
Performance of Approximate Causal Consistency for
Partially Replicated Systems

Ta-yuan Hsu
Dept. of Electrical and Computer Engineering

University of Illinois at Chicago
Chicago, IL 60607-7053, USA

thsu4@uic.edu

Ajay D. Kshemkalyani
Dept. of Computer Science

University of Illinois at Chicago
Chicago, IL 60607-7053, USA

ajay@uic.edu

ABSTRACT
Causal consistency is one of the widely used consistency
models in wide-area replicated systems due to highly scal-
able semantics. Partial replication is a replication mecha-
nism that emphasizes a better network capacity utilization.
However, it has a challenge of higher meta-data overhead
and processing complexity in communication. Algorithm
Approx-Opt-Track has been proposed to reduce meta-data
size, however, by risking that causal consistency might be
violated. In an effort to bridge this gap and reconcile the
trade-off between them, we present the analytic data to show
the performance of Approx-Opt-Track. We also give simu-
lation results to show the potential benefits of Approx-Opt-
Track, under almost the same guarantees as causal consis-
tency, at a smaller cost. The results indicate that partial
replication is a potentially viable alternative to full replica-
tion for implementing causal consistency.

CCS Concepts
•Computing methodologies→Distributed algorithms;
•Networks → Network algorithms; Network simulations;

Keywords
causal consistency; causality; cloud computing; distributed
shared memory; partial replication

1. INTRODUCTION
Large-scale distributed data repositories are commonly

used to provide efficient access to huge volumes of data. By
replicating across different geographic sites for fault toler-
ance, this model can protect the data from systematic dis-
asters resulting from correlated failures [9]. It not only re-
duces the access latency, but also achieves high availability.
Reliable and scalable data consistency is one of the most im-
portant requirements for designing replication mechanisms
and technologies. The CAP theorem [7] states that a dis-
tributed data system can achieve at most two of the follow-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARMS-CC’16, July 29 2016, Chicago, IL, USA
c© 2016 ACM. ISBN 978-1-4503-4227-8/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2962564.2962572

ing three properties: Consistency, Availability, and Partition
tolerance. It has been shown that causal consistency is the
strongest form of consistency that can also guarantee low
latency [13].

Causal consistency for distributed shared memory was in-
troduced by Ahamed et al. [1], who proposed a protocol
for implementing it. Later, Baldoni et al. [3] gave an im-
proved protocol. Both these works are Complete Replica-
tion and Propagation (CRP) based protocols and do not
consider the case of partial replication. Some recent papers
[2],[5],[6],[13],[14] have shown how to implement causal con-
sistency in large geo-replicated data storage, also assuming
full replication. Although partial replication can avoid tak-
ing unnecessary network capacity and hardware resources,
it is a challenge to implement partial replication against full
replication. This is primarily because of the higher complex-
ity of tracking causal dependencies (e.g., additional commu-
nication cost and larger dependency meta-data).

Recently, the first protocol for causal consistency under
partial replication, called the Opt-Track protocol, was in-
troduced [16, 15]. This protocol used some of the ideas from
causal ordering in message passing systems [12, 10, 4]. We
showed that the Opt-Track protocol had the potential of
making the meta-data size moderate under partial replica-
tion [8].

Approx-Opt-Track [11] has been proposed to further re-
duce the size of meta-data against Opt-Track. It introduced
a parameter called credits, which denotes the available hop
count associated with a meta-data entry. When the initial
credits is infinite, Approx-Opt-Track is equivalent to Opt-
Track. A small initial credits can make a meaningful re-
duction in the meta-data. However, it decreases the size of
meta-data at the cost of violating causal consistency. It is
a challenge to balance the trade-off between the meta-data
size and causal consistency accuracy in Approx-Opt-Track.
Approx-Opt-Track is the first work that uses the idea of
credits for causal consistency.

