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Abstract—Replicated databases that use quorum-consensus algorithms to perform majority voting are prone to deadlocks. Due to the
P-out-of-Q) nature of quorum requests, deadlocks that arise are generalized deadlocks and are hard to detect. We present an efficient
distributed algorithm to detect generalized deadlocks in replicated databases. The algorithm perferms reduction of a distributed walt-
for-graph (WFG) to determine the existence of a deadlock. tf sufficient information to decide the raducibility of a node is not available at
that node, the algorithm attempts reduction later in a tazy manner. We prove the correctness of the algorithm. The algerithm has a
messags complexity of 2. messages and a worst-case time complexity of 24 + 2 hops, where e is the number of edges and d is the
diameter of the WFG. The algorithm is shown to perform significantly better in both time and message complexity than the best known
existing algorithms. We conjecture that this is an optimal algerithm, in time and message complexity, to detect generalized deadtocks if
no transaction has complete knowledge of the topology of the WFG or the system and the deadlock detection is to be carried out in a

distributed manner.

Index Terms—Distributed database, replicated database, quorum consensus, generalized deadlock, graph reduction.

1 INTRODUCTION

N database systems, a deadlock occurs when some

transactions wait indefinitely on each other for their
requests to be satisfied. A deadlock hampers the progress of
transactions in a database and lowers the resource avail-
ability; therefore, all deadlocks must be promptly detected
and eliminated [18], [19], [26]. Although deadlock detection
has been extensively studied in traditional distributed
databases, e.g., [15], [17], [19], [24], [27], it has not received
sufficient attention in the context of replicated (distributed)
databases [4], [5], [10].

In a replicated database, data items are replicated at
different sites to increase availability (i.e., fault tolerance)
and responsiveness to read requests. A write to a data item
requires that the value should be written to all the replicas
of that item. A read of a data item can be satisfied by
reading any copy. Quorum algorithms are used to serialize
concurrent read and write operations from different
transactions for concurrency control [4], [5], [12]. Several
quorum-consensus algorithms have been proposed and
they require some form of voting by the replicas of the data
item to be read /written, to reach a consensus on whether a
read/write can proceed without violating serializability [1],
[4], [5], [10], [12], [25]- A typical quorum request is a P-out-
of-Q) request where the requesting transaction is waiting for
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at least P votes out of the total of () votes distributed among
the replicas. Once a replica of a data item grants its vote,
that replica gets locked and cannot revote until it is
unlocked. Replicated databases that use quorum-consensus
algorithms are prone to deadlocks because transactions
which are waiting for a quorum to be satisfied may be
involved in an indefinite wait. Requests in replicated
databases fall under the P-out-of-Q) request model and the
resulting deadlocks are generalized deadlocks.

For the purpose of modeling deadlocks, interaction
between transactions is modeled by a directed graph, called
a wait-for graph (WFG) [18]. Nodes in a WFG represent
transactions and an edge from node ¢ to node j indicates
that transaction i has requested a resource from transaction
J and transaction j has not granted the resource to
transaction 1. A deadlock is characterized by topological
properties of the WFG that depend upon the underlying
transaction request model. For example, in the simplest
request model, called the single-request model, as well as in
the AND request model, the presence of a cycle in the graph
implies a deadlock. In the OR request model, the presence
of a knot is a necessary and sufficient condition for a
deadlock to exist.

In the P-out-of-QQ request model [6], also called the
generalized request model, a transaction makes requests for
@) resources and remains blocked until it is granted any P
out of the @ resources. The P-out-of-Q request model is
equivalent to the AND-OR request model [14] in which the
condition for a blocked transaction to get unblocked is
expressed as a predicate on the requested resources using
AND and OR operators. For example, predicate { A (jV k)
denotes that the transaction is waiting for a resource from 4
and for a resource from either j or k. The P-out-of-Q and the
AND-OR models are equivalent because a predicate in the
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TABLE 1
Comparison of Worst-Case Performance Complexities

Criterion| Bracha- | Wang Kshemkalyani- | Brzezinski| Proposed

Tougg [6] | ctal. [28] Singhal [21] ctal. [7] | algorithm
Phases 2 2 1 5 1
Delay 4d 3d+1 2d+2 S2 2d
Messages de be de — 2n + 21 (< de) S? 2e

Note: § = number of nodes in the system. Given a WI'G (N, I}, n = |N],{ = number of its sink nodes, e = |E|,d = its diamcter, Also, n, d < S.

AND-OR model can be expressed as a disjunction of P-out-
of-Q type requests and vice-versa. A generalized deadlock
corresponds to a deadlock in the P-out-of-Q {or AND-OR)
request model. AND and OR models are special cases of the
generalized deadlock model.

Although the problem of deadlock detection has been
well explored in the single-request and the AND request
models in database systems, e.g., [8], [9], [11], [15], [17], [18],
[20], [22], 23], [24], [27], [29], much remains to be done
toward the detection of generalized deadlocks in replicated
databases. Generalized deadlocks also arise in other
domains such as resource allocation in distributed operat-
ing systems, store-and-forward communication networks,
and communicating processes. Therefore, efficient detection
of generalized deadlocks is an important problem.

1.1 Previous Work on Generalized Deadlock
Detection

Detecting generalized deadlocks in a distributed database
system is a difficult problem because it requires detection of
a complex topology in the global WEG; the topology is
determined by the conditions that need to be satisfied for
each of the blocked nodes in the WEG to unblock, A cycle in
the WFG is a necessary bul not sufficient condition, whereas
a knot in the WFG is a sufficient but not necessary condition
for a generalized deadlock.

Traditionally, ad hoc methods like timeout have been
used to handle deadlocks. A major drawback of this simple
approach is that oftentimes, deadlock is falsely detected
when it does not exist, thus causing a wastage of system
resources when the ftransaction is rolled back and then
recdone. The timecut based methods are proving to be less
viable- as we strive for high performance computing
systems where applications and end-users’ expectations of
quick response times, continuous availability, and minimal
failures are being increasingly market-driven. Precise
-algorithms are needed to detect deadlocks.

Design of correct and efficient distributed algorithms to
detect generalized distributed deadlocks is a difficult
problem and very few distributed algorithms exist to detect
gencralized distributed deadlocks [6], [7], [21], [28]. We do
not consider centralized algorithms such as [2], [14] in
which a snapshot of the WFG is collected by some process
and then cxamined by that process for deadlock. The
algorithms in [6], [21], [28] are based on the “record and
reduce” principle; that is, the distributed WEG is recorded
and reduced to determine if there is a deadlock. Reduction
of the WFG simulates the granting of requests and is a

general technique to detect deadlocks [18]. Algorithms that
follow the “record and reduce” principle must have a way
to detect the termination of the reduction process so that a
correct conclusion about the existence of a deadlock may be
drawn. The algorithm in [7] is based on the principle of
detection of weak termination of a distributed computation.
The algorithm by Bracha and Toueg [6] consists of two |
phases. In the first phase, the algorithm records a snapshot
of a distributed WFG and in the second phase, the
algorithm reduces the graph to check for generalized
deadlocks. The second phase is nested within the first
phase. Therefore, the first phase terminates after the
second phase has terminated. Tn the two-phase algorithm
of Wang et al. [28], the first phase records a snapshot of a
distributed WFG. The end of the first phase is detected
using an explicit termination detection technique, after
which the second phase is initiated to reduce the recorded
WEFG to detect a deadlock. Termination of this phase is also
detected using an explicit termination detection technique.
In the one-phase Kshemkalyani-Singhal algorithm [21], the
recording of a snapshot of the distributed, dynamically
changing WFG and reduction of the recorded WFG is done
in two concurrent sweeps of the WFG. The algorithm deals
with the complications introduced because the reduction of
a node in the inward sweep can begin before the state of all
WEG edges incident at that node have been recorded in the
outward sweep. The termination detection of the “reduce”
sweep is merged with the termination detection of the
“record” sweep and achieved by a single invocation of an
explicit termination detection algorithm. Brzezinski et al. [7]
defitic a generalized deadlock in terms of weak termination
of a distributed computation and develop an algorithm that
detects weak termination. Nodes are logically arranged as a
ring and a token circulates on the ring to monitor the states
of the nodes, The token keeps circulating until- the
monitored states of the nodes are the same in two
consecutive rounds. Table 1 compates the performance of
the above distributed algorithms.

