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Abstract

Events in a distributed computation have been implicitly modeled in the literature in the
isolated contexts of various applications. This paper presents a unifying framework for expressing
and analyzing cvents at various levels of atomicity in a distributed computation. In the framework,
events at any level of atomicity are defined and composed in terms of events at a finer icvel of
atomicity using hierarchical views of the distributed computation. We identify and prove three
properties that arc satisfied by each level of atomicity. Results based on these propertics that
hold for any onec level of atomicity apply to all levels of atomicity. The properties also show
that the global states at the various levels of atomicity correspond to embedded lattices of global
states. thereby providing different abstract views of the same computation. & 1998 Published
by Elsevier Science B.V. All rights reserved
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1. Introduction

In the literature on distributed system executions (also known as computations),
much attention has been focused on modeling events in order to reason better about
the system executions. Thus far. events have been implicitly modeled in the isolated
contexts of various applications. The events modeled have various levels of atomicity,
and there is no prior treatment of the various levels of atomicity in a unifying frame-
work. A formal treatment of grouping events in a distributed execution into higher-level
nonatomic events is crucial in modeling distributed activities to provide different ab-
stract views [21,30]. Event abstraction also provides simplicity to the programmer
and system designer in reasoning at the appropriate level of atomicity by reducing
the amount of information to be handled. Lamport also argued that it is usciul to
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assume that primitive elements between which concurrency is modeled are nonatomic
for studying basic questions about nonatomicity [30]. This paper provides a unifying
framework for expressing and analyzing events at various levels of atomicity in dis-
tributed system executions: events at a particular level of atomicity arc defined and
hierarchically composed in terms of events at a finer level of atomicity. This work
also helps to model concurrency in the execution more clearly than before by exam-
ining events Iin views at dilferent levels of atomicity, and their corresponding ordering
relations.

We define system executions for various levels of atomicity by first defining a sys-
tem execution dealing with the most elementary events, suitably identified. We then
hierarchically compose svstem exccutions at coarser levels of atomicity by using the
system executions at finer fevels of atomicity.

Specifically, we choose to identify the most elementary events as certain “basic”
communication actions |14, [5] at both processes and communication channels
[3.10.31] in a distributed system execution. This level of atomicity is useful for design-
ing complex communication constructs 2,4, 13,43] and for comparing their flexibility
with that of the primitive communication events at this lowest level of atomicity as
a benchmark. Another use of this level of atomicity is in designing systems that are
asynchronous at the application layer but are synchronous at the transport layer or be-
tween output and input buflers of processes. A specific example of this design is that of
a lightweight nonblocking implementation of causal message ordering |13, 28, 34, 37).
Events at this level of atomicity can then be composed together to define events at a
coarser level in the atomicity hierarchy. At this second level in the hierarchy, the events
arc abstract send and receive events exccuted at the processes. Modeling events at this
level of atomicity has implicitly been done by many applications such as distributed
snapshots [8], modeling distributed computations [18,29,33], concurrcncy measures
[1T. 12, 19]. transfer of krowledge |9]. leader election and mutual exclusion [41]. The
next coarser level in the atomicity hierarchy has cvents that are reactive i nature, i.e.,
cach cvent denotes activity at a process in response to messages received from other
processes. Modeling cvents at this level of the hierarchy has been used for distributed
debugging [16,35] and distributed termination detection [32,45]. Another level of the
hicrarchy has events such that cach event is affected by and affects the rest of the
computation only by the process states at the start and end of the event, respectively.
In this view of the computation, the global state of the system before and after any
event is a transitless globul state, i.e., there are no messages in transit between any pair
of processes in this state. Applications such as checkpointing and recovery [44] atomic
transactions [6], and fault-tolerant computations [20.36] use this level of atomicity, also
considered in [1]. Transitless states also occur when strong stable properties [38] like
deadlock [27] and termination {32] become true in the system. We also show the use of
transitless states in resetting vector clocks [18,33] which are widely used in distributed
computations. We consider the above four levels of atomicity in a unifying framework
using hicrarchical composstion and lattices. Although we consider four important levels
of atomcity for distributed system executions in this paper, the methodology used is
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useful to model other levels of atomicity for distributed system executions, as well as
views of parallel system executions.

Besides proposing a unifying framework for expressing and analyzing events at
various levels of atomicity and presenting the applications of cach level of atomicity,
we also prove that each level of atomicity formulated using the hierarchical framework
satisfies three properties. (Property P1) The events at any level of atomicity partition
the events at the finer level of atomicity in terms of which this level is defined. (See
Definition 5 and Theorems 3, 6, and 9 for the four levels of atomicity considered.)
(Property P2) The events at any level of atomicity ordered by the corresponding
ordering relation form a strict partially ordered set. henceforth, also referred to sim-
ply as a poset. (See Definition 5 and Theorems 4, 7, and 10 for the four ievels
of atomicity considered.) Pl implies that all the events at any level of atomicity are
included implicitly in more abstract events at coarser levels of atomicity. Any result
based on these properties that applies to any one leve] of atomicity applies to all ievels
of atomicity.

At the finest level of atomicity, the set of all observable states of the system forms
a lattice. We show that each level of atomicity also satisfies the following property.
{Property P3) At any level of atomicity, the set of all observable states forms a sublat-
tice of the lattice of all observable states at the finer level of atomicity in terms ol which
this coarser level of atomicity is defined. Thus, corresponding to the hierarchical com-
position of system executions, we also express the hierarchical sets of observable global
states in terms of embedded lattices. {(See Theorems 2, 5, 8, and 11 for the four levels
of atomicity considered.) We also show that the event ordering relation at cach level of
atomicity captures a notion of causality that is meaningtul for that level of atomicity.

Section 2 presents the system model and the hierarchical framework used to nodel
the events at various levels of atomicily. Section 3 presents the events at four levels of
atomicity by a hierarchical composition of the events at a finer level of atomicity. For
each level of atomicity, the section also discusses the applications. Section 4 discusses
the uses of the presented methodology and concludes.

2. System model

A distributed system contains a set of processes running on processors connected
by communication channels. Without loss of generality. we assume a single process
runs on each processor. Any two processes can communicate by point-to-point message
passing over a channel that connects the two processes. Every message can be uniquely
identified at a given level of atomicity. A channcl is a passive entity in the sense that
it receives messages from a sender process and delivers them to the receiver process;
we assume it cannot generate. consume, or alter messages, but it can permute the order
of delivery of messages. The transfer of messages between a pair of processes takes
finite time on a global time scale; the transfer of messages between a sender process
and a channel, as well as between a channel and a receiver process is instantancous.
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Depending on the level of atomicity being modeled, both processes and channels are
modeled, or only processes are modeled in the system. Processes and channels will also
be referred 10 as nodes in the system. In the literature, the channel has been modeled
as a node in various ways such as a shared memory accessible to the sender and
receiver processes [3], as a process [10]. or as a bag of messages [5]. The instantaneous
communication between a sender process and a channel, as well as between a channel
and a receiver process can also be modeled by an 1/O automaton [31]. A channel that
transfers messages from process node 7 to process node j is denoted c¢;;.

