIF (h) in equation (26), one can determine whether zone
h is required to store a replica for an object. In a replica GDC , if
DIF (h) is negative, zone h will be a replica zone. Otherwise, it is
unnecessary to store a replica of the object in zone h. Similarly,
we define a global DIFд(d) in the following equation to determine
whether a GDC d is a replica GDC by comparing the cost with
one replica to that without any replica. In addition to the cost of
transferring update comments within a GDC , DIFд(d) considers
that of updating comments between GDCs .

DI Fд (d) = S ×V × ∆t − AN (d) × (V ×Oдdc + tд)+
(m ×Oдdc + tp) ×

∑
d′,d

∑
zone i in d′

PN [i]+

(m ×Oin + tp) ×
∑

zone i,h in d

PN [i]
(27)

In equation (27), the zone h having the maximum PN in GDC d is
selected as a replica zone. Similar to DIF (h), if DIFд(d) is negative,
GDC d will be a replica GDC . Otherwise, it is not required to store
a replica of the object in GDC d in order to lower the system cost.
Algorithm 1: CORP Algorithm based on the functions DIF (h)
and DIFд(d)
Input : ∀h, δk−1[h], GNk [h], PNk [h], master ZS Hh , and
master GDC Hd

Output: ∀h, δk [h]
1 Initialize: δk ← δk−1;
2 for each zone i ∈ Hd ∧ i , Hh do
3 SetRep(i);
4 for each GDC d , Hd do
5 Select h with the maximum ANk [h] in d ;
6 Calculate DIFд(d);
7 if DIFд(d) < 0 ∧ IsReplicaGDC(k−1,d) then
8 δk [h] = 1;
9 for each host i , h ∈ d do

10 SetRep(i);

11 else if DIFд(d) < 0 ∧ ¬IsReplicaGDC(k−1,d) then
12 Migrate a new replica to site host h from another

replica GDC;
13 δk [h] = 1;
14 for each host i , h ∈ d do
15 SetRep(i);

16 else if DIFд(d) > 0 ∧ IsReplicaGDC(k−1,d) then
17 for each host i∈ d do
18 δk [i]=0;
19 if DIFд(d) − Oдdc×V < 0 then
20 Select h with the maximum ANk [h] in d ;
21 δk [h]=1;

SetRep(i)
22 Calculate DIF (i);
23 if DIF(i) > 0 ∧ δk−1[i] = 1 then δk [i] = 0;
24 if DIF(i) < 0 ∧ δk−1[i] = 0
∧ DIF(i)+V× Oin < 0 then δk [i] = 1 ;
AN (k ,d):

25 return
∑
host i in d (GNk [i] + PNk [i])

IsReplicaGDC(k,d)
26 if ∃ host i ∈ d : δk [i] is true then

return true
27 else

return false

On the above grounds, we propose Cost Optimization Replica
Placement Algorithm (CORP), as Algorithm 1, which calculates the
optimized cost of the object replicas in each time slot k ∈ [1 . . .T].
The replication strategy of CORP (run at the end of time slot k − 1)
is summarized as follows. First, determine the replica placement
in the master GDC . The master ZS must be a replica ZS. Then,
one can determine whether each of the other zones in themaster
GDC is required to store a replica of object z. Second, the system

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

148

Table 1: Definition of symbols and parameters used in the model.
The symbols on the four bottom rows are indicated for each ob-
ject in each time slot (normally, they should be denoted as δk [z][h],
αk [z][d], rk [z][d], and βk [z][d]).
Term Meaning
D A set of GDCs
S The storage cost per unit size per unit time
V (z) Size of data item z
∆t Time slot interval
Oдdc Out-network price between GDCs
Oin Out-network price within a GDC
GNk [z][h] Number of Gets for object z from zone h in time slot k
PNk [z][h] Number of Puts for object z from zone h in time slot k
Vk [z] Size of object z in time slot k
ANk [z][h] The sum of GNk [z][h] and PNk [z][h]
Rk [z] The number of replicas of object z in time slot k
tд Get transaction cost
tp Put transaction cost
m Comment message size
δ [h] Binary replication factor for zone h
α[d] Binary replication factor for GDC d
r [d] Number of replicas for an object in GDC d
β[d] Binary factor for GDC d . If r > 1, β=0; if r = 1, β=1.

