Printer - please drop in Elsevier (tree) logo

Computers & Security Vol. 17, No.2, pp. 171-176, 1998
© 1998 Elsevier Science Limited

All rights reserved. Printed in Great Britain
0167-4048/98 $19.00

On Probabilities
of Hash Value

Matches

Mohammad Peyravian?, Allen
Roginsky?2, Ajay Kshemkalyani®

“IBM Cotporation, Research Triangle Park, NC 27709, USA
YECECS Department, University of Cincinnati, Cincinnati, OH

45221, USA

Hash functions are used in authentication and cryptography, as
well as for the efficient storage and retrieval of data using hashed
keys. Hash functions are susceptible to undesirable collisions. To
design or choose an appropriate hash function for an application,
it is essential to estimate the probabilities with which these colli-
stons can occur. In this paper we consider two problems: one of
evaluating the probability of no collision at all and one of finding
a bound for the probability of a collision with a particular hash
value. The quality of these estimates under various values of the
parameters is also discussed.

Keywords: hash functions, security, cryptography, indexing, databases

1. Introduction

A hash function takes a variable-length input string
and maps it to a fixed-length (generally smaller) out-
put string. Hash functions are extensively used for
index management in database systems and file sys-
tems for efficient storage and retrieval of data based on
hashed keys [1,9,15], digital signatures for authentica-
tion [6,12,16], and cryptography [4,5,11,12]. A good
survey of classical hashing methods is given in [9].

A hash function is prone to collisions wherein two

input strings map to the same output string. A good
hash function minimizes the possibility of collisions; a

0167-4048/98$19.00 © 1998 Elsevier Science Ltd

hash function is said to be collision resistant if it is hard
to find two input strings that map to the same hash
value. The problem of constructing fast hash functions
that also have low collision rates is studied in [5]. Key-
to-address transformation techniques for file access
and their performance have been studied in [8]. Given
k, the number of hashed values that have been used in
a hashing scheme in which input strings are mapped
to random values, the expected number of locations
that must be looked at until an empty hashed value is
found is formulated in [10]. This result was improved
for certain non-random hashing functions and certain
values of k in [14]. The efficiency of multiple-key
hashing in limiting the search of a given key value in
a file and in minimizing the search in answering par-
tial-match or multi-attribute queries is studied in [2].
The only known work that deals with the probability
of collisions of hash functions is [3,13,16]. These
papers dealt with the construction of universal hash
functions which are classes of hash functions such that
the functions in any class have the same bound on the
probability of hash collisions.

For several applications such as cryptography, it is
important to design or choose appropriate hash func-

171

On Probabilities of Hash Value Matches/Peyravian, Roginsky,

Kshemkalyani

tions with an upper bound on the probability of col-
lisions. To this end, our objective is to determine the
probabilities of hash collisions for hash functions that
are uniformly mapped into the codomain, i.e., each
input string is equally likely to be mapped to any of
the hash values of the codomain under different sce-
narios. Specifically, we address two problems: 1) deter-
mining the probability that there are no collisions at
all, in Theorem 1, and 2) determining a bound on the
probability of a collision with a particular hash value,
in Theorem 2. For each of Theorems 1 and 2, we state
some corollaries that give the minimum size of the
hash function that is necessary to satisfy a desired
upper bound on the probability of hash collisions.

2. Hash Functions

Definition 1: A hash function H(M) = h maps an
input bit string M from set A into a bit string of a fixed
length in set B with the properties that

Every possible value of B is equally likely to be an
image of an element in set A.
Given M, it is easy to compute h.

Hash functions considered in the literature, e.g.
{3,5,8,10,13,14,16] satisfy the above definition.

We were prompted to address the problems on the
probability of collisions while employing hash func-
tions for cryptography and had to deal with potential
collisions. In cryptography, the security of protocols
that use hash functions would be undermined if the
hash functions are not highly collision resistant,
Additionally, it is should be extremely hard to recon-
struct the input string from its hash value in a reason-
able amount of time. Such hash functions are called
one-way hash functions.

One-way hash functions are useful in cryptography
because they enforce the property that the knowledge
of a particular value of H(M) does not help the attack-
er to guess the value M that was used and at the same
time it provides a ‘fingerprint’ of M that is unique.
There are many one-way hash functions such as
SHA-1, MD2, MD4, MD5, and Snefru presently in
use (see [12]).