1.2 Paper Objectives

We present an efficient one-phase distributed algorithm for
detecting generalized distributed deadlocks and prove its
correctness. The algorithm initiated by an initiator consists
of two concurrent sweeps—an outward sweep that records
the WFG and an inward sweep that reduces the WFG to
detect a deadlock. The outward sweep induces a spanning
tree in the WFG. Reduction is performed by sending replies
backward on cross-edges of the WFG and backward on
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spanning tree edges. During this distributed reduction,
even if sufficient information to decide the reducibility of a
node is not available at that node, appropriate replies are
sent, and the algorithm attempts reduction later in a lazy
manner at an up-tree node in the spanning tree. The
initiator receives replies on all its outgoing spanning tree
edges and cross-edges because the sending of replies is
never delayed, and detects termination of the distributed
reduction when all such replies are received. Thus, no
explicit termination detection algorithm is used. At termi-
nation, the existence of a deadlock, if any, is detected.

The proposed algorithm performs better than the
existing algorithms to detect generalized deadlacks in terms
of the worst-case time complexity and the worst-case
message complexity [6], [7], [21], [28]; the algorithm has a
message complexity of 2¢ messages and a worst-case time
complexity of 2d + 2 hops, where ¢ is the number of edges
and d is the diameter of the WFG, We conjecture that this
algorithm is optimal in the number of messages and in time
delay if detection of generalized deadlocks is to be carried
out under the following framework: 1} no node has
complete knowledge of the topology of the WEG or the
system, and 2) the deadlock detection is to be carried out in
a distributed manner. If the initiator is deadlocked, it has all
the necessary information to adequately resolve the dead-
lock, unlike the algorithms in [6], [7], [21], [28].

The rest of the paper is organized as follows: In Section 2,
we . discuss the system model and give a precise problem
description. In Section 3, we describe the idea behind the
algorithm and use an illustrative example. In Section 4, we
present the algorithm. In Section 5, we prove the algor-
ithm'’s correctness. In Section 6, we analyze the performance
of the algorithm, and compare it with that of previous
algorithms, Section 7 contains a discussion and concluding
remarks.

2 SvysTEM MODEL

A distributed database system contains databases at various
sites. Bach data item may be replicated in the databases at
various sites. Each transaction in the distributed database
system runs at a single site and may access different data
items at various different sites. Each transaction is managed
by a Transaction Manager, and each replica of a data item is
managed by a Data Manager.

The various sites are connected by communication
channels so that a logical channel can be set up between
each pair of sites. There is no shared memory in the system
and sites communicate solely by sending messages over the
channels. The messages are reliably delivered with finite
but unpredictable delays, and in the order in which they
were sent on a channel. If the logical channels deliver
messages out of order, then a simple message numbering
scheme can help the receiver to process the messages
arriving on a logical channel in the correct order.

We make the following assumptions about the system
maodel:

1. It has been shown in [20] that during the execution
of a transaction, a data item replica (managed by a

Data Manager) behaves like a transaction (managed
by a Transaction Manager) which makes requests
only in the single-request model, in the following
sense. A {ransaction (respectively, a data item)
blocks when it is waiting for a reply for lock requests
(respectively, waiting to be unlocked) and cannot
release locks (respectively, cannot be locked by
another entity) while it is blocked. Thus, a transac-
tion blocks when it makes a P-out-of-Q) request to
lock a data item, whereas a data item replica blocks
when it grants its lock and implicitly makes a single
request that it be unlocked. Henceforth, we will not
distinguish between “transaction” and “data item”
to provide a uniform treatment for both transactions
and data items and simplify the presentation of the
deadlock detection algorithm. Moreover, the result-
ing algorithm is directly applicable to resource
deadlocks that occur in databases, as well as to
communication deadlocks.

2. A deadlock detection algorithm is run by the
Transaction Managers and Data Managers. As far
as the algorithm is concerned, these Managers are
synonymous with the corresponding transactions
and data item replicas; therefore, we will refer only
to transactions and data item replicas.

As a result of the above assumptions, each transaction
and data item replica can henceforth be referred to as a
node. The WFG now models both transactions and data
item replicas. A node in the WFG is a transaction or a data
item replica; a WEFG edge from node ¢ to node j denotes one
of the following: 1) transaction ¢ has requested a lock on
data item (replica) j and j has not granted the lock request
to 4. 2) data item (replica) ¢ is locked by transaction j and j
has not released the lock on 1.

We now formalize the blocking and unblocking of nodes.
When a node i makes a generalized request and blocks (i.e.,
goes from active to idle state), the unblocking condition of
its request is denoted as f;. The domain of f; is the set of all
nodes which are referenced in f;. Function f; is evaluated in
the following manner: substitute {rue for a node id in f; if ¢
has received a reply, indicating granting of that request,
from that node; otherwise, substitute false for it. Then
evaluate the function.

The node unblocks (goes from idle to active state) when a
sufficient number and combination of its requests to make
[i true are granted. When the node unblocks, it withdraws
the remaining requests it had sent but are not yet granted.

The following two axioms describe the blocking and
unblocking of nodes:

Axiom 1. A node blocks when it makes a generalized request and
does mot send amy computation messages unkil it gels
unblocked.

Axiom 2. A blocked node gets unblocked if and only if its requests
are satisfied without any {ntervention in the computation.

Note that Axiom 2 describes the normal way in which a
node can get unblocked. A node can get unblocked
abnormally if it spontanecusly withdraws its requests or
its requests are satisfied due to the resolution of a deadlock
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of which it is a part [20]. There is a risk of false deadlocks

being reported if a node unblocks abnormally. Detection of

such false deadlocks can be eliminated by using a time-
stamping mechanism to consider the dynamically changing

WEFG along the latest observable state [20]. We do not allow

a node to unblock abnormally for simplicity,

The interaction between transactions and data items is
modeled by a directed AND-OR wait-for graph denoted by
(N, I7), where N is the set of nodes and F7 is the set of
directed edges between nodes. Typically, the number of
nodes in a WFG is small compared to the number of nodes
in the system, Le., |N| << |S], where S is the set of all nodes
in the system.