needs to determine whether each of the other GDCs is a replica
GDC . Then, the system will determine whether each zone in every
replica GDC is a replica zone based on equation (26). We make
some notes about this instantiation of CORP. Lines (2)-(3) specify
the replica placement for the object in themaster GDC . Lines (4)-
(21) determine the replica placement for the object in the other
GDCs . When GDC d is a replica GDC in time slot k − 1 and it is
determined that d is still required to be a replica GDC in time slot
k , lines (8)-(10) will specify the replica placement in GDC d . Lines
(12)-(15) specify the case almost similar to the above one. However,
GDC d is not a replica GDC in time slot k − 1. It needs to migrate a
new replica from anotherGDC . The output of CORP is the replica
placement distribution δk [h] for each ZS h. When there exists at
least one ZS h such that δk [h] , δk−1[h], Cloud Data Provisioner
in the MZS would implement the migration process. Otherwise,
no replica needs to be migrated or deleted. Table 1 summarizes
parameters and inputs to the model.

4.3 CORP + cache.
The regular CORP runs the ARIMA migration process by an equal
time interval. Caching is commonly used to decrease network traffic
and reduce network link utilization. In addition, for a target data
object z, there is only home ZS that stores it in the first time interval,
during which there are much more access requests from other ZSs
over the network. This leads to ineffective network utilization.
We extend CORP to CORP + cache, which could save object z
temporarily in ZS h after retrieving it from a replica ZS of object
z. This replica ZS is called the source ZS of the client cache ZS h.
As with the replica bookkeeping mechanism in CORP, a source ZS
hosts a Boolean vector to record its own client cache ZSs in + cache.
Thus, source ZSs for an object can know exactly where cache ZSs
are. Accordingly, ZS h does not need to retrieve it each time an

access request is issued, even if ZSh is not a replica ZS. ZSh is called
a cachinд ZS for object z. When a replica zone issues an update
to object z, the update request is applied to not only all replica
ZSs, but also the ZSs with the cache data of object z. However,
the caching data of object z in ZS h can only be accessed by users
connecting to ZS h. It cannot be retrieved by other ZSs. CORP +
cache runs the same algorithm as CORP. However, the migration
process of CORP + cache differs from that of CORP. Assume that
ZS h is a cachinд ZS for object z inGDC d in time slot k − 1. If ZS h
is determined as a replica ZS, ZS h can straightforwardly become
a replica zone. Then, if there exists other ZSs in GDC d that do
not store a replica of object z in time slot k − 1 and these ZSs are
determined as replica ZSs in time slot k , ZS h will replicate object
z to these ZSs. On the other hand, assume that ZS h caching object
z in time slot k − 1 does not need to be a replica ZS in time slot k . If
there is no other replica ZS in time slot k − 1 in the same GDC and
some ZSs in the same GDC, which do not store object z, become
replica ZS, then, ZS h needs to replicate object z to them. After that,
the caching data of object z in ZS h is deleted.

5 Performance Evaluation
5.1 Experimental Setting
We evaluate the proposed CORP algorithms for replica placement
of the data objects across GDCs with real traces of requests to the
zone web servers from Twitter workload [13] and the CloudSim
discrete event simulator [4]. These realistic traces contain a mix-
ture of temporal and spatial information for each http request. The
number of http requests received for each of the target data objects
(e.g., photo images) is aggregated in 1800-secs intervals. By imple-
menting our approaches on the Amazon cloud provider, it allows us
to evaluate the cost-effectiveness of request transaction, data store,
and network transmission, and to explore the impact of workload
characteristics. We also propose a clairvoyant Optimal Placement
Solution, based on the time slot system and object access patterns
known in advance to evaluate CORP and CORP+cache.
Data ObjectWorkload:Our work focuses on the data store frame-
work on image-based sharing in social media networks, where ap-
plications have geographically dispersed users who put and get
data, and fit straightforwardly into a key-value model. We use ac-
tual Twitter traces as a representation of the real world. Put to a
timeline occurs when users post a tweet, retweet, or reply messages.
We crawl the real Twitter traces as the evaluation input data. Since
the Twitter traces do not contain information of reading the tweets
(i.e., the records of Gets), we set five different ratios of Put/Get
(Prate : Put rate), where the patterns of Gets on the workloads
follow Longtail distribution model [2]. The simulation workload
contains several Tweet objects. The volume of each target tweet
in the workload is 2 MB. The simulation is performed for a period
of 20 days. The results for each object show that they have similar
tendency.