Let £ be the sct of the most elementary events in a system execution, 1.e., a com-
putation. We assign a semantic meaning to £ later. Events of £ are partitioned into
local computations at a process or channel, assuming that each event of £ occurs at
a single process or channe! only. The local computation at process ¢ or at channel /
is denoted £:. Each local computation is a linearly ordered set. An event ¢ in £, is
denoted ¢;. The initial event in £; is ;. For finite computations, the final event in
each E; i1s 71,

Each process or channel node is associated with a state. A state transition at a node
occurs when an event occurs at the node. The svstem state or global state is the
collection of the local states of the nodes. A global state transition occurs each time a
local state transition occurs

The local action of sending (receiving) a message is a send (receive) event. For sim-
plicity, the model deals with send events that unicast messages point-to-point, although
it can be modified to allow a send event to multicast a message point-to-multipoint.
The set of events that occur at any one node in a run of a computation can be de-
composed into the sets #%. <, and # |, which are the sets of events of receiving
a message from another node, sending @ message to another node, and internal events,
respectively. Individual events in the three sets are denoted by RC. SD. and IN, re-
spectively. The sets #%, / /, and .#1 will be defined at multiple levels of atomicity
which will be differentiated by appropriate subscripts.

When channel nodes are cxplicitly modeled in a view of a computation, their send
and receive events are as tollows. An event at which ¢; receives a mcssage from
process / is a RC event on ¢;;. An event at which ¢; sends a message to process j 18
a SD event on ¢y

Events in a computation arc ordered by the causality relation < on £ [29]. The
causality relation is the smallest transitive relation satisfying the following two con-
ditions: (i) If ¢; occurs immediately before ¢ at node 7, then e; < ef. (ii) If ¢ is the
sending of a message and ¢; s the receipt of the same message, then ¢, ~l¢;. (£, <)
is a strict partial order.

A cut C of (E,=<) is a subset of £ such that if ¢; € C then Vel: e ~ ¢;, we have
el € C. Thus, a cut is left-closed when it is projected on individual nodes. Cuts that
preserve the causality relation in the computation are termed consistent cuts and are
of interest because they are prefixes of the computation and denote feasible compu-
tations. Formally, a consistent cut of (£, <) is a lett-closed subset of £. i.e., CC i3
a consistent cut of (E. <) iff CCCEAN(¢ec CCAY <e=>¢' € CC). The system state
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after the execution of a consistent cut is termed a consistent global stute. The set of
(correctly) observable system states is the sct of consistent global states.

We use the relation symbol * ~™ to denote the subset *“C
a computation. The following is a known result (see [17,33]).

LES

relation between cuts of

Theorem 1. (1) 4. the set of all cuts of a poset (E. <), forms a laitice (4. . 1 with
the operations U and M.

(2) 66, the set of all consistent cuts of a poset (E <), forms a sublattice (676.12)
of (6.C).

The height of the lattice (6%, ) is the number of events in £. Henceforth, we deal
only with lattices of consistent cuts as they capture only all the feasible computations.
The lattice of consistent global states is isomorphic to the lattice of consistent cuts.

2.1. Unifving framework

We present a hierarchical framework to define events at various levels of atomicity in
terms of elementary actions by adapting the formalism of hierarchical views of a system
execution introduced by Lamport [30]. The choice of actions treated as elementary is
based on the need to model sufficiently fine-grained actions for the known applications,
Therefore, this choice is arbitrary to some extent.

The set of events in the system execution at an arbitrary level of atomicity x. as
well as the ordering relation among the events at that level of atomicity is represented
as a tuple (/. =,). o/ and =<, are different for each level of atomicity x. The term
“atom” will be used interchangcably with “event”; individual events (or atoms) and
the set of events (or atoms) are denoted 4, and .o/, respectively, to emphasize their
atomic naturc. The subscript wilt be dropped when the context is clear.

Consider (.+/,, <) and (/4. ), where 7, and .o/ are sets and -, and - are
relations on the elements of .o/, and -/, respectively. Let mapping py be a one-many
surjective mapping that maps cach element 4y of /5 to a non-empty subset of ./, If
,u/?' is a function then .o/ defines a partition on .</, — thus each element 4, of =/, is
contained in exactly one element 4y of 7. and an element Ay may contain multiple
elements from .=/,. Each element Ay in .o/; is a set that is a higher-level grouping
of the events in </, that is of interest to some application. jig is specified so as to
define meaningful events at an appropriate level of atomicity (.«/p, <) In terms of the
events specified at the level of finer atomicity in (.«7,. <, ). Moreover, ji; is specificd so
as to define a meaningful ordering relation < that captures some notion of causality

appropriate for level of atomicitv ff. Specifically. <,;(A,a;u»-l;,,) 1s a function of . over
,U/{(A/;) X ,ll/;(/l?), ).
There are two cases to consider when we define a system execution Sy = {2/, ~¢4).

(i) For system executions Sg at recursively higher levels of atomicity, we specity a
mapping /g, which maps S to « system execution S, at a finer level of atomicity. =7
contains events at a coarser level of atomicity than /. (ii) If Sy is at the level of
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atomicity of the most elementary actions that we choose, uy maps 5; 10 Sy and we
provide a semantic model for Sy.

Definition 1. A system cxecution Sy is a tuple (/. <) where <73 is a set and <y is

an ordering relation on /s Sy is specified in terms of a mapping gz : 5, -+ .S,. where

S, is a system execution at a finer level of atomicity such that:

L. pp is a one-many surjective mapping that maps cach element in <7, to a subset of
</, and

2. up defines <z in terms of <. ic., "‘Z/;(/’/ﬁ.A;() is a function of =, over uu(Agz) x
pl ).

If Sy is at the finest level of atomicity, S, =Sy and we give a semantic model for Sy.

At the finest level of atomicity, we will use the semantic model of £ and the causality
relation on E, i.e., (£, <. for the system execution.

We define a compuration graph for a computation Sg = {.o/y, <g;), where 85 — S,
as follows. There is a vertex in the graph for every event 4;. There is a directed edge
from vertex v to vertex ¢’ i’ © denotes cvent 4y, v’ denotes event A;),, and <:/;(.4/;.A;), )is a
direct (not induced by transitivity) dependency of the ordering relation -4 Assuming
<y captures a meaningful notion ot causality and (.«/g, <z) is a partial order, the
computation graph for S, is a directed acyclic graph. Henceforth, a reference to “an
edge at an event” will mecan “an edge in the computation graph at a vertex in the
computation graph representing an event”. Note that a vertex in the computation graph
represents an event in the computation, whereas a node 1s either a process or a channel
at which the event occurs. Wherever possible, we differentiate between two types of
edges in the graph. An cdge that orders two events at the same system node is termed
a local edge. An edge that orders two events at different system nodes is termed a
message edge and represents 4 message.

The definitions of consistent cut and consistent global state apply to cach system
execution 5. A consistent cut CCy in Sy is a left-closed subset of' =/ 6%p is the
set of all consistent cuts CCy. A consistent global state in Sy is the system state
after the execution of a consistent cut in Sy. Once a global state is obscrved after the
execution of a consistent cut, any subsequent global state observed s the state atter
the execution of a superset of the consistent cut ¢xecuted earlier. Two computations
at a given level of atomicity are equivalent if their sets of events are the same and
the ordering relation between the events is the same, cven though the absolute order
of concurrent events, i.c.. cvents that cannot be ordered by the ordering relation, may
be different in global time. Given any computation Sy, the sequence of global states
observed by a global observer in this or in any cquivalent computation can be traced
by a maximal chain in (% 75.17).