A node 1 keeps the following variables to keep track of its
portion of the directed AND-OR WEG:

IN;: set of node ids — §; /*set of nodes which are
directly blocked on node 4. Tt denotes the direct
predecessors of node i in the WFG. */

OUT;: set of node ids — ; /*set of nodes on which
node ¢ is blocked. It denotes the set of nodes that are
direct successors of node ¢ in the WEG. */

Jii AND-OR expression — L;
unblocking.*/

/*the condition for

OUT; gives the domain of function f;. The transitive
closure of OUT;, denoted by OUT;", gives the reachability
set of . The transitive closure of IN;, denoted by TN, is the
set of nodes whose reachability set contains 4.

2.1 Problem Statement

A generalized deadlock exists in the system iff a certain

complex topology, identified next, exists in the global WIiG.

Definition 1. A generalized deadlock is a subgraph (1), K) of a
WFG (N, E) where: 1) each ¢ € D(£0) is blacked on a
Sfunction [;(OU1}) which evaluates lo false when each variable
is instantiated as follows:

(¥j e D,jisset to false) A (V5 € OUT,\ D, j is set to fruc),

and 2) K is the projection of the edges in (N, F) on the
nedes in D,

From Axioms 1 and 2, it follows that none of the nodes in
D will ever get unblocked, All nodes in 1 thus remain
blocked forever. All the nodes in the WEG that do not
belong to any I3 have a sufficient number of edges to nodes
n QUT\ D, ie, fi{OUT}) evaluates to frue when each
variable is instantiated as follows: ‘

(V€ 1, jis sel to false) A (V] € OUT\ D, jis set to truc).

All these nodes that are not in any D are not deadlocked
because their requests can be satisfied.
A distributed deadlock detection algorithm should
satisfy the following two correctness conditions:
Liveness: If a deadlock exists, it is detected by the algorithm
within a finite time.

Safety: If a deadlock is declared, the deadlock exists in
the system.

At the time that a node blocks or within a system-tuned
timecut period during which the node has remained
blocked, the node initiates a deadlock detection algorithm.
Note that only the nodes that are reachable from a node in
the WEG can be involved in a deadlock with that node,
Thus, the complete WFG is not examined to determine if a
node is deadlocked; only the part of the WEG which is
rcachable from that node needs to be examined. The
deadlock detection algorithm is presented for a static
WEFG. In Section 7, we explain how to extend the algorithm
to handle a dynamically changing WFG.

3 Basic IDEA

No node has the knowledge of the complete topology of the
WTIG or the system; therefore, the initiator node determines
the reachable part of the WFG and attempts to sense its
tapology by diffusing FLOOD messages. To initiate dead-
lock detection, the initiator node sends FLOOD messages to
all of its successor nodes, When a node receives the first
FLOOD message, it propagates it to all of its successor
nodes, and so on. The edges of the WFG on which the first
FLOOD message is received by each node induce a directed
spanning tree (DST) in the WFG.,

Deadlock detection as well as detecting termination of
the algorithm are performed by echoing the FLOOD
messages at “terminating” nedes and reducing the graph
when an appropriate condition at a node in the echo phase
is satisfied. A terminating node in the graph is cither a sink
node or a nonsink node that has already received a FLOOD
message. Since a sink node is active (and thus, is already
reduced), it responds to all FLOOD messages by ECHO
messages. By sending an ECHO message, a node informs
that it has been reduced. When a nonsink node in the graph
receives the second or a subsequent FLOOD message, it
responds with an ECHO message provided it has been
reduced by then. However, a dilemma arises if a nonsink
node in the graph has not been reduced when it receives a
second or subsequent FLOOD message. The state of such a
node is presently indeterminatc and may eventually
become reduced after a sufficient number of ECHO
messages have been generated and moved up in the graph.
Such a node cannot immediately respond to a FLOOD with
an BECHO message and, if it waits to see if it is later reduced,
the algorithm may deadlock! This dilemma is solved in the
algorithm using lazy evaluation as follows.

3.1 Lazy Evaluation

If a nonsink node in the graph has not been reduced when it
receives the second or a subsequent FLOOD message, it
immediately responds to such a FLOOD message with a
Position Indeterminate Packet (PIP) message. A PIP
message conveys the indeterminate state of the node. In
contrast, an HCHQO message conveys the fact that the sender
node is reduced. A node attempts a reduction whenever it
receives an ECHO. If a node is reduced after it has received
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a response to all the FLOOD messages that it sent (we call
this “local reduction” of the node), it sends an ECHO
message to its parent in the DST. Otherwise, it sends a PIP
message to its parent in the DST, Note that if the node was
not reduced at this instant, it does not mean that it is not
reducible. This is because some of its successor nodes that
sent a PIP, might have gotten reduced later and reduction of
these nodes might have been sufficient to reduce this node,
had it waited long enough. To take care of such conditions,
1} the reduced status of nodes that previously sent a PIP
message is propagated upward in the DST toward the
initiator node. Also, 2) when an (unreduced) node sends a
PIP message to its parent node, the message contains the
unsatisfied portion of the unblocking function, called the
residual function, of the sender node. For example, if the
unblocking function of a node is z A (yV 2) and the node
has received an ECHO from g, then the residual function is
x. Ancestor nodes of the unreduced node gather both these
pieces of information and make an attempt to determine if
the node can be reduced.

The information about nodes that sent a PIP but were
later reduced is propagated in the following manner. A
node i keeps a set of node ids, denoted by R, that
contains the ids of nodes in OUT," that sent a PIP, but
were reduced later. When a node i sends an ECHO or a
PIP message, the current value of R; is sent in the
message. When a node ¢ receives an ECHO or a PIP
message, it adds the contents of the received R set to R;.
This is eager dissemination of reduced node information.
The eager dissemination is sufficient but not necessary for
lazy evaluation. It is necessary for node ¥ only to send R;
on the ECHO or PIP response sent to the parent after the
last ECHO or PIP response to its FLOOD messages has
been received. However, the size of the set of residual
functions (discussed next) at nodes in the WFG is likely to
be larger with this modification.

A node j keeps a set of residual functions, denoted by
Zj, that contains tuples of the form (k, fi), where f
denotes the residual function of node k. The information
about the residual function of nodes is propagated in the
following manner: When a node sends an ECHO or a PIP
message o its parent in the DST (this happens when the
node has received a response from all of its successor
nodes), the message contains the residual function set of
the sender node. An ECHO or a PIP message sent to a
nonparent node carries null as the value of the residual
function set. When a node j receives an ECHO or a PIP.
message with a nonnull value of the residual function set,
it adds the received residual function set to Z; This
retarded collection of residual functions is necessary and
sufficient for evaluation of the unblocking function at
nodes, This is how the information about the residual
unblocking function of nodes and the information that a
node that sent a PIP was eventually reduced is propagated
upward in the tree.

A node j evaluates its unblocking function f; whenever it
receives an BCHO message. In addition, after a node j has
received a response to all FLOOD messages it had sent, it
evaluates every residual function in the set Z; as follows:
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Fig. 1. An example of a wait-for graph (WFG).

select a tuple (£, fi) from Z; and check if entries in R, are
sufficient to reduce f;. If a node j succeeds in reducing node
ks residual function f,, we say that node k has been
remotely reduced (at node j). In such a situation, node j adds
k to R; and deletes tuple (k, f5) from 7Z; This is done
repeatedly until no more entries in Z; can be reduced,

Thus, a node j uses information in R, about its successor
nodes that sent PIP but got reduced or that were remotely
reduced, to attempt to reduce the residual function of as yet
unreduced descendants in Z; As a residual function
traverses up the DST, it can progressively strengthen
because more reduced node information gets collected by
lazy evaluation further up the DST.