172

Definition 2: Following [12], we define a one-way
hash function H(M) = h as a function that maps any
input bit string M from set A into a bit string of a fixed
length in set B with the properties that

» Every possible value of B is equally likely to be an
image of an element in set A.

* Given M, it is easy to compute h.

* Given h, it 1s hard to compute M such that HM) = h

* Given M, it is hard to find another message M'
such that HM) = HM').

* It is hard to find two random messages, M and M’,
such that H(M) = H(M").

Although our results apply to all hash functions that
satisfy Definition 1, we focus on the cryptography
application (Definition 2) for the rest of this paper.

3. Problem Statement

Let us consider the following scenario. Let A. be a set
consisting of m different messages M, M,,..., M, . Let
M denote a particular message in A4 with a correspond-
ing hash element H(M) in set B.Two problems then arise.

Problem 1: Given sets A and B, determine the prob-
ability that no two elements in A mesh into the same
element of B, that is, determine the probability that
there are no collisions.

Problem 2: Given our particular message M, deter-
mine the probability that no other element in 4 mesh-
es into the value, H(M), of the hash function at M.

Answers to Problems 1 and 2 give two measures of
goodness of a hash function. An application can
choose or design a hash function such that the good-
ness of the hash function satisfies the application’s
requirements. In cryptography, Problem 1 is also
important since a high probability of collisions
between any messages opens the door to the so-called
‘birthday attacks’ (see [12].) Problem 2 is also relevant
because a user is concerned with only his or her mes-
sage M having a unique image in set B.

In practical applications, Problems 1 and 2 can be stat-
ed as follows: given the size m of set A and the maxi-

Computers & Security, Vol. 17, No. 2

mum permissible value Q_ of the collision probabil-
ity, what should be the minimum length, &, in bits of
the values of the hash function? We answer these ques-
tions associated with Problems 1 and 2 by deriving
corollaries to two theorems that answer Problem 1 and
Problem 2, respectively.

4. Estimates of Collision Probabilities

We will prove two theorems (Theorems 1 and 2) asso-
ciated with Problems 1 and 2 stated above and also
consider some special cases.

Theorem 1: For k>3 and m<2* the probability Q
that there exists collisions between the hash values sat-
isfies the following inequality:

(m+1)2 J

Q<1—exp(— 3
22% +1-m)

(1)

Proof:

Let P = 1-Q be the probability that no collisions
occur. There will be no collisions when the second
message is hashed into a value in set B different from
that of the first message, the third message is hashed
into yet another value, etc. The probability of this is
equal to

b-1 b-2 b-m+1_ b

P= X -ee X
b b b BUb-m)! 5

where b=2k is the number of possible values of the
hash function. In terms of the Gamma function I'(x),
(2) can be rewritten

['(c)

p-—-<
b (c~m) 3)

where ¢ = b+1=2%+1. Hence

In(P) = In(G{(c)) —m In(b) — In(T(c — m)).
(4)

A logarithm of a Gamma function for the large values
of the argument can be very well estimated by using
formula 8.344 from [7]. It states that for any j>1,

J-1
In(l'(z)) =z In(z)-2-05 ln(z)+]n((2m))+

i=1

i(2)
2i(2i - 1)22’ kit

®)

where

18,
2,2 =Dl cos?/ 7! (05-Im(z))

|R;(2)] <

and B,, is the corresponding Bernoulli number. The
reason for the cosine term is that the formula is also
applicable to the non-real values of z. We will use this
formula only with j=1, so that the summation term
will not be present the only applicable Bernoulli
number is B, = 1/6, and with z equal first to ¢ and
then to c-m. Therefore z 1s real and positive, the cosine
function of one half of its imaginary part is equal to 1
and thus |R,(z)|<1/12z. In the following calcula-
tions we will omit a subscript for R ,(z) and simply call
it R(z) Applying (5) to formula (4), we get

In(P)=c In(c) - c—05 In{c) + ln(JZ—I;) + R(c)—m In(b) - (c—m) In(c—m)+(c—-m)
+05 In(c - m)~In(+27 | - Ric = m)

=c¢ In{c)-c-05-In{c)—m In(b) - ¢ In(c-m)+m In(c-m)+c-m+0S In(c—m)
+(R(c) - Rie—m))

=c In(c/(c—m))—-05 In{c/(c—m))—m In((c— 1)/ (c-m))~m+(R(c)~ R(c —m))
>¢ In(c/{c-m))-05 In(c/(c—m)—m In{c/(c—m) —m+(R(c) - R(c—m))
={c-m-05) In(1+m/(c—m)~-m+(R(c)~ R(c —m)).