Contributions
In this paper, we quantitatively evaluate the performance of
Approx-Opt-Track for implementing causal consistency un-
der partial replication. By controlling initial credits, we use
simulations to analytically examine the trade-off between
initial credits and the size of meta-data. We also study the
impacts of varying the number of processes and the write
rate. With a finite initial credits small enough, Approx-
Opt-Track is seen to show significant gains over Opt-Track.
In particular, for 40 processes, Approx-Opt-Track can lower

http://dx.doi.org/10.1145/2962564.2962572

the meta-data size by around 5% ∼ 20% without causal
violations and from 40% ∼ 60% for up to 0.5% causal vio-
lations. Thus, we show that Approx-Opt-Track can provide
less overhead than Opt-Track at little or no cost of violating
causal consistency. It also follows that partial replication is a
potentially viable alternative to full replication for providing
causal consistency.

Organization
Section 2 outlines the Approx-Opt-Track protocol. Sec-
tion 3 presents the communication framework for simulating
Approx-Opt-Track based on different initial credits. Section
4 shows all the experimental results. Section 5 illustrates
the trade-off between initial credits and the meta-data size.
Section 6 gives the conclusion.

2. APPROX-OPT-TRACK PROTOCOL
Opt-Track protocol has a moderately-sized message meta-

data [8] in partially replicated systems. Exploiting implicit
knowledge about messages delivered in causal order, it makes
the meta-data manageable and linear in the number of pro-
cesses. Approx-Opt-Track protocol has been proposed [11]
to further reduce the size of meta-data by deleting older
dependencies, introducing the notion of credits, cr. When-
ever a dependency is created, it is assigned a certain num-
ber of initial credits. Every read and write operation leads
to a decrement of the available number of credits. When
the available cr becomes zero, it means that the associated
dependency becomes aged enough and can be reasonably
deleted. If the initial cr is set to be∞ in Approx-Opt-Track,
the algorithm is equivalent to Opt-Track [15]. By setting the
initial cr to a smaller finite value, we can remove older de-
pendencies earlier to prune meta-data. However, it imposes
cost by risking that those dependencies deleted might not be
satisfied, resulting in unexpected outcomes violating causal
consistency. The parameter credits can help us approximate
causal consistency to the accuracy needed.

The data structures in Approx-Opt-Track [11] are very
similar to the ones in Opt-Track [15]. The major difference
between them is a new parameter cr in each entry in LOGi.
Each site si needs to maintain the following four data struc-
tures.

1. clocki: local counter for write operations performed by
application process api.

2. Applyi[1∼n]: an array of integers. Applyi[j] = c means
that a total number of c updates written by application
process apj have been applied at site si.

3. LOGi = {〈j, clockj , Dests, cr〉}: the local log (initially
set to empty). Each entry indicates a write operation
in the causal past. Dests is the destination list for that
write operation. Only necessary destination informa-
tion is stored. cr is the remaining amount of credits.

4. LastWriteOni〈variable id h, LOG〉: This hash map
stores the piggybacked LOG from the most recent up-
date applied at site si for locally replicated variable
xh.

Formally, we define credits of a meta-data entry as the
hop count available before the entry gets old enough and
is deleted. When a message passes through one hop, it is

transmitted along a logical channel from one site/process to
another. In the following cases, the hop count cr is decre-
mented.

• A piggybacked meta-data for an existing dependency
is received.

• A new dependency is identified by a receiving site/process.

• The data is remotely fetched by a read operation.

3. SIMULATION SYSTEM MODEL
We consider an asynchronous distributed system, which is

composed of a finite set of asynchronous processes intercon-
nected through a communication network. Formally, they
run on multiple sites which are distributed over a wide area
in a practical distributed system. To simplify and without
loss of generality, we assume that there is only one process
on each site. Each site has a local memory and can com-
municate by asynchronous message passing through TCP
channels of the underlying network. The communication
network is reliable and transmits messages in FIFO order
without omissions or duplications.

3.1 Process Model
A process consists of two major subsystems viz., the ap-

plication subsystem and the message receipt subsystem. The
application subsystem deals with the functionality of schedul-
ing operation events (write/read) including two major func-
tions, viz., Write and Read. The message receipt subsystem
takes charge of responding to remote request service, in-
cluding two major functions, viz., ApplyingMulticast and
RespondingFetch. It also maintains a floating point local
clock to generate event patterns based on a temporal sched-
ule.