The initiator node is deadlocked if it is not reduced after
receiving responses to all of its FLOOD messages because
no further lazy evaluation can occur. Otherwise, it is not
deadlocked. The message complexity, time complexity,
local computational complexity, and the size of messages
for this algorithm are analyzed in Section 6.

3.2 An Example

We now illustrate the basic idea behind the algorithm with
the help of an example. Fig. 1 shows a distributed WFG that
spans seven nodes numbered 1 through 7. All nodes except
node 6 are blocked. The unblocking functions at these nodes
are given next using an oversimplified notation illustrated
by the following example:

H=4v2, f5=3A4A5 fs =2V 6AT), fu="T [
=1V7, fs = true, f =6.

fi = 4V 2 denotes that node 1 needs a reply from node 2 or
node 4 to unblock. :

Suppose node 1 initiates deadlock detection and sends
out FLOOD messages to nodes 2 and 4. Fig. 2 shows the
diffusion of FLOOD messages through the WEG. The
thicker edges of the graph denote the edges along which
nodes received their first FLOOD message and define
the DST.

Fig. 3 shows how various nodes respond to FLOOD
messages they receive. Since node & is active, it responds
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Fig. 2. Diffusion of FLOOD messages.

to the FLOOD messages from nodes 3 and 7 by ECHO'
{6, 1, ®, @) messages. Before node 7 receives the ECHO
message, it receives FLOOD messages from nodes 3 and 4.
Node 7 responds to these FLOOD messages by PIP(7, 1, §, 6)
messages because the state of node 7 is indeterminate at
these instants. On the receipt of an ECHO(6, 1, ¢, )
message, node 7 succeeds in reducing itself and sends an

ECHQ(Z, 1, {7}, #} message to node 5, its parent in the DST.
After receiving an ECHO message from node 7, node b

gets reduced and sets R; to {7}. On receipt of a PIP message
from node 1, node 5 sends ECHO(5, 1, {7}, ) message to

node 2.
Node 4 receives a FLOOD from node 1 before it receives

PIP from node 7. Consequently, it responds to the FLOOD
with a PIP(4, 1, §, #). Node 4 is not reduced after it has
received PIP from node 7 and thus sends a PIP(4, 1, &,
{{4,7)}) to its parent in the DST {node 2).

Node 2 sends a PIP(2, 1, #, #) message to node 3 in
response to the FLOOD it receives from node 3. Node 3
is not reduced after it has received ECHO from node 6
and PIP messages from nodes 2 and 7. However, its
residual 2v 7. Therefore,

PIP(3,1,@,{{3,2 v 7)}) message to node 2.
On the receipt of PIP(4, 1,9, {{4,7)}) from node 4 and

PIP(3,1,@,{{3,2v 7 }) from node 3, Z; at node 2 becomes
{3,2v'1,{4,73}. On the receipt of ECHO{, 1, {7, #)
message from node 5, node 2 sets Ry to {7}. It adds its
residual function (2, 3 A 4} to Ze and succeeds in reducing
all three residual functions in 7, using f7y. Consequently, R,
becomes {3, 4, 7). Since node 2 is reduced, it sends
BECHO(2,1,{3,4,7},1), to node 1. On receipt of this
message, node 1 is reduced and declares “no deadlock.”

function is it sends

1. The first pérameter of an ECHQO or a PIP message is the sender’s id, the
second parameter is the initiator node id, the third parameter is the X set of
the sender, and the fourth parameter is the Z set of the sender node.

Fig. 3. Propagation of ECHO/PIP messages.

4 A DisTRIBUTED DEADLOCK DETECTION
ALGORITHM

The pseudocode for the algorithm uses the symbol — for
the assignment operator, and the CSP-like symbel O for
the selection operator. We choose the CSP-like notation
because it expresses concurrency more explicitly. The
notation [GC\O GC.O ... AGC,)
guarded command, where a guarded command GC;
the with the
“if @ then belse skip”. A node i has variables
OUT;, IN;, and §; which describe the WEG locally.
Diffetent invocations of the algorithm by the same
initiator are differentiated by timestamps, which ate not
shown for simplicity. The deadlock detection algorithm is

is an alternative

has form "a—0b" semantics

given in Fig. 4a and Fig. 4b. The processing when a
FLOOD, ECHO, or PIP is reccived is done atomically.

5 CORRECTNESS PROOF

We prove that the initiator of the deadlock detection
algorithm declares deadlock iff it is deadlocked. The proof
uses several observations (Observations 1-7) and lemmas
{Lemmas 1-11) about the properties of the algorithm.

The FLOOD messages induce a directed spanning trec
(DST) in the WEFG. The root of the tree is the initiator and
the parent of each node 7 in the tree, denoted by parent,, is
the node from which ¢ received its first FLOOD. The
transitive closure of parent;, dencted by purem‘j, is the set
of all ancestors of i. The children of noede ¢ in the DST,
denoted by offspring;, are the nodes k such that
parent;, = i. The transitive closure of of fspring;, denoted
by of fspring/, is the set of nodes in the subtree rooted at 4.

Assertion: FLOOD messages are diffused through the
entire reachable WEG of the initiator,
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Data Structures
parent;: integer « (; /*node id of parent of node 1. */
out;: set of integer «— OUT;; /#nodes for which nodc 4 is waiting. */
R; : set of integer «+ fJ; ' /* nodes in this subtree which sent PIPs, */
' /#and which subsequently got reduced.*/
pip_sent;. boolean — false; /* indicates if ¢ sent PIP to other nodes. */
X; : AND-OR expression < f;; #* unblocking funetion for 4. */
# define struct ENRES {id:integer; /% node identifier. */
uc:AND-OR expression; } /* residual unblocking function. */
str: FNRES + 1; /* local residual function. */
Z; : set of ENRES < 0; /# residual functions of unreduced nodes in subtree. */
initiate algorithm
/*Executed by node § (o detect whether it is deadlocked. */
it < 1, :
parent; +— i
send FLOOD(i, i) to each j in out;.
receive FLOOD(k, init)
/#Executed by node 4 on receiving a FLLOOD message from k. */
[
/# FLOOD for new invocation (detected by timestamps, unshown).*/ /*Casc F1.%/
out; =1L —
parent; -k out; < OUTy; Ry, Z; + 0, X; + fi; pip-sent; «+ false;
fi = true — /% i is unblocked. Case F1-A, */
send ECHO(i,init, 0, 0) to k;
fi = faolse — * i is blocked. Casc F1-B. #/
send FLOOD(i,init) toeach j € outy;
|
/* FLOOD received before all expected PIPs/ECHOs received, */ /# Case F2. #/
out; 7& @ —
X, = true — /% { is unblocked. Case F2-A. */
send ECHO(i,init, R;, 0) 0 k;
X; = false — /* 4 is blocked. Case F2-B. */
send PIP(4,inst, B;, @) to k;
pip-sent; +— true;
O
/# FLOOD received after all expected ECHOs/PIPs received. */ /* Case F3, */
out; = —
X; = true — /* 3 is unblocked. Case F3-A. */
send ECHO(4, init, R;, 8) o k;
X; = false — /* 1 is blocked. Casc F3-B. #/
send PTP(i,init, R;,0) to k.
]
receive ECHO(j, init, R, Z)
F*BExecuted by node ¢ on receiving an ECHO from j. */
X; = folse — /* if 1 is blocked, try reducing il by instantiating all instances of 7 */
:tme); /#in QUT; by true and then cvaluating X;. Step E1. #/