Given two consistent cuts ('Cy and CCy such that CCpy € CCy, the system state
after C'Cy can be changed to the system state after (”C;; by the execution of events in
C(";f\(‘('/; along a maximal chain from CCpy to ('C;;. It CCy and (‘(';,, are incompara-
ble and the currently observed state is after the exccution of CC'y, the observed system
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state can be changed from the state after CCy to the state after CCyuU CC ';, by the
execution of events in CC;;\CC/; along a maximal chain from CCy to CC,UCCY

3. Modeling events in a distributed computation

In Sections 3.1, 3.2, 3.3, and 3.4, we define system executions at four levels of
atomicity Sy, (view of elementary events in a distributed system execution), Sgx (view
of send and receive events), S,...; (view of reactive events), and Sy (view of cvents
between transitless system states), respectively, in a hierarchical manner, starting with
the finest level Sy to which we assign the semantic model of (£, <). Note that
the choice of the level of atomicity that we use for the finest level of atomicity is
arbitrary to some extent; it is adequate for the four levels of atomicity we consider
in this paper. However, one could. for example, choose the finer level of atomicity at
which electronic signals are transmitted between the components of a processor as the
finest level of atomicity to model events and activity at the firmware or assemblyv code
execution level.

We define a coarser level of atomicity Sy = (.74, <p) in terms of a finer level of
atomicity S,. For each level of atomicity, we show the tollowing properties using the
hierarchical framework: (P1) Atoms of ./, arc partitioned into atoms in Sg. i.c.. each
atom A, of ./, is contained in cxactly one atom Ay of /4, and an atom .4y may
contain multiple A, atoms. (P2) The atoms in .«/y form a poset when ordered by <.
From P2 and Theorem 1, it follows that 6%y. the set of all observable global states
(consistent cuts) in Sy, forms a lattice (4%, [2). (P3) For each level of atomicity Sp.
the lattice (€%;.[2) is a sublattice of (4%,.17). We then identify the applications of
each level of atomicity. Section + will discuss the significance and uses of our result
that all levels of atomicity possess the properties PI, P2 and P3.

3.1. Primitive send and receive crents

To view the system execution at the finest level of atomicity Sy, we consider
primitive send and receive events that arc expressed by explicitly modeling channels
that connect any two processes, and the input and output buffers of the two processes.
Though there are many communication constructs to send and receive messages, ¢.¢.,
{2.4,43], they are not necessarily atomic. It is shown in [14, 15] that all such constructs
can be expressed as some combination of one of the following primitive events at
process nodes.”

1. POST-SEND, abbreviated PS. is a send event that initiates a message send to the
destination process, and can complete even before the message is copied out of the

sender’s buffer. The set of all PS events is 27,

2 These events are executed by specifying options such as the buffer size, message-id. and the size of data
to be received. Details of such options are not described here.



N
(%)

A.D. Kshemkalvani! Theoretical Computer Science 196 (1998) 45 7t

2. WAIT-FOR-BUFFER-RELEASE, abbreviated WB, waits for the message to be
copied out of the sender’s buffer. Thus, it is a receive event at which it receives
an acknowledgement from the channel that the message has been received by the
channel. The set of all H'B events is # 4.

3. WAIT-FOR-SEND-TO-BI:-MATCHED. abbreviated WSM, is a receive event that
waits for an acknowledgement from the channel that the destination process has
received the message. The set of all WSM events is ¥ .9 4.

4. POST-RECEIVE, abbreviated PR, is a send event that requests the channel to
deliver to the process any incoming message that matches the paramcters and the
sender-id specified. This event can complete before the message to be received is
stored in the receive buffer specified. The set of all PR events is .##.

5. WAIT-FOR-RECEIVE-TO-BE-MATCHED, abbreviated WRM . is a receive event
that completes only after the incoming message has been placed in the specified
receive buffer. The set of all WRM events is # A4
Blocking and nonblocking as well as synchronous and asynchronous send opera-

tions, and blocking and nonblocking synchronous receive operations® 2,4, 13,43] can
be executed using the primitive events PS, WB, WSM. PR, and WRM at process
nodes. Specifically, a blocking receive is executed by a PR event immediately fol-
lowed by a WRAM event, a blocking synchronous send is executed by a S event
immediately followed by & WSM event, a blocking asynchronous send is executed
by a PS event immediately followed by a WB cvent. Nonblocking sends and re-
ceives are implemented by a two-phase operation, wherein the first phase consists of
a PS or PR event, respectively, that also associates a wait-ohject with the operation.
The second phase which is initiated any time afterwards consists of a WAIT-FOR-
COMPLETION event [4] that waits for the list of wait-objects specitied at the event
to be posted The wait-objects specified could be a collection of those associated with
communication operations and those associated with noncommunication operations. Al-
though the WAIT-FOR-COMPLETION event makes an operating system call, one of
the following receive evenis is implicitly executed at the process node when the wait-
object associated with the PS or PR event is posted. If the send operation initiated
by the PS event is a nonblocking asynchronous {synchronous) send, the wait-object
associated with the PS event is a wait-for-WB object (respectively, a wair-for-WSAM
objecty and a WB (respectively, a WSAM) event occurs when the wait-object gets
posted. If the receive operation initiated by the PR event is nonblocking, the wait-
object associated with the PR cvent 1s a wait-for-WRM object and a WRM event
occurs when the wait-object gets posted. Therefore. for blocking and nonblocking calls.
the send initiated by a PS cvent complctes with a WB or WSAM cvent. and the re-
ceive initiated by a PR event completes with a WRM event. If nonblocking send and
receive operations exist in the computation. their component events in Sy, may be
interleaved.

4 Reecive operations are alway synchronous. Asynchronous receive operations do not make sense.
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Based on the above observations, the complement, (abbreviated comp), of the PS,
WB, WSM, PR, and WRM events at a process node in Sy, 1s defined to specify the
relation between events at a process node that complement other events at the same
process node.

Definition 2. comp(e) is defined as follows [14. 15]:

1. If e is a PS event, then compie) is the corresponding WB or WSM event. and
vice versa.

2. If ¢ is a PR event, then comp(e) is the corresponding WRAM event, and vice versa.

The events in 2Y", W' AB. # .S #, PR, and # A # occur at process nodes. I order
to model activity at the channel nodes, as has been done in [3, 5, 10], we also nced to
model and identify events at channel nodes, by viewing each channel as an active node.
For each PS and PR event (which are send events) at a process node, there exists
a corresponding receive event at the channel node. For cach WB, WSM and WRM
event (which are receive events) at a process node, there exists a corresponding send
event at the channel node. The following definition captures this involution relation,

Definition 3. If ¢ is a SD or RC event, then mutch(e) is, respectively, the RC o SD
event corresponding to the message that was sent or received at e.

match(e) exists and is unique. (The definition of match{e) can be extended to mul-
ticasts where the same message 1s sent to multiple reccivers on multiple channels.)
Internal events at the channel node are events such as those at which a pair of mes-
sages in the channel are reordered.

Fig. 1 is a timing diagram |29| that illustrates the events PS, WB, WSM. PR,
and WRM, as well as Definitiorr 3, by showing the message transfer from process i
to process ; on channel ¢;. In this diagram, time flows horizontally from left to right.
(A timing diagram is simply a computation graph in which all local edges arc in the
same dimension representing the tlow of time, whereas the other dimension represents
system nodes.) The message send initiated by the PS event could complete by either
the WB event or the WSM event; although both WB and WSM are shown in the
figure, in practice one of them would be used.

L. the set of elementary events in Sy, can now be defined using disjoint sets.

Definition 4. o/, = 25 C W AU S 4 VPR UH R0 O {match(PS). PS: #2/}
U{match(WB)Y. WBe W B} U {match{WSM Y. WSM € 95 & } U {match(PR): PR <
PR} I {match( WRMYY. WRM € 7 R/} J1.