The simulation system core is based on Algorithm Approx-
Opt-Track [11]. For a write operation w(xh)v, the applica-
tion subsystem delivers the message m(w(xh)v), the corre-
sponding meta-data − local log Lw, and hop count credits
to other replicas. For a read operation r(xh), the applica-
tion subsystem returns the local variable xh’s value or sends
a fetch message fetch(xh) to a predesignated site to get
the remote variable xh’s value as well as the correspond-
ing meta-data LastWriteOn〈h〉 and hop count credit. The
message receipt subsystem monitors two distinct types of in-
coming messages. First, on receiving a multicast message
m(w(xh)v), the receipt subsystem determines when to apply
a new value v to the variable xh in causal consistency and
then update the meta-data LastWriteOn〈h〉 and hop count
credit. Second, for a remote fetch message m(fetch(xh)),
it simply replies with the local value of the variable xh, the
corresponding meta-data LastWriteOn〈h〉, and hop count
credit to the requesting site.

3.2 Simulation Parameters
We examine the effects of the following system parameters

on the performance of the Approx-Opt-Track protocol.

• Number of Processes (n): The limitation of the num-
ber of processes in the system depends on the processor
model and memory allocation of the benchmark device
running the simulation. On an Intel Core 2 Duo com-
puter with 16 GB DDR2 and the simulation framework
being implemented in JDK8, we can simulate up to 40
processes.

• Number of Variables (q): In a real cloud storage, q is
unbound. Due to the memory limitation, q we used in
the benchmark experiment is one hundred.

• Replication Factor (p): The number of sites at which
each variable is replicated is set to be 0.3×n.

• Write Rate (wrate): It is defined as the ratio of the
number of write operations to the total number of
operations. Binding by a variety of write rates, we
can study performance for read-intensive and write-
intensive application workloads.

• Hop Count Credit (cr): Credits of a meta-data entry
denote the hop count available before the entry ages
out and is removed.

• Message Count (mc): The total number of messages
generated by all the processes.

• Message Meta-Data Size (ms): The total size of all the
meta-data transmitted over all the processes.

3.3 Process Execution
All the processes in the system are symmetric. The opera-

tion events are triggered based on a event schedule randomly
generated in advance. Due to hardware limitation, the time
interval Te between two events is given from 5ms to 2005ms.
The propagation time Tt is from 100ms to 3000ms. (In re-
ality, Te is initially set to be 10ms ∼ 200ms and Tt is given
5ms ∼ 300ms in order to reflect the more realistic prop-
agation time in the world. However, due to our hardware
limitation, the shorter time interval and propagation time
cannot be realized in a larger number of processes. To seek
the next-best thing, we formulate isomorphic communica-
tion patterns with the above longer Te and Tt. The simu-
lation results of these two different time ranges in smaller
numbers of processes are not obviously distinct.)

The processes in the distributed system execute concur-
rently. However, simulating each process as an indepen-
dent process at a site invoked inter-process communication.
When a process gets initialized, it first invokes the message
receipt subsystem. Then, the system executes Scheduled−
ExecutorService in JDK to drive the application subsystem
which extends T imerTask class − a JDK scheduling service
to dispose of the scheduling operation events. In the simula-
tion, the system relies on TCP channels to deliver messages.
An application subsystem stops generating operation events
once it runs out of all the scheduling events and flags its
status as finished. The simulation is done when all the ap-
plication subsystems have their status set to ‘finished’.

4. SIMULATION RESULTS
This section presents results of simulations performed to

study the trade-off among initial credits cr, message meta-
data size ms, and causal consistency accuracy rate. The
performance metrics used are as follows:

• The causal consistency violation error rate.

• The average size of the message meta-data transmitted
for different initial credits and write rates.

• The message meta-data size saving rate.

Table 1: Critical Initial Credits.
wrate the number of processes

5 10 20 30 40

Re ∼ 0.5%
0.2 3 3 3 4 4
0.5 3 3 3 3 3
0.8 3 3 4 4 4

Re = 0
0.2 5 6 7 8 8
0.5 3 5 7 7 9
0.8 4 5 7 8 8

Table 2: Critical Average Message Meta-Data Size
mave (KB).