X; « Xy (out; |J
X; =true —
init =1 — NO deadlock; cxit;

Fig. 4a. The deadlock detection algorithm {continued on next page).
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pip_sent; = true — Ry « R; |J{i}; /% update R; to indicate 7 sent PIPs. */
common_reply_processing; £ perform processing common to PIPs and ECHOs. */

receive PIP(4, init, R, Z)
[*Exceuted by node ¢ on receiving a PIP from j. */
common_reply_processing; /* No special actions unique {o PIP arc needed.  */

common._reply_processing
/*Exccuted by node £ to do common actions when either a PIP or ECHO is received, */

out;  out; \ {j}; /* update local variables out;, Ry, Z;. Step TP1. */
R « R UR;
Zi 4 U%;
outy = B — /* all expected replics are received. Step BP2, #/
X, = false — /% §is not yet reduced. Add (o Z;. Step EP2.1, */
str.id + 1
str.oue +— X,
Zi + Z | {str];
eval, * use R; 1o evaluate unreduced nodes in Z;. Step EP2,2, */
(X; =true Apip.sent;) — /% examine X; using R; which was updated in eval. */
R « i, U{i}; /%4f 4 sent PIP, update R; to indicate so. Siep EP2.3. */
X; =true — /* 4 is locally reduced using updated By, Step EP2.4. #/

init =1 — NO deadlock: exit;
send ECHO(i, init, Ry, Z;) to pareni;;
X; = false — /* ¢ is not locally reduced using updated R;. Step EP2.5. */
init =i — deadlock; exit;
send PIP(i,init, B, 7Z;) to parent;;

cval

[*Excculed by node ¢ o evaluate Z using the dala that nodes in R are unblocked. */ :
tempR : set of integer + F;; I working variabie for R;. */
repeat

For cvery » € tempR do par
for every z € Z; do par instantiate each occurrence of v in z.uc by true ;
rap od;
tempR + lempR\ {r};
rap od;
for every z € Z; do par
zZ.aue = true —>
tempR — tempR|J{z.id};
zad #i — Ry « Ry U{z.1d}; /% il z.4d = 1, then X; will also be true. */
qu — \{Z},
rap od;
until tempR = 0.

Fig. 4b. The deadlock detection algorithm {(continued from previous page).

The initiator init sends FLOOD messages to all nodes in  Definition 2, A node i is locally terminated iff it has processed

its OU T When a node receives the first FLOOD message, all the PIPs and ECHOs it expected in response to the

it sends FLOOD messages to all its direct successor nodes FLOODs it sent, i.c., out; = 0.

(casc F1-B) and so on. From induction, FLOOD messages From Theorems 2 and 3 on time and message complexity

are diffused through the entire reachable WFG of the (see Section 6), it follows that the algorithm terminates in
initiator. finite time,
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Definition 3. Node i is locally reduced iff it receives a
sufficient number of ECHOs so that X;=true when
out; = .

Definition 4. Node i is remotely reduced at
JEINiff JjeIN}, Dze z;

such that z.id = i and there ave enough elements i Ry (these
have all been reduced either locally or remotely) by the time
out; = W to satisfy i's residual unblocking condition zucat j.

This reduction is remote and i is not aware of it. Note
that s residual unblocking condition in Z; may be stronger
than X;, indeed it may even be frue. The presence of a
sufficient number of elements in R; indicates that i's
requests as represented in X, are satisfiable.

The Boolean variable reduce’ will be used to indicate
whether node ¢ was reduced. The Boolean variable reduccf,}
will be used to indicate whether node 7 is reduced at node j.
reduce} indicates that node ¢ was locally reduced. reducd,,,
indicates that node ¢ was remotely reduced at node j.

Observation 1. The Z parameter sent by i on a PIP or an ECHO
to parent; is the value of Z; when out; = (. The Z parameter
sent by i on a PIP or ECHO fo other nodes is §.

Observation 2, z (where z.id = i) can belong to Z; in two ways:

L. if j #4, j received an ECHO/PIP that contained z and
added z to Z; (step EP1), or _

20 ifi=7j, j added z to Z; because reduce] was false
when out; = @ (step EP2).

Lemma 1 states that the residual function for a node i,
i.e., z, where z.id = i, does not exist at a node that is not an
ancester of 4 in the DST nor is it sent in ECHOs or PIPs by
such a node.

Lemma 1, Vi€ N,Vje N\ (parentf U{i}), Z; does not
contain z such that z.id = i, nor does node § send or receive
an ECHO or PIP in which the Z parameter contains this z.

Proof. Assume that Z; contains z (where z.id = ¢}, This can
happen only by case 1 of Observation 2. j may receive an
ECHO or PIP only from some k, k € N\ (parent; J{i}),
containing such a z (follows from Observation 1). k& must
have received such a z in an ECHO or PIP to include it in
Zyand send it to j. Using an inductive argument and
noting that exactly one ECHO or PIP is sent on an edge
(Theorem 3), there must be a node &,
ke N\ (parent} | J{i}), that locally inserted 4 in Z, by
case 2 of Observation 2, implying ! = i. This contradicts
Observation 1. Hence, § does not receive such a z or send
such a 7 in the Z parameter in an ECHO or PIP, and Z;
cannot contain z (where z.id = ). 0

Lemma 2 states that if node 4 is not reduced at local
termination, then its residual function, i.e., z, where z.id = 1,
may exist only at nodes that are ancestors of .

Lemma 2. —weduce! =»z (where z.id = i) may belong only to

Z,, where j € parent].

Proof. The Z parameter on all messages other than to

parent; sent by i is {§ (Observation 1).

If ﬁrcduceé then at the time out; = 0, ¢ adds =z (where
zid =1) to Z; and » remains in Z; after ¢ executes eval.
The Z parameter sent to parent; is Z;. parent;(= j) will
add the received Z parameter to Z;. In turn, if —u?"educeg,
then j will forward Z; which contains the z {where
zid = ) only to parent;. By induction, the z value may
belong to parent;.

From Lemma 1, no other node k receives the z value
under consideration in any message, or inserts it in Z.
The lemma follows. 0

Lemma 3 states that if the residual function of node ¢, i.e.,
z, where zid = i, exists at another node 3, then the residual
function was created at 4 because node ¢ was not reduced at
local termination.

Lemma 3. z € Z; where zid =i = 1 added =z lo Z; because
—reduce) when out; = .

Proof. z (where zid = i} can belong to Z; in two ways given
in Observation 2. The lemma holds if ¢ = j {(case 2). For
case 1, assume that j received an ECHO or PIP from
some k containing such a z. Either k=14, or k£ 4 and %
must have received such a 2 in an ECHO or PIP to
include it in Z; and send it to j. Using an inductive
argument and noting that exactly one ECHO or PIP is
sent on an edge, there must be a node £ that locally
inserted ¢ in 7, by case 2, implying # =1i. Node ¢
includes the z (where z.id =4} in Z; only if —reduce!
when out; = 0. |

Lemma 4 states that ¢ may be reduced at most at one
node in {i} | parent].

Lemma 4.

reduce’ = reduce!
i e (4 +
@ (reduce;, where (j € parent,

/\ (A k€ parent] |(k # 7 /\Teducej'\.)))).