The experiment has been performed via simulation using the
CloudSim toolkit [4] to evaluate the proposed system. CloudSim is
a JAVA-based toolkit that contains a discrete event simulator and
classes that allow users to model distributed cloud environments,
from providers and their system resources (e.g., physical machines
and networking) to customers and access requests. CloudSim can be

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

149

easily developed by extending the classes, with customized changes
to the CloudSim core. We figure out our own classes for simulation
of the proposed framework and model 9 GDCs in CloudSim simu-
lator. Each GDC is composed of 4 zones. Each zone has only one
ZS associated with 50GB storage space and corresponds to one (or
a few) states in US or one country in Asia and in Europe. The price
of the storage classes and network services are set for each GDC
and each ZS based on Amazon Web Service (AWS) as of 2018.

5.2 Results and Discussion
The performance metrics we use are the performance in terms of
cost and the cost improvement rates under varying Prate of the
proposed CORP and CORP+cache. In order to evaluate our proposed
approach, we compare it to two different replication strategies. The
first one is the standalone cache mode (+cache), where the home ZS
is the only one replica ZS. The second one is the replication model
with different numbers of replica GDC, where they are randomly
pre-selected and each GDC includes at most one replica ZS. Cost
is represented by the total system cost, which is composed of TC
(Eqn. 20), NTC (Eqn. 21), and SC (Eqn. 19).

First, we use the term ‘transaction’ to denote both a Put transac-
tion or a Get query transaction. Active and aggressive replication
has the potential to provide a reduction in the number of distributed
Get transactions at the cost of Put transactions. Lowering the num-
ber of transactions to find a data placement increases throughput
significantly in cloud environments, while an increased number
of transactions would lead to an over-utilization of the underlying
systems. Thus, the total transaction cost (TC) is totally subject to
the number of transactions. In our evaluations, we set different Put
rates to generate different evaluation workloads. The lower the Put
rate, the more the number of Get transactions should be included
(i.e., the total number of transactions increases). Figure 4 presents
the TCs of various replication strategies in different Put rates. Since
CORP brings additional migration process, TC for CORP+cache is
slightly higher than the standalone cache model or 2 pre-selected
replicas+cache but much lower that others’ TCs.

 0

 10

 20

 30

 40

 50

 60

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
T
ra

n
sa

ct
io

n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 4: The Transaction Cost

Second, Figure 5 presents the NTC of CORP+cache in comparison
with various replication strategies in different put rates. According
to Eq. (21), NTC highly depends on the amount of data transmitted
over the network. Thus, the smaller the NTC, the lower the network

bandwidth consumption. Although NTC of CORP+cache is slightly
higher that of the full GDC replication (each GDC contains one
replica), it is much lower than others’ NTCs.

 0

 20

 40

 60

 80

 100

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
T
ra

n
sa

ct
io

n
 C

o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 5: The Network Transmission Cost

Finally, the capacity of replica servers has a major impact on the
performance of data replication strategy. Different data objects or
applications require different storage services. Storage providers
have to place large quantities of storage devices in order to offer
uses good data storage services. Therefore, maximizing storage
space utilization (SSU: the total available storage space in the entire
system) becomes more and more important. The larger the available
storage space, the more data objects the system can hold. Lower
storage space occupation (SSO: the space size occupied by data
objects) for a data object would increase SSU. The total storage
space cost (SSC), which fully depends on equation (8), is highly
proportional to SSO. Figure 6 shows the results of storage cost (SC)
of CORP+cache in comparison with other alternatives. We notice
that the SC of CORP+cache falls in between the SC of full GDC
replication and the SC of standalone cache mode. This implies that
CORP+cache is able to determine the proper number of replicas to
decrease TC and NTC.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
S
to

ra
g
e
 S

p
a
ce

 C
o
st

 (
U

S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 6: The Storage Space Cost

Figure 7 presents the total system costs (TSC) for different repli-
cation approaches. With caching, the more the number of replica
GDCs, the lower the TSC. CORP+cache can further reduce TSC for
all the workloads. Although CORP brings more migration costs for

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

150

Table 2: Cost improvement rates of different replicationmodeswith
respect to the standalone cache mode for different Put rates. (a) 2
static replicas with cache control (b) 5 static replicas with cache con-
trol (c) 9 static replicas with cache control (i.e., full GDC replication)
(d) CORP+cache.