Re wrate the number of processes
5 10 20 30 40

∼0.5%
0.2 0.277 0.330 0.430 0.820 1.037
0.5 0.345 0.425 0.495 0.562 0.720
0.8 0.401 0.445 0.640 0.759 0.840

0
0.2 0.312 0.481 0.927 1.566 2.146
0.5 0.345 0.524 0.899 1.190 1.572
0.8 0.426 0.558 0.864 1.140 1.361

In order to clarify the relative contribution of these met-
rics, multivariate analyses were conducted. We report three
types of experiments, in each of which we vary the three
parameters n, wrate, and cr. For each combination of pa-
rameters in each experiment, three runs were performed.
The number of processes was varied from 5 up to 40. The
wrate was set to be 0.2 (lower write rate), 0.5 (medium write
rate), and 0.8 (higher write rate), respectively. The initial
hop count credit cr was specified from one to a critical value,
with which there is no message transmission violating causal
consistency in the corresponding simulation. The variation
in the simulation results for the three runs of each combi-
nation was less than 2%. The mean of the three runs is
represented for each combination. Each simulation execu-
tion runs 600n operation events totally. Experimental data
was stored after the first 15% operation events to eliminate
the side effect in startup.

4.1 Violation Error Rate (Re)
We define ne as the number of messages applied by the

remote replicated sites with a violation of causal consistency.
Re is the ratio of ne to the total number of transmitted
messages mc. The results for Re versus different initial hop
count credits are shown in Figures 1, 2, and 3. Each of them
corresponds to a different wrate.

With increasing cr (less than 4), Re rapidly decreases. For
the same initial cr and wrate, the larger the n, the higher
the Re. The larger the wrate, the lower the Re. Table 1
highlights the results for two types of critical initial credits
(crc) when Re is around 0.5 % (exactly, 0.4% ∼ 0.6%) and
Re = 0 (no causal consistency violation). When n is larger,
the critical initial cr is basically also larger.

4.2 Average Message Meta-Data Size (mave)
Figures 4, 5, and 6 visualize the experimental data of

mave. With increasing initial credit cr, mave linearly in-
creases. The findings also indicate that mave becomes smaller
with a higher wrate in more peers. Table 2 lists the critical
mave corresponding to the numerical data in Table 1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n
 E

r
r
o
r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 1: The Violation Error Rate with wrate 0.2.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n
 E

r
r
o
r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 2: The Violation Error Rate with wrate 0.5.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7 8 9

V
io

la
ti

o
n
 E

r
r
o
r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure 3: The Violation Error Rate with wrate 0.8.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 3 4 5 6 7 8

A
ve

ra
g
e

M
et

a
-D

a
ta

 S
iz

e
(K

B
)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 4: The Average Meta-Data Size (mave) with
wrate 0.2.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8

A
ve

ra
g
e

M
et

a
-D

a
ta

 S
iz

e
(K

B
)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 5: The Average Meta-Data Size (mave) with
wrate 0.5.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

A
ve

ra
g
e

M
et

a
-D

a
ta

 S
iz

e
(K

B
)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure 6: The Average Meta-Data Size (mave) with
wrate 0.8

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S
a
vi

n
g
 R

a
te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 7: The Meta-Data Size Saving Rate (Rs) with
wrate 0.2.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S
a
vi

n
g
 R

a
te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 8: The Meta-Data Size Saving Rate (Rs) with
wrate 0.5.

4.3 Message Meta-Data Size Saving Rate (Rs)
Note that Approx-Opt-Track with cr = ∞ is equivalent

to Opt-Track in [15]. We define Rs as the following.

Rs = 1− ms(cr 6=∞)

ms(Opt− Track)
(1)

Figures 7, 8, and 9 reflect the results for Rs versus different
initial credits in different (low, medium, and high) write
rates, respectively. Note that although cr is unbounded in
Approx-Opt-Track, it does not make sense for simulation
with cr > crc, in which case there is no message delivery
violating causal consistency.