Proof. If reduce!, then no message sent by i will have z
(where zid=1) in the Z parameter (Observation 1).
From Lemma 3, for any other node &, Z;, will not contain
this z variable. reduce; ; cannot happen because z (where
zid =14} & Z,.

If reducej. i» assume without loss of generality that j is
a node such that —reduce’, where j, k € parent] and
7 € parent). From Lemma 2, z (where z.id =) may
belong enly to Z;, where § € parent] . As reduce';., where
i € parent}, when i gets reduced in procedure eval at j,
the element z (where z.id =1) is deleted from Z;. From
Observation 1 and Lemma 1, it follows that no node in
pa’r‘entj* will contain this z (where z.id = 1); hence 4
cannot get reduced (again) at a node in parent]. The
lemma follows. O

Observation 3. The R parameter tat node i sends fo parent; in
an ECHO or a PIP is a superset of the union of the Il
paranteters in ECHOs and PIPs that i received (step EP1).
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Lemma 5 states that if ¢ was remotely reduced at node
k, then at local termination, ¢ belongs to R; for every
ancestor j of k.

Lemma 5. reduce;,, = ¥j € parent| | {k} when out; =4,
ic RT

Proof. If i was remotely reduced at node £, then ¢ is placed
in Ry during procedure eval. The lemma follows from
Observation 3, the observation that the value of the R
parameter on any PIP or ECHO received by j is set-
added to Ii;, and the observation that an ECHO or PIP is
sent to parent; only after j has received an ECHO or PIP
from each node in OUT; (step EP2). |

Lemma 6 states that if a node j that sent a PIP gets
reduced before local termination, the element 7 is contained
in R, for every ancestor ¢ of j at the time ¢ locally terminates.

Lemma 6. (Node j sent a4 PIP and then reducej) =Vie
porent] | J{5} at the time oul; = @, j € It;.

Proof. When node j sends a PIP and out; # 0, it sets
pip_sent; to true (case F2-B). In the other cases when j
sends a PIP, the following holds: out; = ¢ and reduce] =
false (steps E3-B, EP2.5). Note that out; # B before
reduce; if j sent a PIP and then Tedurej Subsequently,
at the tlme reduce], § is added to ft; (step E1 or EP2.3)
and, henceforth, j does not send PIPS When out; = (), Ry
is sent to parent; in an ECHO (step EP2.4). When
parent; receives the ECHO from j, the R parameter
contains j and is set-added to I¥;qrent, . Subsequently, when
Ol iy, = #, parent; sends an ECHO/PIP to its parent,
and the & parameter on this message contains j
(Observation 3, steps EP2.4, EP2.5). Using an inductive
argument, the R parameter containing j is sent in ECHOs
and PIPs (steps EP24 and EP2.5} sent to nodes in
parent]. Bach i ¢ parent] will have j in R; at the time
out; = (?] (step EP1). O

Lemma 7 states that if ¢ € 12, then ¢ was already reduced
at some node ! before local termination ([ =1{) or was
remotely reduced at some node I € OUT}"|J {j}.

Lemma 7. i€ R; —reduce),l € OUTT {7} and reduce]
happened before i was placed in R;.

Proof. i may belong to R; only under one of the following
conditions:

1. If reduce! holds and j =i = I. This denotes local
reduction (step H1).

2. When j invokes procedure eval, i gets reduced,
ie., 7"ed.uceJ ~; and j = [. This is remote reduction
(step EP2.2).

3. Whenever a PIP or ECHO is received by 7, ¢ is
contained in the R set parameter on the received
message, and this 1t parameter is set-added to R
(step EP1).

If i € Ry, then 4 got reduced at j (items 1 and 2 above)
or a successor k € OUT; sent j a PIP or ECHO containing
t in the R parameter {item 3 above). For item 3 above, we
show by an inductive argument that ¢ got reduced at

some node % ¢ OUT; by items 1 or 2. Note that only
one PIP or ECHO 1s sent on a WFG edge (proved
independently in Theorem 3). Therefore, there must
exist a finite sequence {j,k,..., A} of at most ¢ nodes in
OUT} where:

e all the nodes except h added ¢ to their local
variable R by item 3, and then sent an ECHHO/TIP
whose R parameter contained j to the previous
node in the sequence.

e hadded i to Ity by items 1 or 2, and then sent an
ECHO/PIP whose I? parameter contained j to the
previous node in the sequence.

It follows that if i € R;, then in all cases, reduce],
where 1€ OUT} | J{j}, and reduce; happened before i
was placed in E;, From Lemma 4, note that
1 € parent] J{i}. ]

Observation 4. If node ¢ belongs to the It parameter in some
ECHO or PIP received by j, then reduce, where & € OU Tj+.

Lemma 8 stafes that if node ¢ sends a PIP (either before it
is locally reduced or because it is not reduced at local
termination), then at local termination at each ancestor node
jof i, [{z € Z;, where z.id = i) ®© (i € Ry)].

Lemma 8.

(i sendsa PIP /\f'cducc::) \/ —reducet when out; = §
<= Vj € (parent; U{i})when out; = 0,
((z € Z;, where zid = i) B (i € Ry)].

Proof. (=) If i sends a PIP and reducel, then 4 is inserted in
R; because pip.sent; = true (steps 1, EP2.3), and R, is
sent to parent; in the R parameter in ECHO. From
Observation 3, i € R;, ¥j € parent]. Z; does not contain
z, where z.id =14, at the time ouf; = @ because Teduceé.
From Lemma 3, it follows that no node j has z € Z,,
where z.4d = i,

If - reducel, then i adds z, where z.id = i, to Z; which
is sent to parent; only (Observation 1). ¢ is not inserted in
R; and is not sent in the R parameter to any node. If i is
remotely reduced at j (f € parent] by Lemma 4), then
Vk © parent] that lie between i and 7, z € Z, and i € Iy
z € 7, because a precondition for reducej. to occur is that
z belongs to Z;; from Lemma 1 and Observation 2, the
only way this can happen is that all nodes & receive z in
the Z parameter and pass it up the tree toward j. Also,
i & Iy because i gets reduced only at j (Lemma 4); this
can happen only after ECHOs/PIPs containing z, where
z4d = 11in the Z parameter reach from i to j through £, at
which time j adds ¢ to R; If i € Ry, it follows from
Lemma 7 that 7 is already reduced, a contradiction.

At j, z is removed from Z; and atomically added to
R; at local termination. For all nodes h in parent] that
lie between j and the initiator, the z does not belong
to Z, (see Observation 2) because: 1} the Z parameter in
no message from a node not cn the DST path from j



890

to h contains z (Lemma 1); and 2) neither does the PIP/
ECHO from any node on the DST path between j and &
because j removed 2 from Z; (Observation 1). Also, from
Lemma 5, i € I, for all such h. Hence, the RHS holds.

(<) If z € Z;, where z.id = ¢, then z must have been
locally inserted in Z; by ¢ only (Lemma 3); this happens
when —reduced at the time out; = ).

If ¢ € 12;, then from Lemma 7, ¢ was remotely reduced
(—reduce when out; = B) or ¢ was Jocally reduced. Note
that if ¢ did not send a PIP and was locally reduced, then
i is not inserted in R; or in any R;. It then follows that i
must have already sent a PIP if it was locally reduced.
The LHS follows. O

Observation 5. For any i, the value of X, which is represented in
zae, where z.id = ¢ and z is in the parameter Z, progressively
strengthens as it .ascends up the spanning tree in PIP and
ECHO messages.