The following decomposition of .o/, shows how the set is partitioned orthogonally
to the above into send events, receive events, and internal events:
o S Sy =PS IJPRUI{march(WB): WBe # B} U{mutch{ WSM): WSM € % /. i/}
U {match(WRM Y. WRM & W '#./}.
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PR WRM (=comp(PR))
J i -
: match(PS) match{wB) match(WSM)
C. e .
i match(PR) maich(WRM)
[ ’ hd
PS WB (=comp(PS}) WSM (=comp(PS))

. . g HiMIE
e intial and finai dummy events -

Fig. 1. Message communication events at the finest level of atomicity.

o HCyy=WABU NS VHREAmarch(PS). PSe 25} U {match(PR). PRe
PR}
o I gy = I
We can now define S, the system execution at the finest level of atomicity, in
terms of the semantic modcl of (E£, <).

Definition 5. System execution Sy, = Ay <igisr)» Where i (Syir = Sui) 18 a 11
identity mapping. The semuntic model of Sy, is (£, <), where </, 1s £ and < 1
the causality relation < on 7y,,.

From Definition 5, it follows that Sy, satisfies — (Property P1) Atoms of ./,
partition events (atoms) in £, and (Property P2) (7, <4} 1S @ poset.

Theorem 2 (Property P3). (6% . ). the lattice of consistent global siates in Sy,
is embedded in the lattice of consistent global states (6€,01).

Proof. From Definition 5. lattice (4%, ) ts isomorphic to (4%, ). the lattice of
consistent global states in (£.<). 1]

Any send or receive event ¢ at a process node in Sy, identifies the set {¢. comp(e),
matchie). match{comp(e))| that forms a single send or receive event at a higher level
of abstraction. This is how cvents in Sy, are grouped together at a coarser level of
granularity Sgg.

3.1.1. Applications

Complex communication constructs for specific communication styles, such as re-
mote procedure calls (RPC) [2], conversations or dialogs [4], messaging and queuing
constructs used in sockets applications, and message-passing for parallel systems [43],
can be designed using PS, WB, WSM. PR, and WRM events of S;,,. Blocking and
nonblocking. as well as synchronous and asynchronous send and receive operations
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can be executed using specific combinations of the primitive events for diverse ap-
plications such as real-time industrial remote process control and monitoring, airlines
reservations, and night-time reconciliation in banking. The primitive events of ¥
can provide a yardstick for evaluating the flexibility of network programming style
permitted by complex communication constructs.

The Su; view can be used to design nonblocking asynchronous programs that use
blocking synchronous communication at the transport layer. The nonblocking asyn-
chronous program can be written with greater concurrency while retaining the sim-
plicity of reasoning and ensuing low implementation cost, offered by the synchronous
blocking style. Consider the enforcement of causal message ordering which ensures
that if the messages sent at two send events in the Sgr view of the computation have
a common destination and the send events arc ordered by causality, then the mes-
sages are delivered in the same order [13,28,37]. If the application sends messages
without using synchronous blocking sends, then messages must piggyback information
about messages sent earlier to enforce causal ordering; otherwise, there is no such
overhead. A lightweight nonblocking asynchronous implementation for causal message
ordering with no such overhead is designed using the Sy, view as follows [34]. Each
process has a FIFO output buffer and a FIFO input buffer. The application process
executes asynchronous nonblocking sends to its output buffer. The output buffer
process executes PS and then WSM to the channel to execute a blocking synchronous
send to the receiver’s input buffer process betore executing another PS and WSM
pair for the subsequent send operation. The synchronous communication between the
sender’s output buffer and the receiver’s input bufler is performed by a transport layer
acknowledgement. The input buffer process of the receiver process forwards the re-
ceived messages to the receiver process. The application uses asynchronous nonblock-
ing sends to send messages without any overhead; under the covers, its output buffer
does blocking synchronous sends by exploiting transport layer acknowledgements.

3.2. Send and receive constructs

Complex message send and receive events that atomically execute high-level com-
munication constructs, e.g., constructs for various flavors of RPC surveyed in [2]. the
Message-Passing Interface MPI calls [43], or the CPI-C Common Programming Inter-
face for Communications constructs [4], provide a higher level of abstraction than the
primitive send and receive events of Syy,. A system execution at this level of atom-
icity, denoted Sgr, will be defined in terms of system execution Sy,. Only process
nodes are considered in the Sgg view. Global state and snapshot definition and compu-
tation [7, 8], concurrency measurcs for a system execution {11, [2, 19]. clock systems
for distributed computations [[8, 29, 33], transfer of knowledge [9], checkpointing and
recovery [42,44], leader election, and mutual exclusion algorithms [41] deal with send
and receive events in the Sgp view of the system execution.

From Section 3.1, observe that any send or receive event ¢ at a process node in
Sase identifies the set {e, comp(e), match(e), match(comp(e))} that forms a send or
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receive event at a higher level of abstraction ~ this set forms an atomic event in Sgg.
Lemma | states that such an event in Sgx contains one, but not both. of a PS event
and a WRAM event from S,.,.

Lemma 1. For any cvent ¢ (. Uy U Ay ) at a process node, either ¢ PS cvent
belongs to the set {e, comp(e), match(e), match(comp(e))} exclusive-or « WRM
event belongs to the set {e.comp(e), maich(e). match{comp(e))}.

Proof. Follows from Definitions 2 and 3. O

For a send event {PS.comp(PS), muich(PS), match(comp(PS)} in the Syg view,
observe that the data being sent is beyond the control of the sender process once
the PS event is executed. Thus, the “sending™ occurs at the PS event. For a receive
event {PR. comp(PR), murch( PR, match(comp(PR))} in the Sgx view. observe that
at the receiver process, data is actually received at and can be used only after the
comp(PR) == WRM cvent is executed. Thus, the “receiving” occurs at the WRM event.
The definition (part of Definition 6) of the key _member function on a send and receive
event in the Sgz view formalizes the notion that in the Sy, view, the PS5 and WRM
events, respectively, are thair keymember events.

Definition 6. System execution Sgg = {</sg, < g} is defined by a mapping wy @ Sgp —
Siie as follows:

1 lsp = I gy U {{e.matchie). comp(e ). match(comp(e))}: e € (LSS 1 A W),

2. For any Agg € «/sg. define kevmember(Agg) as follows:

del . . .

o kevomember(Agg) = a PS event in Agg, it'a PS event belongs to Agg,
fel . ”

o kevomember(Agy) = a4 WRM cvent in A, if a WRM event belongs to Agg.
, def . .

o kevomember(Agg) = a IN event in INgg. if a INy,, event belongs to Agg.

Then. Agk <sr Ay il hevomember(Agg) <y key_member(A'sy ).

Definition 6 first defines the events in .«/¢p, then defines the mapping kev member
on events in .</sg. key_member(Asg) identifies a PS, WRM. or IN event from .o/,
that belongs to 4gr. and is useful to define <gr as well as to prove Theorem 4.
Observe that Definition 6 can be modified for a system model that allows multicast
sends, in which case there are multiple events of the types match(PS). comp(PS).
and match(comp(PS)), one for each channel corresponding to each destination of
the multicast at PS. We now show that Ssg satisfies properties P1, P2. and P3 in
Theorems 3, 4, and 5, respectively.

Lemma 2. Euch atom in Sy, belongs to some atom in sp.
Proof. By Definition 6, for cach PS event in .. the set {PS, muaich(PS).

comp(PS), match(comp(PS))} € o/sg. Thus, for cach PS event in .oy, its comple-
menting event WB or WSM, as well as the events match(PS) and either march( WB)



4.D. Kshemkalyanii Theoretical Computer Science 196 (1998 45-70 57

or match{ WSM) belong to such a set which is an event in .«/sg. There do not exist
any other WB, WSM, match( WB), or match( WSM') events without the corresponding
PS event.