Prate 0.05 0.1 0.2 0.5 0.8
(a) 8.24% 7.10% 6.96% 7.44% 7.81%
(b) 31.94% 27.96% 27.11% 28.17% 29.93%
(c) 56.16% 48.64% 46.70% 49.08% 50.44%
(d) 74.37% 70.46% 70.03% 67.39% 68.75%

replica placement step, it can reduce the storage cost and network
cost by proactively placing data objects at proper locations.

 0

 20

 40

 60

 80

 100

0.05 0.1 0.2 0.5 0.8

T
o
ta

l
S
y
st

e
m

 C
o
st

 o
f

C
lo

u
d
 D

a
ta

 S
to

ri
n
g
 (

U
S
D

)

The rate of Put (Prate)

9replicas+cache
5replicas+cache
2Replicas+cache

cache
CORP+cache

Figure 7: The total system cost.

Cost Improvement: We now investigate the effect of CORP+cache
on cost improvement rate with respect to different replication
modes, which is defined as.

cost(+cache) −Costo f ReplicationMode

cost(+cache) (28)

, where cost(+cache) means the total system cost of the standalone
cache model. Table 2 shows the cost improvement rates of different
replication modes with respect to the +cache mode for different
Put rates. The cost improvement rate against +cache increases
as more replica GDCs are loaded. As Put rate decreases, the cost
improvement of CORP+cache becomes higher. It shows that CORP +
cache is cost-effective for Get-intensive (lower Put rates) workloads
like most social networks or cloud computing environments, due
to efficient utilization of network communication resources.

Accuracy Analysis: The proposed method, ordinary CORP, runs
on a time slot system. At runtime, CORP is constantly updated.
When new access requests arrive in the current time slot, they
are getting involved into the time series and the data in the oldest
time slot is removed from the time series. However, when a data
object is created, there is not enough data in the time series initially
(i.e., the number of time slots is zero initially for each data object).
Based on the training dataset, the demand for each time slot per
ZS is predicted. The output of the prediction model is an integer
value, which represents the access requests in the next time slot
at a ZS. The predicted value is accompanied with two confidence

Table 3: Access Number Prediction Accuracy by Various Error Met-
rics . RMSD : root mean square deviation. NRMSD : normalized root
mean square deviation. MAD : mean absolute deviation. MAPE :
mean absolute percentage error

Accuracy Predicted Low High Low High
metric 80% 80% 95% 95%
RMSD 346.71 476.12 571.42 800.01 931.14
NRMSD 0.16 0.31 0.33 0.37 0.41
MAD 131.4 379.81 450.11 534.66 794.52
MAPE 0.13 0.15 0.19 0.18 0.24

Table 4: ∆sav inд : The cost improvement results for different Put
rates show that caching has taken an important step to improve the
total system costs.

Prate 0.05 0.1 0.2 0.5 0.8
∆savinд 91.33% 84.67% 74.93% 57.18% 48.70%

ranges across the 80 and 95 percent bands. The accuracy of the
prediction model is evaluated by different types of error metrics,
namely, root mean square deviation (RMSD), normalized root mean
square deviation (NRMSD), mean absolute deviation (MAD), and
mean absolute percentage error (MAPE). The low 80% and high
80% indicate the limits for the 80% confidence interval for the pre-
diction. The results for the 80% and 95% confidence intervals are
given in Table 3 with Prate = 0.05, where the average prediction
accuracy (APA) is around 87 percent. With different Put rates, the
corresponding APA values are approximately consistent with that
of Prate = 0.05.

CORP+cache VS. CORP: We propose CORP+cache to improve the
system costs. Thus, in this section we present experiments aimed at
evaluating how the total costs are improved by CORP+cache against
CORP. Table 4 presents the results of comparing CORP+cache to
CORP for different put rates. ∆savinд is defined as

cost(CORP) − cost(CORP + cache)
cost(CORP) (29)

Since the evaluation data come from the social network, each indi-
vidual data object brings a lot of requests in the initial time slots. It
can be observed that the results indicate that the lower the Prate
(Get-intensive), the better the cost saving rate (∆savinд) is.