Lemma 9. If o #ode i sends an ECHO or a PIP to node j, then
node i must have recetved a FLOOD from node j.

Proof, Node i sends an ECHO or PIP to node j only in
these two cases:

e on the receipt of a FLOOD from j if either case F1-
A, F2, or F3 holds, or

e on the receipt of the last ECHO or PIP (steps
EP2.4, EP25), i sends an ECHO or a PIP to
pareni;. parent; is initialized to j, so { must have

received a FLOOD from the parent (case F1-B).

In both the situations, ¢ must have received a
FLOOD from j. O

Observation 6. If node 7 receives an ECHO or a PIP from node j,
node i has alveady sent o FLOOD to nrode j and j € out;.
(Follows from Lemma 9 and case F1-B,)

Before proving that reduction is performed correctly, we
define a function i on the nodes in the WEG as follows:
First, view the predicate f; in disjunctive normal form
(DNF), where each disjunct z is of type P-out-of-Q [14].
OQUT:, is the set of successors of ¢ that are involved in
disjunct z. A disjunct = at node i requires p;, replics in
response to its ¢;, requests, where p;. < ¢, to unblock
node 4. For every digjunct at any node i in a deadlock
(D, K), there are at least g — p;, + 1 outgoing WFG edgces
to other nodes in D.

if 4 ig a leal in WFG
if 7is deadlocked

} otherwise

bty 0

0o
. , i wmallest of
1 ' 7k

" (mln"‘{ (h(3)j & 0UL,)

h{i) indicates the shortest length over a sufficient
number of paths that have to be traversed by replies to
reach 7, 80 as to unblock 7. If node ¢ were to get unblocked
by receiving replies, at least one of them has to traverse a
path of length i{i}. However, this does not preclude node i
from getting unblocked by receiving a reply that has
traversed a path of length greater than h(1). This is because
mote than the required number of nodes may send replies,
and these nodes need not lie on paths of length < A{%).
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A node that is not deadlocked has a finite value of h
because it has a sufficient number of edges to other nodes
which are not deadlocked and there are sequences of replies
by which the node can get unblocked. A deadlocked node is
assigned a value of oo for h because there are no sequences
of replies by which the node can get unblocked. The length
of the shortest path traversed by a scries of replies to
unblock a deadlocked node is oo,

We now show that the algorithm performs reduction
correctly.

Definition 5. A node in the WFG performs reduction iff it geis
reduced and behaves as follows:

. node ¢ sends a PIP (ECHO) to all nodes other than
parent; front which FLOOD is received before (after)
local veduction. The Z parameter is nuil on the PIP
(ECHO) message.

2. wnode 1 sends an ECHO (PIP) to parent; when out; =
B if reducei(reducel,;). The R and Z parameters ate
set to R; and 7;, respectively, where:

It is set fo:
Ureopr. B parameter received on ECHO/PIP
from k
\U{é} #f ((i has sent a PIP) and (reducet when
out; = )}
| (nodes that ¢ resmotely reduces in proc. eval),

Z; is set to: ‘
(Ueopr 2 parawmeter veceived in ECHO/PIP
_fmr'n k
\{k | k is (remotely) reduced in procedure evalf)
|z |zid =i, zue = X, atlocal termination}
if ~reduce’ when out; =P

Observation 7. Node ¢ does not send any ECHOs unless
reducel.

Lemma 10. A #ode ¢ for which (i) < oo performs reduction.

Proof. We prove the result by using induction on %(i).

Base case A(i) = 0: We show that a node ¢ for which
h(i) = 0 performs reduction by noting that its following
two properties satisfy Definition 5. 1) When such a node ¢
receives the first FLOOD, it executes case F1-A and
records itself as “active” {X; = irue). reducel because i
has received a sufficient number of ECHOs, which is
zero (0) in this casc. Such a node refurns an ECHO for
every FLOOD it receives (cases F1-A, F3-A). Cases F1-B,
F2, F3-B, E%, and EP* do not occur at this node. Hence, it
does not send any PIP. From Lemma 9, it follows that
ECHOs it sends are only in response to FLOODs. 2) By
steps EP1 and EP2, the parameters & and Z sent to
parent; are set per Definition 5. Therefore, a node for
which A(i) = 0 performs reduction.

hiz) =z >0 Assume that a node i with h{i)==
performs reduction.

h(i) = = + 1: It needs to be shown that a node i with
h{i) = x +1 performs reduction. At the time node i
receives the first FLLOOD, node 7 executes case F1-B and
records X; = fi (which evaluates to false because i is
blocked). By definition, there are a sufficient number



of nodes in OUT; to unblock ¢ and these nodes have a
value of h that is < x. Such nodes perform reduction
by the induction hypothesis. Such a node, say
k€ OUT,, gets reduced only in the following ways:

1. reduce} = truc before k receives the FLOOD from
i (cases F2-A, F3-A).

2. purenty =i and reducel = true (case Fl, step
PE2.4).

3. reducel during eval at i (step PE2.4).

4. Tcduce;?' e 4 € OUTY, and the teduction of k is
learned by ¢ through the II parameter in a
received ECHO or PIP. This scenario inctudes
the case where reducel becomes true after k&
receives a FLOOD f{rom i, where i+ parent;.
Note that j may or may not be an offspring of .

5. reducef, j € OUT,j # i. In this case, the R para-
meter containing % sent in ECHOs or PIPs by j
dees not reach 4.

6. 7'cduce;f¢k,j € OUT," and the £ parameter con-
taining k sent in ECHOs or PIPs by j does not
reach .

7. reducel after receiving the FLOOD from i,
parenty # 1 (case F2-B) and the R parameter
containing k sent on ECHOs or PIPs by & does
not reach i.

Each node & that gets reduced by cases 1 and 2 above
sends an ECHO to 4. Fach node & that gets reduced by
cases 3 and 4 above, gets reduced at node i and at a
successor of i, respectively.

If a sufficient number and combination of nodes k get
reduced by cases 1-4, then { gets locally reduced, and
behaves as follows: 1) After getting reduced,  sends an
ECHO only in response to every FLOOD (cases F1-A, F2-
A, F3-A, and step EP2.4 to respond to the FLOOD from
parent;) and does not send any PIP. Before i got reduced,
i never sent a ECHO (Observation 7) and ¢ sent a PIP
only in response to every FLOOD (case F2-B), other than
the FLOOD from parent;. 2) By steps EP1 and EP2, the
parameters R and Z sent Lo parent; are set per Definition
5. Hence, ¢ performs reduction.

Fach node k& that gets reduced by cases 5-7 above
sends a PIP to i in response to the FLOOD from 4. If a
sufficient number and combination of nodes & do not get
reduced by cases 1-4, then they will get reduced by cases
5-7, but —reducel. We show that ¢ will be remotely
reduced. Denote the set of nodes k by A. For cach node k
in 4, identify the node { in parent] where reduce}, and |
added k to B (Leramas 5 and 6). Denote this set of nodes
I as B. Clearly, B exists—it is {#nit} in the degenerate
case. Let j be the common DST ancestor of ¢ and the
nodes in B. Clearly, j exists—it is inft in the degenerate
case. Then, R; contains all the elements in A (Lemmas 5
and 6) which are sufficient to reduce 1 in procedure eval
at j, if 4 is not already in R;.