By Definition 6, for each WRM event in .ofz,. the set {WRM, matcht WRM),
comp(WRM ), match(comp(WRM ))} € a/sp. Thus, for each WRM event in <7, its
complementing event PR, as well as the events mutch(PR) and match( WRM ) belong
to such a set which is an event in .«/g¢. There do not exist any other PR, match(PR),
or match( WRM ) events without the corresponding WRAM event.

From Definition 6, each internal event in </, 1s an event in .</sg.

The lemma follows. |

The following lemma states that each event Agp in .oZgx has a uniquely defined
key member{(Agg) which is a S, WRM, or IN event of ..

Lemma 3. VAsg € .oZgg, (key_member(Asg) € 25 exclusive-or (key _member(Asg) €
H RN exclusive-or (keymember(Asp) € 94 ).

Proof. Follows from Definition 6 and Lemma 1. ]
Lemma 4. The intersection of any two distinet atoms in Sgg is the empiy sei.

Proof. Define the following sets which are disjoint by Lemma 3.
o S Ysr=1{Asr € oAsg: key_member(Asg)e 29},
o Rbsp=1{Asp € Asp: kevumember(Asg) e W A4},
o JAsp="{Asr € g kevanember(Asg) e 44 iy b
If X€Sgp, Y cA%sp. then XNY =W because (i) key_member(X)< 2 which is
different trom key_member(Y ) #f A4/, and (ii) for any PS and WRM events, {PS,
comp(PS), match(PS), match(comp(PS))} 1 {WRM _ comp(WRM). marcht WRM),
match(comp(WRM ))} =1 (sec Definitions 2 and 3).

If X&Y' TsplURCsr, and YV .9 1gp, then XY =0 because (i) Y is un cvent
INg € 94 4. and we have that (i1) event /Ny, cannot belong to X

If both X and Y, which are distinct, belong to one of % g or #6gx, then X 1Y =)
in both the following cases: (i) If X and Y belong to #7rgp, let key member(X )= PS',
key_member(Y )= PS?. Then {PS‘, comp(PS" ). match(PS'), match(comp(PS" NN
{PSz,cump( PS”). match( PS® ). match(comp( 1’52))}:0"’. (see Definitions 2 and 3. (i1)
If X and ¥ belong to #% g, let kev_member(X Y= WRM ', key_member(Y )= WRM".
Then { WRM', comp(WRM" . match( WRM Y match(comp{ WRM ! NI WRM 2
comp( WRM?), match( WRM?). match(comp( WRM:))} ={). (see Definitions 2 and 3).

If both X and Y belong to .%.{ g, then Y NY = because X and Y are distinct
elements in .71 .

The lemma follows.

The proof of Lemma 4 also shows that «/x can be partitioned into & sp. #bsr,
and .41 iS‘R~
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Theorem 3 (Property Pl). The atoms of o/, are partitioned into atoms in Sgg.
Proof. Follows from Lemmas 2 and 4. [

Theorem 4 (Property P2). The atoms in ~Zsp ordered by <sg form poset (ofsg, <sg).

Proof. Project the partial order (£, <) = (., <y ) to the events in .2 # R,
and 1, to get the partial order (£, <). From Definition 6 and Lemmas 3 and 4, it
follows that there is an onc one correspondence between the elements in £ and the
events in {kevomember(Asp ) Asg € </sg}: also the relation <gx on s, 1s identical
to the relation < on £/, It follows that («/sx. <sg) is isomorphic to the poset (E', <)
and is theretore a poset.

From Theorems 1 and 4. 1t follows that (¢¥%sg. ) forms a lattice, where €% is
the set of all consistent cuts of poset (.7sr, <sr). We now show that (46 [C) is a
sublattice of (€% .- ).

The send and receive events in the Sqx view of a computation are linearly ordered at
a process node; however, in the Sy, view of the process node, the component events
of which these Sgr events are comprised may be interleaved if nonblocking sends and
receives are permitted. Consider the following sequence of Sgp events ut a process
node, where the superscript of an event indicates its sequence number at that node:

..SD".SD*RC*.RC".. ..

For any Sgr event in the above sequence. its component events in the S, view are
assigned the same superscript. In the Sy, view of the events at the above process node,
the component events of the above sequence could be interleaved as follows:

PR PS'. PR PS WRM . WRM* WB . WSM', ...

In the Sgp view, the ordering of send and reccive events is identified by the order-
ing of their kev_member events in o7y, and the finer details of the S;.. view are
lost in the abstraction of the Sgx view. Thus, even if Asg <sp A, it may be that
Ad € A4, €Ay 0 AL =i Ay This implics that a left-closed subset of /sz
in the Syg view may not be a left-closed subset of ./, in the S, view. To overcome
this drawback, we define procedure Siwap to modify the S, view by reordering events
within each node partition. When procedure Swap is invoked, Sy, is passed by value.

Swap{ Sy ):

1. For cach PS event in S,,, do

(a) Repeatedly swap the cvent comp(PS), i’ any, with each preceding event until
the PS event is the immediate predecessor of the comp(PS) event,

(b) Repeatedly swap the event match(comp(PS)), it any, with each preceding event
until the match(PS) cvent is the immediate predecessor of the matchi comp( PS))
event.

2. For each WRAM event in Sy, do
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(a) Repeatedly swap the event comp(WRM ), it any, with each succeeding event
until the WRM ecvent is the immediate successor of the comp(WRM ) event.

(b) Repeatedly swap the event match(comp(WRM )), if any, with each succeed-
ing event until the maich(WRM ) event is the immediate successor of the
match(comp(WRM)) event.

Let S/, denote the transformed Sy . The transformation of Sy, into S, achieves

the following.

e It preserves the Sgg view of the computation by the following reasoning. The set
/sp is unchanged. Also, the partial order on .ow/sg is preserved because {a) it is
never the case that two events in .2, that are key_nembers of two events in </sg
are swapped, and (b) the partial order of cvents in Sgg is defined by the partial
order of their corresponding key_member events in the Sy, view.

o A left-closed subset of <7 in the S¢x view is also a left-closed subset of ., in the
S//i.s‘!
and comp(key member(Agg)) are adjacent cvents in S"{,\,.

We use (4% . 12 ). the lattice of consistent cuts in 8, . to show that (4% _.) 18 a

sublattice of (€% . ).

view because of Definition 6 and the fact that for each Agg. key member(Asg)

Theorem 5 (Property P3). (6%gx. L), the luttice of consistent global states in Syp. is
embedded in the lattice of consistent global states (6% gy, ).

Proof. Apply transformation Swup to Sy, to yield S . Both Sy, and S, = give an
identical Syz view of the computation. In fact, Sy, and S are identical if only
blocking calls are allowed.