With increasing n, Rs increases. Corresponding to the
same n and initial credit cr, the higher wrate, the lower Rs

seems to be. Table 3 lists the critical Rs corresponding to
the numerical data in Table 1. It can be seen that Rs is
significantly negatively related to wrate.

5. DISCUSSION
We expect that if the initial allocation of hop count cr is

a small finite value but enough, it not only reduces message
meta-data size, but also maintains the desired causal con-
sistency accuracy. In other words, it is expected with very
high probability that when cr reaches zero so as to delete the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9

M
et

a
-D

a
ta

 S
iz

e
S
a
vi

n
g
 R

a
te

Initial Credits

5 Peers
10 Peers
20 Peers
30 Peers
40 Peers

Figure 9: The Meta-Data Size Saving Rate (Rs) with
wrate 0.8.

Table 3: Message Meta-Data Size Saving Rates Rs

in Re close to or equal to zero.
Re wrate the number of processes

5 10 20 30 40

∼0.5%
0.2 0.287 0.521 0.672 0.582 0.613
0.5 0.187 0.352 0.534 0.608 0.628
0.8 0.073 0.289 0.282 0.348 0.412

0
0.2 0.194 0.303 0.294 0.203 0.198
0.5 0.187 0.202 0.154 0.171 0.145
0.8 0.016 0.108 0.029 0.021 0.047

corresponding entry, the corresponding message has reached
its destination.

5.1 Impact of initial cr on Re

With increasing the initial cr, Re rapidly decreases, espe-
cially when cr < 4. The smaller the initial cr, the earlier the
meta-data entry is deleted. Thus, when an entry is removed
earlier, the message associated with the deleted entry might
not reach its destination more likely. It causes that the cor-
responding dependency may not be satisfied, resulting in
higher Re. Table 1 shows the major and minor critical ini-
tial credits – cr0 (Re = 0) and cr∼0.5% (Re = 0.4% ∼ 0.6%)
– for different numbers of processes.

Furthermore, cr∼0.5% seems not to significantly increase
as the number of processes n. It implies that by setting the
initial cr to a small finite value but enough value, most of
the dependencies associated with the meta-data will become
aged and can be removed without risking causal violations
after being transmitted across a few hops, even in a large
number of processes. On the other hand, in Re = 0 (no
causal violations), the resulting correlation coefficients of cr0
and n for different wrate are around 0.94 ∼ 0.95. It means
that the more the number of processes n, the larger the
initial cr is to avoid causal violations.

5.2 Impact of wrate on Re

This section evaluates how different write rates influence
the violation error rates Re across a variety of n and cr.
Figures 1 ∼ 3 show the results of Re among different wrate

in smaller initial credits over different process numbers. Ta-
ble 1 summarizes the values of cr0 and cr0.5% from the results
of Re in Figures 1 ∼ 3 and shows that wrate does not have

an apparent impact on cr0 and cr∼0.5%. However, when ini-
tial cr < 4, the higher the wrate, the lower the Re. Causal
consistency follows read-from order ≺ro. Two operations
o1 and o2 have the relationship o1 ≺ro o2 if there exists o1
= w(x)v (write a value v into variable x) and o2 = r(x)
(read the value from variable x) such that operation o2 re-
trieves the value stored by operation o1. When the initial cr
is a smaller value, dependencies might not be satisfied with
higher probability. The higher the read rate rrate (i.e., wrate

is lower), the more likely read-from relation occurs.

5.3 Impact of initial cr on mave

Figures 4 ∼ 6, each of which reflects a certain wrate, il-
lustrate experimental results for average message meta-data
size mave in different initial credits with respect to varying
n. ms is linearly proportional to initial cr, because we only
carried out the experiments under initial credits ≤ critical
cr0.

For a certain combination of n and initial cr, ms decreases
as wrate increases. The reason is the same as shown in [8],
due to fewer MERGE and more PURGE operations in
Opt-Track [15] and Approx-Opt-Track [11]. A read oper-
ation will invoke a MERGE function to merge the piggy-
backed log of the corresponding write to that variable with
the local log LOG. Thus, a higher read rate may increase
the likelihood that the size of explicit information becomes
larger. Furthermore, although a write operation results in
the increase of explicit information, it comes with a PURGE
function to prune the redundant information, so that the size
of LOG could be decreased. Therefore, a higher write rate
with a corresponding lower read rate causes fewer MERGE
and more PURGE operations generated.