CORP+cache evaluation: In order to evaluate the effectiveness of
our proposed approach, we also implemented the Optimal Place-
ment Solution (OPT) based on the same time slot system. OPT
knows the exact temporal and spatial data object access patterns.
OPT can figure out the optimal object placement for each time slot.
The cost effectiveness of CORP(+cache) is highly related to how
precise the predicted access number is. OPT(+cache) totally follows
up CORP(+cache) model and uses the real object access (Put and
Get) numbers as the inputs in different time slots. ∆inc is defined
as

cost(CORP + cache) − cost(OPT + cache)
cost(CORP + cache) (30)

Table 5 shows the comparisons betweenCORP+cache andOPT+cache
for different Put rates. It is evident that CORP+cache only increases
6% ∼ 16% of total system cost compared to OPT+cache.

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

151

Table 5: ∆inc : The performance evaluation of CORP+cache com-
pared to OPT+cache.

Prate 0.05 0.1 0.2 0.5 0.8
∆inc 16.77% 13.84% 10.74% 9.66% 6.23%

Table 6: ∆inc : The performance evaluation of CORP compared to
OPT in steady states.

Prate 0.05 0.1 0.2 0.5 0.8
∆inc ′ 1.89% 2.83% 1.53% 4.95% 3.26%

In order to measure the cost effectiveness of CORP in steady
states (including enough training time slots), we also compare the
cost of CORP to that of OPT without caching in steady states. Table
6 presents the cost increase rates (∆inc ′) of CORP compared to OPT
for different Put rates. We notice that ∆inc ′ rates are around 2% ∼
5%. ∆inc ′ is defined as

cost(CORP) − cost(OPT)
cost(CORP) (31)

For simplicity, we ignore the cost of the bookkeeping process
based on the following. The size of a Boolean vector δ is O(N) bits,
where N is the total number of zones in the system. The numbers
of availability zones in most current modern cloud storage systems
are from several dozens to several hundreds (i.e., AWS is composed
of 69 zones globally). Compared to a common data object’s size or a
text comment’s size in most social media applications, the storage
cost of keeping δ is much smaller. On the other hand, consider the
inventory management pricing in Amazon S31. The total cost of
maintaining the registry of objects is smaller than that of SC , TC ,
or NTC per object per time slot in one ZS. Therefore, we ignore
the bookkeeping cost. In addition, Get bucket is not supported in
CORP (+cache) to retrieve multiple objects by one access request.
Therefore, we do not consider the cost of List requests.

Due to space limitations, this paper does not compare CORP
+ cache with other reactive replication approaches. Further, their
frameworks are different and they do not make distinction between
the ‘betweenGDC’ network cost and the ‘within GDC’ network cost.
Although we do not present the detailed access latency analysis,
the results show that the average access waiting time (AAWT)
of CORP+cache is around 5 ms ∼ 50 ms for different Put rates.
However, the AAWT of the stand-alone cache mechanism and the
full GDC replication are approximately 20 ms ∼ 100 ms and 45 ms
∼ 55 ms, respectively. The focus in this paper is on the trade-off
between local data store and remote data access, whereas other
realistic considerations and comparisons are left for future work.

6 Conclusions
We proposed the CORP and CORP+cache algorithms to realize
a proactive provisioning replication model by using ARIMA for
cloud datastores. Our approach employed a mixture of ARIMA and
analytic schemes to analyze data access workload patterns in a pre-
defined window length to predict workload distribution for the next
time interval. The CDP can dynamically deploy required data repli-
cas in the distributed storage system in responding to the predicted

1https://docs.aws.amazon.com/AmazonS3/latest/API/API_InventoryConfiguration.html

data access requests for the next interval. We presented an evalua-
tion of the effect of the CORP+cache based on cost improvement
via trace-driven CloudSim simulator toolkit and realistic workload
traces from Twitter. Simulations showed that, with caching, as the
number of replica GDCs increases, the TSC decreases. CORP+cache
is capable of further reducing the TSC against the static replication
mode with caching. The TSC of CORP + cache is around 70% ∼ 75%
lower than that of the standalone cache mode and 20% lower than
that of the full GDC replication with cache control for different
Prate .

We also presented the cost effectiveness of +cache for CORP. The
results show that +cache can improve CORP to effectively reduce
the total system cost for the whole workload. In order to further
evaluate CORP+cache, we compared it to the optimal placement
solution (OPT+cache) in the same time slot system based on known
temporal and spatial access patterns. Compared to OPT+cache,
CORP+cache increases only 6% ∼ 16% of TSC of OPT+cache. Fur-
thermore, we also evaluated the cost effectiveness of CORP in steady
states. By comparing CORP and OPT, simulation results show that
CORP only increases 2% ∼ 5% of the system cost of OPT. In other
words, the TSC of CORP is highly close to that of OPT for the time
slot system in a steady state.