View cach Cyg € €%sk as the set Cyy in the S/,

Definition 6 and transformation Swap(Sy,, ). the set C,y, contains a left-closed set of

view of the computation. From
events in S, ..
For any Cgg, (€€ %sp, consider the consistent global cuts (CypNCipie ©lhgp
Al Al - Tt : ~ = . | v y
and (CspUC4) € 66sr. Inthe S view, these cuts are (Cy,, NCY ) and (Cyr 1))
which belong to €%, because this set of left-closed sets is closed under union and
intersection operations. Thus, (“%ge. ) is embedded in the lattice (6% ;. +
We say that (¢%sg.[) is embedded in the lattice (4%, ) in the sense that the
ordering of events in Sy, and S, 1s the same when only the events key_niembei(Agp).
for Aggr € .o/vg, are considered. [}

i !
Hence, Cy,, €640,

3.2.1. Applications

Many applications such as the following explicitly model each complex send and
receive construct, and internal cvent in the computation as a single event at process
nodes in Ssr. At any process, knowledge is gained at receive events, transferred out at
send events, and conserved at internal events. as modeled at the Sgg level of atomicity
[9]. Global state recordings in a distributed system are done at the level of granularity
of S¢r [7. 8]. Spectfically, states of local process nodes are recorded after the ¢xccution
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of a consistent cut and the in-transit messages between two process nodes in this state
are computed as a function of the collective recorded states of the two process nodes.
Concurrency measures for a system exccution [11,12,19] deal with different metrics
for the number of concurrent send and receive events in the computation at the Sgg
level of atomicity. For leader election and mutual exclusion [41], exclusive access to
the critical section is gained and relinquished by the send and receive events in Sgg,
according to specific protocols, whereas internal events do not affect access rights to
the critical section. Clock systems [18,29,33] are designed so that the local clock at
a process ticks at a message send event, a message receive event, or an internal event
in the Sgx view. In optimistic checkpointing and rollback recovery, it does not suffice
that the failed process rollback and reexecute from a prior checkpoint [42, 44]. Other
processes also have to be rolled back to undo the effects caused by the failed process
having sent and received information to the other processes before failure. The extent
of the rollback of other processes depends on the send and receive cvents at the failed
process and at the other processes and it suffices to model sends and receives in the
SSR view.

3.3. Reuctive events

A coarser atomicity of events than that of SDgg, RCsg or IN¢g events is useful
for applications such as termination detection [32,45] and debugging [16.35}], even
though it does not reflect all the concurrency of the original execution. Events at this
coarser level of atomicity are reactive because the computation in an event begins in
reaction to a received message. Thus, a rcactive event begins when a node receives
an external message, and then it does local processing and may send messages. The
reactive event is defined to end when either: (i) an application-dependent Tocally de-
terminable condition ¢ becomes true at a distinguished auxiliary event C(¢), or (i)
just before a message is received after this event has sent a message, in the Sgg view
of the execution. We define system execution Sy, in terms of system execution Sgg
using regular expressions over SDgp, RCsg and INgp events, and the auxiliary event

C(p).

Definition 7. System execution Sy = (Vrouers <reucry 18 defined by a mapping pyeqe:
Sreact — Ssr as follows:
|. Reactive atoms at any node x form a sequence (A, Ari A
(a) AL}, =the maximal sequence of events that belong to .«/sx and occur at node
x, that satisfy the regular expression {1 (INsg|RCsg)Y* (INgr|SDsr)* (C(d))*),
(b) A,...i> 1 is the maximal nonempty sequence of events that belong to .«/sp and
occur at node x, that satisfy the context-sensitive regular expression
A Distier = At (RCsgUNsp|RC s Y (INsr|SDsr Y (C{p))*).
2. For Areact % Al
=< SR 1,\[()

) where:

we have Aveact <react A, iff (HASR € Areacts EIA/SR A ASR

react reaer”
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Fig. 2. Reactive cvents.

ALl is the ith reactive event at node x. The superscripts/subscript are dropped if there
i1s no ambiguity. Fig. 2 shows a timing diagram of the events in the Sz view of a
distributed computation, and the corresponding timing diagram of the events in the
Sreact view of the same computation.

We now show that S, satisfies propertics P1, P2, and P3 in Theorems 6,

7

7. and 8,

respectively.
Theorem 6 (Property P1). The atoms of ./sk are pariitioned into atoms in S,eq.,.

Proof. It follows from Definition 7 that the intersection of any two events in /. 18
the empty set and each event in «Z¢g belongs to some event in ./.,.,. Theretore, it
follows that each SDggr, RCgpr, and /N g event is assigned to one and only onc event
N Aeger. 1

Theorem 7 (Property P2). The utoms in A, ordered by <,ouq Jorm poset {of ...
<react ). (see [16] for a proof).

Proof (Sketch). We sketch an alternate proof to that in [ 16]. Observe that each reactive
event consists of two serial phases. The first phase is a receive phase in which messages
are received but not sent. The second phase is a send phase in which messages are
sent but not received. (For a reactive event that does not send messages, assume that
a message is sent by the event to the next local reactive event.) Transitivity of ~,.,.
follows from the definition and the above observation. We show its asymmetry by
showing acyclicity in S,.,,. Consider the computation graph of (.%cuer. <rur). The
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proof uses induction on the length of the path in the computation graph between two
reactive events. The induction hypothesis is that for any path in S, the send phase
of the last reactive event begins after the receive phase of the first reactive cvent
ends. Hence. any message sent in the last reactive event cannot be received in the first
reactive event and the path is acyclic. [

It follows that no event in .., has both an cdge that goes to another event in
Areuer and an incoming edge from that other event. From Theorems 1 and 7. it follows
that (6,4, ) forms a lattice.

Theorem 8 {Property P3). (4%, cue- ). the lattice of consistent global stutes in Sy
is embedded in the lattice f consistent global staies (6%sg, ).

Proof. View cach Crper € 66 as the set Cgg i the Sep view of the computation.
From Definition 7, the set C ¢y is a left-closed set of events in S¢g. Hence, (g & €% p.
For any Crgers Clones € 66reur, consider the consistent global cuts (Cre 1C

€9 %l'('(l(‘l and ((‘)'(‘LI(‘I o Cy

") € 6. In the Sgr view, these cuts are (Cuop ™ Cop)
and (Cygr - Cgg) which belong to 4, because this sct of left-closed sets 1s closed
under union and intersection operations. Thus, (4%,,..., [ ) is embedded m (4 %Ggp. [0).

L]

3.3.1. Applications

Computation termination [32,45] can be modeled by reactive events as follows,
Consider a system in which (i)-(iv) hold. (i} A process node is cither idle or active.
(ii) An idle process may huve only a RCgx event, at which time the process becomes
active. (i) An active process may have SDgg events and RCsg cvents. (1v) An active
process can change state to idle at any time. A computation is ferniinaied it each
process is idle and the channels are empty. We express this as follows. Define ¢ as
“there is no Agp event waiting to occur”™. A process is idle if the reactive cvent has
ended and presently there is no cvent waiting to occur. i.c., ¢ holds. A channel is
empty if in the Sgg view. the number of send events at which a message was sent on
that channel equals the number of receive cvents at which a message was received on
that channel.

Reactive events are useful for debugging based on controlled reexecutions, as fol-
lows. A message race occurs at an RCgp event it one of multiple messages can be
received at the event. Dcbugging based on controlled reexecution of message races
examines all the possible exceutions corresponding to one space-time diagram [16. 35].
Reasoning with the S, view of the execution indicates how each RCp c¢vent can
be presented with the maximum possible set of racing messages n the controlled re-
executions. The definition of recactive events (Definition 7) for debugging does not
use any auxiliary event Cig), ie., ¢ -=fulse. Observe that a message that could be
received in a reactive cvent 4 may have been sent in a reactive event 4’ such that
A" <eaes AN (A Fpewer AP A Fpger A1), For example, in Fig. 2, i 4 is A"~ then A’ is
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any of 4!, A"2. A% 41 45" 442 and A"'. To have controlled (replay) executions
for event A, such events A" arc first forced to complete before A4 begins so that the
maximum possible number of messages race at event 4. Controlled replay of 4 then
generates all controlled executions of 4 by permuting the order of delivery of racing
messages to RCsp events in 4.