Table 2 lists the analytic data about mave in cr0 and
cr∼0.5%. For the case of 10 processes, ms(10) is around
0.48KB ∼ 0.56KB for Re = 0. For the case of 20 processes,
ms(20) is around 0.86KB ∼ 0.93KB for Re = 0. For the
case of 40 processes, ms(40) is around 1.36KB ∼ 2.15KB
for Re = 0. Consider wrate = 0.5 and wrate = 0.8. Using
cross-comparison analyses, ms(40)/ ms(20)/ ms(40) is less
than ms(10)×4/ ms(10)×2/ ms(20)×2. The results reflect
the better scalability of Approx-Opt-Track in higher wrate

under no risk of violating causal consistency.

5.4 Impact of initial cr on ms

This section reports the effect of Approx-Opt-Track to re-
duce the meta-data overheads under causal consistency. As
mentioned before, the meta-data for dependencies could be
reduced at the cost of some violations of causal consistency.
We intend to study the exact nature of the trade-off between
ms and Re. We expect to find a finite initial cr small enough
that can not only reduce the meta-data size, but also have
the system fully follow the causal consistency.

According to equation (1), Rs decreases as ms increases,
which positively depends on initial credits cr. Figures 7 ∼
9 present the linear relationships between ms and initial cr
under initial credits < cr0 (or cr∼0.5%, called ‘unsatisfied
state’). Rs is determined by cr, n, and wrate in the unsatis-
fied state.

For the same number of processes, the curves of Rs versus
cr shift downward as wrate increases. It implies that, in un-
satisfied states, ms increases more slowly than ms(cr = ∞)
does as rrate rises. This is because there are more MERGE
operations to delete meta-data entries in higher rrate (lower

wrate).
Table 3 summarizes the details of numerical data about Rs

in the major and minor critical initial credits. For the case
of 40 processes, Rs is around 40% ∼ 60% at a very slight cost
of violation of causal consistency (Re ∼ 0.5%). Rs reaches
around 5% ∼ 20% without violating causality order in terms
of different write rates. This evidence proves that if the ini-
tial allocation of cr is a small but enough digit, the message
about which the corresponding meta-data is deleted would
already have reached its destination very likely. From the
above comprehensive analyses, Approx-Opt-Track shows a
better network capacity utilization than Opt-Track without
causing additional causal violations.

6. CONCLUSIONS
We considered the problem of providing causal consistency

protocols in partially replicated systems. Approx-Opt-Track
has been proposed and showed theoretically its potential to
improve the meta-data size of Opt-Track. However, there is
a trade-off between ms (or initial cr) and Re. This paper
conducted a performance trade-off analysis of Re, ms, and
Rs using multi-scale simulations.

The simulation results showed that by controlling initial
cr, we can trade-off the level of potential causal consistency
inaccuracy by the meta-data size. By setting a small finite
initial cr, most of dependencies turn out to be aged after
being transmitted across a few hops. For various numbers
of processes, varying from 5 to 40, the minor critical initial
credits (cr∼0.5%) are around 3 ∼ 4 with a very low Re, which
is close to 0.5%. It concludes that if the initial allocation
of cr is made as a finite single-digit, by the time the cr
reaches zero, the message corresponding to the meta-data
would reach its destination with very high probability.

With a finite initial cr small enough, Approx-Opt-Track
was also seen to show significant gains over Opt-Track. In
particular, as for 40 processes, Approx-Opt-Track can lower
the meta-data size by around 5% ∼ 20% without causal
violations and from 40% ∼ 60% for up to 0.5% causal viola-
tions. Thus, we showed that Approx-Opt-Track can provide
less overhead than Opt-Track at little or no cost of violating
causal consistency. Coupled with the analysis [11] about the
net message sizes (payload + meta-data size) under partial
replication versus full replication, our results also suggest
that partial replication is a viable alternative to full replica-
tion for causal consistency in distributed systems.