The simulation results also showed that the TSC of CORP+cache
is improved better in lower Prate . It implies that CORP+cache is
cost-effective for most social networks with Get-intensive work-
loads. This work can be further extended by employing consistency
protocols to get high consistency among different replicas.

References
[1] M. Arlitt and T. Jin. 2000. A Workload Characterization Study of the 1998 World

Cup Web Site. Netwrk. Mag. of Global Internetwkg. 14, 3 (May 2000), 30–37.
https://doi.org/10.1109/65.844498

[2] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. 2010.
Finding a Needle in Haystack: Facebook’s Photo Storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 47–60.

[3] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. 2015. Workload Prediction
Using ARIMA Model and Its Impact on Cloud Applications’ QoS. IEEE Transac-
tions on Cloud Computing 3, 4 (Oct 2015), 449–458. https://doi.org/10.1109/TCC.
2014.2350475

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. 2011. CloudSim: A Toolkit for Modeling and Simulation
of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms. Softw. Pract. Exper. 41, 1 (Jan. 2011), 23–50. https://doi.org/10.1002/
spe.995

[5] R. N. Calheiros, R. Ranjan, and R. Buyya. 2011. Virtual Machine Provisioning
Based on Analytical Performance and QoS in Cloud Computing Environments.
In 2011 International Conference on Parallel Processing. 295–304. https://doi.org/
10.1109/ICPP.2011.17

[6] E. Caron, F. Desprez, and A. Muresan. 2010. Forecasting for Grid and Cloud
Computing On-Demand Resources Based on Pattern Matching. In 2010 IEEE
Second International Conference on Cloud Computing Technology and Science.
456–463. https://doi.org/10.1109/CloudCom.2010.65

[7] Ruay-Shiung Chang, Hui-Ping Chang, and Yun-Ting Wang. 2008. A dynamic
weighted data replication strategy in data grids. In 2008 IEEE/ACS International
Conference on Computer Systems and Applications. 414–421. https://doi.org/10.
1109/AICCSA.2008.4493567

[8] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta Ljung.
2016. Time Series Analysis: Forecasting and Control (5 ed.). Wiley, Hoboken NJ.
https://doi.org/10.2307/2284112

[9] Navneet Kaur Gill and Sarbjeet Singh. 2016. A Dynamic, Cost-aware, Optimized
Data Replication Strategy for Heterogeneous Cloud Data Centers. Future Gener.
Comput. Syst. 65, C (Dec. 2016), 10–32. https://doi.org/10.1016/j.future.2016.05.
016

[10] Rob Hyndman and Yeasmin Khandakar. 2008. Automatic Time Series Forecasting:
The forecast Package for R. Journal of Statistical Software, Articles 27, 3 (2008),
1–22. https://doi.org/10.18637/jss.v027.i03

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

152

https://doi.org/10.1109/65.844498
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/ICPP.2011.17
https://doi.org/10.1109/ICPP.2011.17
https://doi.org/10.1109/CloudCom.2010.65
https://doi.org/10.1109/AICCSA.2008.4493567
https://doi.org/10.1109/AICCSA.2008.4493567
https://doi.org/10.2307/2284112
https://doi.org/10.1016/j.future.2016.05.016
https://doi.org/10.1016/j.future.2016.05.016
https://doi.org/10.18637/jss.v027.i03

[11] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud. Future Gener. Comput.
Syst. 28, 1 (Jan. 2012), 155–162. https://doi.org/10.1016/j.future.2011.05.027

[12] Denis Kwiatkowski, Peter Phillips, Peter Schmidt, and Yongcheol Shin. 1992.
Testing The Null Hypothesis of Stationarity Against The Alternative of A Unit
Root. How Sure Are We That Economic Time Series Have Unit Root? Journal of
Econometrics 54 (10 1992), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y

[13] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang.
2012. Towards social user profiling: unified and discriminative influence model
for inferring home locations. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’12. 1023–1031. https:
//doi.org/10.1145/2339530.2339692

[14] Najme Mansouri and Mohammad M. Javidi. 2018. A new Prefetching-aware Data
Replication to decrease access latency in cloud environment. Journal of Systems
and Software 144 (2018), 197–215.