6)

Let us denote n = ¢ - m. From the assumptions of the
theorem it follows immediately that m < 5.

Using the bound for R(z) and the fact that n < ¢, we
have |R(c) - R(n)| <1/6n so (6) can be written as

In(P)>(n-05) In(l+m/n)~m—1/6n
>(n-0.5)(m/n-m2 /2n2)—m—1/6n

2 2
_mom om
2n 2n 4n?
2
+
M) ™ 3
2n 2n 452

>—(m+1)2/2n.

173

On Probabilities of Hash Value Matches/Peyravian, Roginsky,

Kshemkalyani

Here we used the well-known and easily-verified
fact that 1n(1+x)>x-x2/2 for x>0. Hence P>e"(m+1)2/2n
and the statement of Theorem 1 follows from here.
This completes the proof of Theorem 1.

QED

Theorem 1a: Under the assumptions of Theorem 1,
the probability Q that there exist collisions between
the hash values satisfies that following inequality:

(m+1)?
202 +1-m) @

Proof:
It follows immediately from Theorem 1 and from the
fact that ¢*> 1+x, for all x.

QED

Theorem 1a offers a very close approximation to the
true probability of having collisions if m is significant-
ly smaller than ».

Corollary 1: Given Q__and m, it is sufficient to have
2
kzmm{952—+m—q
20,

ax

©)

Proof:
If k satisfies (8) then
2
2k 5 (m+ 1)~ m-1,

2 max

)
(m+1)?
>~
Omix 2(2k +1-m) ©)

According to Theorem 1a, the collision probability Q
satisfies

(m+1)?

—21_ <9
208 41-m) ™

QED

174

The following two corollaries may prove to be very
useful in all practical applications of the above results.
The upper bound for the probability in Theorem 1
can be very closely approximated by m2/2-k*D),
While there is no absolute guarantee that the latter
expression provides an upper bound for Q, its close-
ness to the estimate in (1) makes it fully acceptable for
all reasonable values of 7, kand Q__ . With this under-
standing we can obtain the following results.

Corollary 1a: To achieve a target probability of Q.
or less for the probability of having hash collisions, it
is sufficient to have a hash function with the value of

k that satisfies

k22-logym—logy; Qpax — 1
QED

Corollary 1b: Let 7 be the length of a message in the
A set and suppose that the A set may include all of the
2" different messages of length r bits. Suppose also that
Q,..x 15 expressed as 27/ for some ¢. Then it is sufficient
to have k that satisfies

k22r+t-1

Now we turn to Problem 2 and prove the following
result.

Theorem 2: The probability Q that there exist col-
lisions with a given hash value satisfies the following
inequality:

O<l1- CXP(_?ZmT)

Proof:
We can assume that m<2¥; otherwise, there is nothing
to prove.

As in the proof of Theorem 1, let us denote P as the
complementary probability. Thus P = 1-Q is the
probability that no collisions with a given value
H(M) take place. The probability that a message
M;#M hashes into a value different from H(M) is
(b-1)/b where, as before, b=2*,

The properties of our hash function allow us to

assume the independence of these collisions, so

P = (1-1/b)™1, We have

In(P) = (m—1)In(1-1/5)
=(m=-1)(-1/b-1/2b> =1/3p> - 1/4b* — -
>m-1=1/b-1/2b% —1/26% —1/2% -..)

b
:(m_l)(_l/b_b_Zz(b—l))

>(m-1)-1/b-1/b%)
=-m/b+(1/b+1/b>-m/b*)>-m/b,

when m < b.

Therefore P>e™ 5o Q<1-¢™’t. Theorem 2 is
proved.
QED

Theorem 2a: The probability Q that there exist col-
lisions with a given hash value sadisfies the inequality

m
Q<2—k

Proof:
Theorem 2a follows immediately from Theorem 2 and
the fact that e*> 1-x for all x.