Our results assumed a system model of distributed shared
memory similar to that used by Ahamad et al. [1], Bal-
doni et al. [3], [15], [8], and [11]. Currently deployed geo-
replicated cloud platforms, which do only full replication
and no partial replication, use a two-level storage architec-
ture which is a different model. Future work would entail
adapting the Opt-Track and Approx-Opt-Track algorithms
for causal consistency under partial replication to this archi-
tecture.

7. REFERENCES
[1] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and

P. Hutto. Causal memory: Definitions,
implementation and programming. Distributed
Computing, 9(1):37–49, 1995.

[2] S. Almeida, J. a. Leitão, and L. Rodrigues.
Chainreaction: A causal+ consistent datastore based

on chain replication. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
’13, pages 85–98, New York, NY, USA, 2013. ACM.

[3] R. Baldoni, A. Milani, and S. T. Piergiovanni.
Optimal propagation-based protocols implementing
causal memories. Distributed Computing,
18(6):461–474, 2006.

[4] P. Chandra, P. Gambhire, and A. D. Kshemkalyani.
Performance of the optimal causal multicast
algorithm: A statistical analysis. IEEE Transactions
on Parallel and Distributed Systems, 15(1):40–52,
2004.

[5] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices
and physical clocks. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages
11:1–11:14, New York, NY, USA, 2013. ACM.

[6] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency
with physical clocks. In Proceedings of the ACM
Symposium on Cloud Computing, Seattle, WA, USA,
November 03 - 05, 2014, pages 4:1–4:13, 2014.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[8] T. Y. Hsu and A. D. Kshemkalyani. Performance of
causal consistency algorithms for partially replicated
systems. In IPDPS Workshops, pages 525–534. IEEE,
2016.

[9] I. Iliadis, D. Sotnikov, P. Ta-Shma, and
V. Venkatesan. Reliability of geo-replicated cloud
storage systems. In Dependable Computing (PRDC),
2014 IEEE 20th Pacific Rim International Symposium
on, pages 169–179, Nov 2014.

[10] A. Kshemkalyani and M. Singhal. Necessary and
sufficient conditions on information for causal message
ordering and their optimal implementation.
Distributed Computing, 11(2):91–111, Apr. 1998.

[11] A. D. Kshemkalyani and T.-Y. Hsu. Approximate
causal consistency for partially replicated
geo-replicated cloud storage. In Proceedings of the
Fifth International Workshop on Network-Aware Data
Management, NDM ’15, pages 3:1–3:8, New York, NY,
USA, 2015. ACM.

[12] A. D. Kshemkalyani and M. Singhal. An optimal
algorithm for generalized causal message ordering. In
Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’96,
pages 87–, New York, NY, USA, 1996. ACM.

[13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages
401–416, New York, NY, USA, 2011. ACM.

[14] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In Proceedings of the 10th
USENIX Conference on Networked Systems Design
and Implementation, nsdi’13, pages 313–328, Berkeley,
CA, USA, 2013. USENIX Association.

[15] M. Shen, A. D. Kshemkalyani, and T. Y. Hsu. Causal

consistency for geo-replicated cloud storage under
partial replication. In IPDPS Workshops, pages
509–518. IEEE, 2015.

[16] M. Shen, A. D. Kshemkalyani, and T. Y. Hsu.
OPCAM: optimal algorithms implementing causal
memories in shared memory systems. In Proceedings of
the 2015 International Conference on Distributed
Computing and Networking, ICDCN 2015, Goa, India,
January 4-7, 2015, pages 16:1–16:4, 2015.

	Introduction
	Approx-Opt-Track Protocol
	Simulation System Model
	Process Model
	Simulation Parameters
	Process Execution

	Simulation Results
	Violation Error Rate (Re)
	Average Message Meta-Data Size (mave)
	Message Meta-Data Size Saving Rate (Rs)

	Discussion
	Impact of initial cr on Re
	Impact of wrate on Re
	Impact of initial cr on mave
	Impact of initial cr on ms

	Conclusions
	References