3.4. Events between transitless cuts

System executions at the next higher level of atomicity Sy, are defined in terms of
Ssr. Events at this level of atomicity occur at multiple process nodes and have appli-
cations such as resetting vector clocks, checkpointing and rollback recovery [6. 20, 44],
synchronization [36], atomic transactions [6, 20], and fault tolerance [36].

Definition 8. A transitless cut 7L.C¢g is a consistent cut of (./sp, <gx) such that
the global state after the execution of TLCsx has no messages in transit, i.c., in the
computation graph of Sgg, the only ordering edges between TLCgp and «/<pt TLCgp
arc local edges denoting direct local dependencies of =g at process nodes (defined in
Section 2.1).

The system state after the exccution of events in a transitless cut is a rrunsitless
glohal state. Transitless global states have the property that the effects of 1he past
computation are contained in only local edges of the computation graph S, (denot-
ing direct local dependenciecs of <yp at process nodes). viz., the effects of the past
computation are contained in the process states, because no messages are in transit.
A transitless global state is like the initial state or the final state in the sense that
only the states of process nodes determine the outcome of the future computation (if
any). A transitless state denotes a notion of quiescence because processing activity at
process nodes is not dependent on any messages in transit anywhere in the system.
We analyze events at this level of atomicity using Theorem 1 and properties of {attices
{17.33]. Recall that from Theorems 1| and 4, it follows that (4%se. L) forms a lattice.
Let 7% €sx be the set of all transitless cuts 7.Cqp. We now show that (.7 7.¢p. L)
1s a sublattice of (6 6gp.[).

Lemma 5. .7 %sp, the set of all transitless cuts of a poset (Asp.<sp). forms a

lattice (T Cxp. 1Y which is a sublattice of (C6sp. ), with operations U and 7,
/

Proof. From Definition 8, 7Y tgp 6%, and ¥C € 7L %¢p, there is no message
edge from an event in C' to an ¢vent in /5 \C. For any C'.C? = T¥%p, we need
to show that (1) there is no message edge from an event in C'1C? to an event in
Asg\(C' ), and (1) there is no message edge from an event in ' 1~
event in ./gx\(CTUC?).

(1) Assume there exists an ¢ € ('' "1 such that there is a message edge from ¢ (o an

to an

event ¢’ € (/e \(C' ™ C?)). ¢ belongs to each of C' and C? because ¢« ¢! and
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e (2, and both C', (" & . 7.F%gg. It follows that ¢’ € (C'NC*), contradicting the
assumption.
(1) Proof is analogous to that of (I). L

From Lemma 5, note that cach member of lattice .7.#%sx Is a set of events in .of¢p.
Henceforth, a member of 7 #%¢z will be denoted by 7L.C. For any two comparable
elements 7LC* and TLC! of a lattice, length[TLC!. TLC"| is the length of the longest
maximal chain in the lattice between TLC' and TLCY. We now define the system
execution Sy for transitless cuts using the lattice 7% %gg and Sgi.

Definition 9. System execution Syy = («/y;, <7, is defined by a mapping gy : S7p.

— Ssp as follows:

I ofpp = HTLCNTLCY TLC  TLC € TP 6sp A lengthl TLCH, TLCY] = 1}

2. <y 1s the transitive closure of <., where for any two distinct atoms in .o/, we
have (TLCNTLC!) <, (TLC™TLC') iff (3ec (TLC\TLC'), =’ € (TLC™\
TLCY: e <gp €').

Events in .o/7; change the system state from one transitless state to another. Events
in </ arc defined only in terms of the set difference of two elements (of the form
TLC™\TLC') of lattice .7.% %sg that are separated by a length of one. The same event
may be expressible as the difference of more than one pair of transitless cuts. If so, then
for any two such pairs of transitless cuts, at least two of the four cuts arc incomparable.
This property is important and will be used in the proof of Theorem 10. Fig. 3 is a
timing diagram of the events in the Sgp view of a distributed computation. and the
corresponding events in the Sy view of that computation. Each event in o/ i
marked by encircling the elements of «/gg to which g7, maps it. There 1s an initial
dummy event, and a final dummy cvent for terminating computations. All the edges
of (@/sg, <sp) entering and leaving each event A7, n .«/y are local edges. An cvent
Ay signifies that the computation it represents is affected only by the incoming local
edges in a Sgp view, viz., the states of the processes at the start of the cvent, and it
affects the rest of the computation only through outgoing local edges in the Sgg view,
viz., the states of the processes at the end of the cvent. (Observe that an event Ay
may contain multicasts. and it allows lost messages, provided there are no message
edges that originate within the event and terminate outside it.)

Theorem 9 (Property Pl). The atoms of /g are partitioned into atomy in Sty

Proof. We need to show (1) each event in .«/sx belongs to some event in .=/7; and (11)
the intersection of any two distinct events in /7 is the empty set. Let 70.( denote a
member of 7Y %gg.
() Consider any chain 70.C-(=0) [ TLC' T TLC?>... T TLC'( = o/sz) in
T %sp such that TLC is covered by TLC'', where Vie [ L, T), 7L TLCT.
Such a chain exists inn each lattice and is a maximal chain. Hence, /i [1, T),
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Fig. 3. Exents between transitless global states.

TL(”"'\ TLC! € olyy . YAgg ¢ ofsp. i Asp € (TLCH "\ TLC?). Hence, each event in

Zsg belongs to some event in /7.

(II) Consider 4, = TLC'TLCY. dﬂd Alyy = TLC\TLC" . where length| TLC! TLCY)
=1 and length[TLC"' . TLC "] = 1. We prove by contradiction.

Let us assume that Ay, m A7, #0 and Aqy and A%, are distinet. With this assump-

tion, obscrve that

(1) TLCH C(TLCTOTLC YN TLCH ¢ (TLCTUTLC™ YN TLCY C TLCY,

(2) In (1), if TLC =(TLCTJTLC" YN TLCY, then TLC =(TLCI.71.C")r
(TLC U A y=[(TLC OTLC YN TLCTTUTLCT U TLC YN Aqy ) = 1O U
(TLC Y Apy ). This implies TLC Ay, © TLC! implying TLC 047, =0 be-
cause TLC! and 4y arce disjoint.

(3) In (1), if (TLCYCTLC™YNTLCY == TLCY, then we have 7LCY C 7L im-
plying 4y CTLC™.

Observe that in (1), if both TLC! =(TLC'UTLC"YNTLCY and (TLC! TLC™)

NTLC" = TLC" are true, then from (2) and (3). 472 C A%, . However. we can

always require that given 1, and A%, . Ay, @ A%, (by swapping the two events

at the start of this proof it 4, 4%, ). Hence, both TLC = (TLC 171"y

TLCY and (TLCTUTLC™MY  TLCY = TLCY cannot be true. But then it follows from

(1) that length[TLC!, TLCY] > 1, which violates the definition of 4. Therefore.

the assumption that A7, 1 17, # cannot hold for distinct 47, and A, .