[15] Yaser Mansouri and Rajkumar Buyya. 2018. Dynamic replication and migration
of data objects with hot-spot and cold-spot statuses across storage data centers. J.
Parallel and Distrib. Comput. (12 2018). https://doi.org/10.1016/j.jpdc.2018.12.003

[16] Y. Mansouri, A. N. Toosi, and R. Buyya. 2019. Cost Optimization for Dynamic
Replication and Migration of Data in Cloud Data Centers. IEEE Transactions on
Cloud Computing 7, 3 (July 2019), 705–718. https://doi.org/10.1109/TCC.2017.
2659728

[17] M. Mao, J. Li, and M. Humphrey. 2010. Cloud auto-scaling with deadline and
budget constraints. In 2010 11th IEEE/ACM International Conference on Grid
Computing. 41–48. https://doi.org/10.1109/GRID.2010.5697966

[18] Rashedur M. Rahman, Ken Barker, and Reda Alhajj. 2005. Replica placement in
data grid: considering utility and risk. International Conference on Information

Technology: Coding and Computing (ITCC’05) - Volume II 1 (2005), 354–359 Vol. 1.
[19] Kavitha Ranganathan and Ian Foster. 2001. Identifying Dynamic Replication

Strategies for a High-Performance Data Grid. In Grid Computing — GRID 2001,
Craig A. Lee (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 75–86.

[20] P. N. Shankaranarayanan, A. Sivakumar, S. Rao, and M. Tawarmalani. 2014. Per-
formance Sensitive Replication in Geo-distributed Cloud Datastores. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
240–251. https://doi.org/10.1109/DSN.2014.34

[21] Matthew Sladescu, Alan Fekete, Kevin Lee, and Anna Liu. 2012. Event Aware
Workload Prediction: A Study Using Auction Events. InWeb Information Systems
Engineering - WISE 2012. Springer Berlin Heidelberg, Berlin, Heidelberg, 368–381.

[22] Dawei Sun, Guiran Chang, Changsheng Miao, and Xingwei Wang. 2013. Ana-
lyzing, modeling and evaluating dynamic adaptive fault tolerance strategies in
cloud computing environments. The Journal of Supercomputing 66, 1 (01 Oct
2013), 193–228. https://doi.org/10.1007/s11227-013-0898-7

[23] Da-Wei Sun, Gui-Ran Chang, Shang Gao, Li-Zhong Jin, and Xing-Wei Wang. 2012.
Modeling a Dynamic Data Replication Strategy to Increase System Availability
in Cloud Computing Environments. Journal of Computer Science and Technology
27 (03 2012). https://doi.org/10.1007/s11390-012-1221-4

[24] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Comput. Netw. 53, 11 (July 2009),
1830–1845. https://doi.org/10.1016/j.comnet.2009.02.019

[25] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng. 2010. CDRM: A Cost-
Effective Dynamic Replication Management Scheme for Cloud Storage Cluster.
In 2010 IEEE International Conference on Cluster Computing. 188–196. https:
//doi.org/10.1109/CLUSTER.2010.24

Session 5: Resource Management and Scheduling UCC ’19, December 2–5, 2019, Auckland, New Zealand

153

https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1145/2339530.2339692
https://doi.org/10.1145/2339530.2339692
https://doi.org/10.1016/j.jpdc.2018.12.003
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1109/GRID.2010.5697966
https://doi.org/10.1109/DSN.2014.34
https://doi.org/10.1007/s11227-013-0898-7
https://doi.org/10.1007/s11390-012-1221-4
https://doi.org/10.1016/j.comnet.2009.02.019
https://doi.org/10.1109/CLUSTER.2010.24
https://doi.org/10.1109/CLUSTER.2010.24

	Abstract
	1 Introduction
	2 Related Work
	3 System Cost Model
	3.1 Adaptive Cloud Data Provider Architecture
	3.2 ARIMA Configuration
	3.3 Prediction Complexity

	4 Cost Optimization Replica Placement (CORP)
	4.1 CORP Algorithm
	4.2 Cost Optimization Problem
	4.3 CORP + cache.

	5 Performance Evaluation
	5.1 Experimental Setting
	5.2 Results and Discussion

	6 Conclusions
	References