QED

Corollary 2: Given Q__and m, it is sufficient to have

k >log, m—1logy Omax

Proof:
The proof logic follows that of the proof of Corollary 1.
QED

Corollary 2a: Under the assumptions made in
Corollary 1b, it is sufficient for k to satisfy k>r+t.
QED

Example: If one considers the hashes of all messages
100 bits long and wants the probability of collisions
with a particular hash value not to exceed 2-60 then it
is safe to use the hash function SHA-1 (k = 160) for
this purpose.

Computers & Security, Vol. 17, No. 2

5. Conclusion

Analyzing the hash collision probability is important
for choosing or designing appropriate hash functions
for critical applications such as cryptography. A large
number of hash functions studied in the literature sat-
isfy the property that each hash value is equally likely
to be the image of any given input. This paper ana-
lyzed the hash collision probability by answering the
following two questions for all hash functions that sat-
isfy the above property.

What is the probability that there are no collisions at all?

The answer to this question is particularly important
in knowing the susceptibility of the hash function-
based encryption to ‘birthday attacks’.

Given any particular input string, what is the proba-
bility that no other input string in the domain gets
hashed to the same value that the given input string
hashed into?

The answer to this question gives the user of the cryp-
to-system based on the hash function the probability
that his particular input string will not be involved in
a collision with any other input.

The theorems that answer the above questions are
used to derive corollaries that answer the following
questions for the two types of probabilities addressed:

Given the size of input strings and the maximum per-
missible value Q. of the collision probability, what
should be the minimum length k in bits of the value
of the hash function?

An application would choose or design a hash func-
tion of a length indicated by answering this question
in order to guarantee an upper bound on the proba-
bility of a hash collision.

References

[1] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] A. Bolour, “Optimality Properties of Multiple Key Hash
Functions,” Journal of the ACM, 26(2), 196-210, 1979.

175

On Probabilities of Hash Value Matches/Peyravian, Roginsky,

Kshemkalyani

[3] J. L. Carter, M. N. Wegman, “Universal Classes of Hash
Functions,” Journal of Computer and System Sciences, 18, 143-154,
1979.

[4] L. B. Damgard, “Collision Free Hash Functions and Public Key
Signature Schemes,” Advances in Cryptography, Eurocrypt ‘87,
LNCS 304, 203-216, 1987, Springer-Verlag.

[5] L. B. Damgard, “A Design Principle for Hash Functions,”
Advances in Cryptology, Crypto ‘89, LNCS 435, 416-427, 1989,
Springer-Verlag.

|6] S. Goldwasser, S. Micali, R.. Rivest, “A Paradoxical Solution to
the Signature Problem,” Proc. 25th IEEE Conf. on Foundations of
Computer Science, 441-448, 1984,

[7] I S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Series, and
Products, Academic Press, 1980.

[8] V. Lum, “General Performance Analysis of Key-to-Address
Transformation Methods Using an Abstract File Concept,”
Communications of the ACM, 16(10), 603-612, October 1973.

[9] W. D. Maurer, T. G. Lewis, “Hash Table Methods,” ACM
Computing Surveys, 7(1), 5-20, 1975.

176

[10] R.. Morris, “Scatter Storage Techniques,” Communications of the
ACM, 11(1), 38-44, Jan. 1968,

[11] B. Preneel, “Cryptographic Hash Functions,” European Ttans.
Telecommunications, 5, 431-448, 1994,

[12] B. Schneier, Applied Cryptography, 2nd edition, John Wiley and
Sons, Inc, 1996.

[13] D. Stinson, “Combinatorial Techniques for Universal
Hashing” Journal of Computer and System Sciences, 48, 337-346,
1994.

[14] J. D. Ullman, “A Note on the Efficiency of Hashing
Functions”, Journal of the ACM, 19(3), 569-575, July 1972.

[15] J. D. Ullman, Principles of Database Systems, Computer Science
Press, 1980.

[16] M. N. Wegman, J. L. Carter, “New Hash Functions and Their

Use in Authentication and Set quality,” Journal of Computer and
System Sciences, 22, 265-279, 1981.