Theorem 10 (Property P2). The atoms in <fy) ordered by <y form poset (+/pp.
=71

Proof. Transitivity of <7, follows trom Definition 9. We show that <y, 1s asymmetric.
Let 4y <y, Ay, . Recall from Definition 9 and the discussion following it that the same
event in .«/7; may be expressible as the difference of more than one pair of transitless
cuts. Let 44y = TLC\TLC"', where i enumerates each of the pairs whose difierence
is Ar;. Similarly define A%, = 71.C7H" TLC'!, where j enumerates each of the pairs
whose difference is 4%, . We have Vj, i, TLC* [T TLC"' because from Definition 9.
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we can infer the existence of an interval [TLC™, TLCY'|. As A7y C TLCHY, we now
have (a) A, C(;TLC"".

Now assume A%, ~<yp Ayp. It follows that dxdy such that A7y = TLCH TLCY!,
Ay = TLCYN\TLC™ and  TLC™CTLCY. Also, A ETLC'™, hence Ay ¢
N, TLC" . But this contradicts 47y C (), 7LC", shown in (a) above. It follows that
A{I'L 747‘1‘ A [

From Theorems 1 and 10, it follows that (6% 7,. ") forms a lattice.

Theorem 11 (Property P3). (6%, ), the luttice of consistent global siutes in Syy.
is embedded in the lattice of consistent global states (€6sr, (0).

Proof. From Lemma 5. (7% %sr, ) is a sublattice of (€%sp, 7). We only need to
show that (€67, ) is the lattice (¢ %sx. [C). This follows from Definition 9 and the
observation that €%y, . the set of consistent cuts of Sy, 1s exactly the sct of transitless
cuts in S¢p. Lo

Note that there can exist computations which have no transitless states other than
the initial state and the final state. However, multiple other transitless states can exist
n the computation. Some of these transitless states that naturally occur or are induced
in the distributed computation are of special interest and are discussed next.

3.4.1. Applications

A transitless global state offers the convenience that it isolates and confines the
effects of the past computation to only the states of process nodes. which determine the
outcome of the future computation. Transitless states are therefore used in applications
like fault tolerance [36], checkpointing/recovery [6, 20, 44], and transactions [6, 20], in
which a past global state muy need to be restored. Transitless states are created through
synchronization at the cost of restricted interprocess communication to provide fault
tolerance [36]. The transaction model of [20] uses a non-intrusive scheme of replicating
parts of the database to create and record a transitless state. Transaction systems which
require that all or none of the transaction’s effects be made permanent in case of
failure create transitless states at the end of each transaction using commit protocols
[6]. In all these applications. transitless states during the computation are created at
meaningful points and recorded. Note that transitless states after the execution of only
certain events in Syy are recorded, i.c., in the execution traced by any maximal chain
in (¢€7..[0), not every transitless state that exists after the execution of cach event in
o/, 1s recorded: in case of failure, the most recent recorded transitless state is restored
for recovery, fault-tolerance. or undoing the transaction.

Transitless states can also be shown to be useful to reset vector clocks [18,33].
These clocks have the property that for v, e’ € .Zgp, e <pe’ iff T{e)< 7'(e’), where
T(e) denote the clock valuc at which event ¢ occurred. When vector clocks at all the
nodes are reset at a transitless state, wrong inferences about causality cannot be drawn
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due to receipt ot messages with high timestamp values sent before reset. Specifically,
if a message sent before clock reset is received at ¢’ after clock reset (thus, ¢ has a
high timestamp), then another event ¢ which is concurrent with ¢ may have a lower
timestamp than that of ¢’. This violates the vector clock property that T(e) < T(e")
iff e <gp e

A stable property in a distributed system 18 a global property which once true. re-
mains true forever [38]. Transitless states occur in the computation, projected on cither
all or some process nodes, when certain stable properties associated with quiescence
of message activity, such as disuibuted deadlock [27] or computation termination {32]
become true in the system. Transitless states also occur when cooperating processes
suspend execution after completing their subtasks to rcach a harrier synchromization
or a rendezvous [43] in the computation.

4. Discussion

Modeling events at different levels of atomicity in distributed system executions is
crucial in modeling distributed activities to provide different abstract views, simplity-
ing reasoning for the programmer and system designer, and studying questions about
nonatomicity and concurrency. In the past, the events at different levels of atomicity
had only been implicitly modeled in the isolated contexts of their applications. This
paper presented a unifying framework for expressing and analyzing events at various
levels of atomicity and showed that the various levels of atomicity are related to each
other. In the framework, a system execution at a coarser level of atomicity is de-
fined in terms of a system execution at a finer level of atomicity using hierarchical
composition [30]: thus, events at any level of atomicity are composed of events at a
finer degree of atomicity. The rramework was applied to four levels of atomicity of
events in distributed executions and we described the applications that have found it
most useful to model system executions at each of the levels. In [23], we show how
the framework can be applied (o parallel system executions. It is straightforward to
accommodate message losses and multicasts by varying the system model.

The system cxecution at every level of atomicity was shown to have three properties.
(Property P1) If 8 is defined in terms of S, then the atoms in S, are partitioned into
atoms in Sy. (Property P2) The atoms at any level of atomicity form a poset ordered by
an ordering relation for that level of atomicity. Therefore, any result or proof that ap-
plies to one level of atomicity and is based on the above graph properties applics 1o all
levels of atomicity. For example. the proof for execution Sgg that synchronous commu-
nication between application processes guarantees causal ordering of message unicasts
applies without change to the proof tor exccution Sy, that asynchronous communi-
cation between application processes, with synchronous communication over channels
between the (infinite) output and input process buffers, respectively, as deseribed in
Section 3.1.1, guarantees causal ordering of message unicasts [34]. A second cxample
is the reuse of concurrency measures formulated for the S¢r view of a computation
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[11,12,19]. These measures are based on properties of a partial order. From prop-
erty P2, they apply to system executions at all levels of atomicity. For example, these
measures can be used to gauge concurrency for incremental debugging in Sy.,, and
determine the number of nondeterministic and deterministic replays nceded. A third
example is the following To increase concurrency, long transactions can be chopped
into smaller pieces based on the principle “if the pieces of the transaction execute se-
rially, then the transaction executes serially” [40]. Well-known results in serializability
theory for the execution S¢x that considers read and write operations of a transaction
can be applied to the pieces ot a transaction for execution Syy.

The paper also showed that each level of atomicity satisfied the following property.
(Property P3) The global states at the various levels of atomicity defined using hierar-
chical composition correspond to embedded lattices of global states. This demonstrates
how different abstract views of the samce distributed computation can be provided to
various applications, based on their need for information hiding. By choosing the ap-
propriate level of abstraction, the application designer’s task of designing and verifying
the application is simplified.

Observe that the event ordering relation at each level of atomicity captures some
notion of causality, meaningful for that level of atomicity. Although the event ordering
relation for Sgg is accepted as the causality relation in most literature on distributed
systems (|39] gives a good survey), it is not an absolute definition of causality. As
shown in Section 3.2, it is possible that for two ordered events at the same process in
S¢gr, their component events in Sy, may be interleaved. Causality between distributed
nonatomic events 1s studied in [22,24-26]. [22,24] examine the causality between
a pair of nonatomic cvents where each nonatomic event is itself a collection of lin-
carly ordered subevents. |22, 25,26} examine the causality between a pair of nonatomic
events where each nonatomic event is itself a collection of subevents that are partially
ordered.

[n summary, the formalism of this paper united various views of a distributed sys-
tem execution at different levels of atomicity, provided a unifying way of modeling
concurrency in the various views, and examined the applications of the various lev-
els of atomicity considered. The paper also showed that the resuits ot any level of
atomicity that are based on the graph poset propertics of the execution are appli-
cable to all levels of atomicity. The formalism and methodology are applicable to
other views of distributed system executions, as well as to views of parallel system
executions.
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