Specifically, from Lemma 8,

[(z € Z;,where zid =4) & i € R)].
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If (z € Z; where z4d = 1), then i gets reduced at j. If
t € I, then ¢ was reduced somewhere along the branch
from ¢ to j (Lemmas 4 and 7). This was due to the eager
dissemination of R on all PIPs and ECHOs. The residual
unblocking predicate X;, represented as z where
zid =1, in the Z parameter of ECHOs/PIPs was
transmitted toward 7 up the spanning tree edges through
some combination of PIPs and ECHQOs. This z.uc, where
zid =4, may have been strengthened along the way,
(and might have even become frie), when I at the
intermediate nodes became big enough to satisfy some
{(or all) of z.ue {Observation 5).

In addition to getting remotely reduced, i behaves
as [ollows: 1) 1 sends a PIP to only all nodes other than
parent; from which a FLOOD is received {cases F2-B,
F3-B) and never sends ECHOs (Observation 7). ¢ sends
a PIP to parent; (step EP2.5). 2) By steps EP1, EP2, the
parameters 12 and /7 in the PIP sent to parent; are sct
per Definition 5.

Hence, a node whose h = & + 1 performs reduction. O

Lemma 11. A rode ¢ for which h(i) = co does not get reduced.

Proof. By definition, all nodes whose h is o¢ form a

deadlock (D, K) in the WFG. For any node i€ D, ¢
does not have a sufficient number of edges to nodes in
OUT\ D to get unblocked. When node ¢ receives the
first FLOOD, X; = f; (which is false) and ¢ propagates
FLOOD on its outward edges.

From case F1-B and Observation 6, node i may receive
at most one ECHO only on an outgeing WFG edge. All
the nodes in QUT, \ 2 have their h < co and perform
reduction. Each node in OUT; \ D may send an ECHO on
its incoming edges but that is not sufficient to reduce 4,

We show by contradiction that no node in D gets
reduced. Assume that ¢ € D is the first node in /7 to
get reduced (locally or remotely}. If i was locally
reduced, then i received at least an ECHO [rom
another node in D (contradicts the assumption, by
Observation 7) or at least one j& D belengs to I,
implying by Lemma 7 and Observation 4 that j was
reduced before ¢ got reduced (contradicts the assump-
tion). If ¢ was remotely reduced at some k, at least one
j€ D} belongs to Ry, implying by Lemma 7 and
Observation 4 that j was reduced ({(either local or
remote to j) before i was reduced at k (contradicts the
assumption). Reductio ad absurdum.

Thus, no ¢ € D gets reduced. O

Theorem 1. The initiator declares deadlock iff it is deadlocked.
Proof. Reduction of the WFG is performed correctly from

Lemmas 10 and 11. The order of reduction of nodes is
unpredictable because of unpredictable message delays.
However from Holt’s result [18], the nodes can be
reduced in any order without changing the final out-
come. All deadlocked nodes are not reduced and all
other nodes are reduced.

{Sufficiency:) If the initiator declares deadlock, it is not
locally reduced (step EP2.5). The initiator cannot get
remotely reduced. Therefore, it is not reduced. From
Lemmas 10 and 11, it is deadlocked.
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{Necessity:) If the initiator is deadlocked, it is not
reduced (Lemma 11). So, on local termination, it declares
deadlock in step EP2.5. 0

5.1 Deadlock Resolution

If the initiator 4 finds that it is deadlocked, it can use Z; to
locally construct the topology of the deadlocked portion of
the WFG. It can then use various strategies to choose a
desirable set of nodes to abort to resolve the deadlock [18].
The algorithm considerably facilitates efficient and fast
resolution of a detected deadlock, whereas the other
algorithms [6], [7], [21], [28] require an additional round
of messages to collect the information that is needed to
resolve the deadlock.

6 PERFORMANCE

We analyze the time complexity, message complexity, size
of messages, and computational complexity for an invoca-
tion of the proposed deadlock detection algorithm on a
WI'G (N, F). The parameters used are d, the diameter of the
WEG, and e = |E|.

Theorem 2. The algorithm lerminates in 2d + 2 message hops.

Proof. The algorithm terminates when the initiator receives
a reply along each outgoing edge. Assume that each
message hop takes one time unit.

The FLOODs initiated by the initiator induce a
spanning tree in the WFG, When a node receives its
first FLOOD, it sends FLOODs immediately. Let
Ay < d be the maximum distance of any node from
the initiator in the WFG. The latest time that a FLOOD
is in transit 18 dpe. + 1 message hops:

A node i in the spanning tree immediately replies
to its parent when it has received an ECHO or PIP
from each node in OUT;. FLOODs sent to nodes in
OUT; \ of fspring, are immediately responded to by
ECHOs or PIPs. At d,.. + 2 time units, each node i has
received an ECHO/PIP from each node in
OUT, \ of fspring;. A node at distance di,, will have
received all expected replies at time dp,.; + 2, and sends
a reply to its parent at distance dy. — 1. By induction, a
node at depth x receives all expected replies by time
Aoz -+ 2 4- diee — . The initiator which is at distance 0
receives all expected replies by time 2 dpg, +2 and
terminates. |

Observe that the inifiator can detect it is not deadlocked
in fewer message hops as soon as it gets locally reduced. In
the best case, this is only two message hops.

Theorem 3. An invocation of the algorithm uses 2e messages.

Proof. A node sends exactly one FLOOD on each outgoing
edge once (case F1-B). Thus, ¢ FLOODs are sent for an
invocation of the algorithm.

A FLOOD from i sent to a node in QUT; \ of fspring;
is responded to by a ECHO or a PIP (cases F2 and F3). A
FLOOD sent by 7 to a node in offspring, where
of fspring; is a leaf node in the WFG is responded to
by an ECHO (case F1-A). A FLOOD sent by ¢ to a node in
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of fspring;, where of fspring; 1s a nonleaf node in the
WEG is responded to by exactly one PIP or ECHO (step
EP25 or step EP2.4}. Thus, there are exactly e PIP’s or
ECHOs, and the message complexity is exactly 2e. 0

Observe that PIP and ECHO messages are of variable
length, and may be larger than those in earlier algorithms
[6], [7}, [21], [28]. However, message headers are usually
large, so a slightly larger message body should not pose a
problem. We now analyze the size of PIPs and ECHOs. A
node j cannot belong to any 1¥; if it does not send any PIP’s
before it is locally reduced. In the best case, 1; is @. Due to
eager dissemination of reduced node information, R; can
confain any node in OUT}" that sent a PIP before local
reduction or that was remotely reduced at some other node
in OUT!". Hence, in the worst case, R; is the set of [OUT/"|
node identifiers. To analyze the size of 7, we use the P-out-
of-Q representation of generalized requests; as reviewed in
Section 1, the P-out-of-Q request model and the AND-OR
request model have equivalent expressive power and the
presented algorithm can be applied directly to both request
models. A P-out-of-Q formula when translated to the AND-
OR model can become exponentially large in Q. An AND-
OR formula can always be translated into a P-out-of-Q
formula, as shown in [19]. In the P-out-of-Q model, the
unblocking function X; at a node ¢ requires the representa-
tion of |OUT;| node identifiers. In the best case, the residual
function of 1 at local termination can be frue and Z; can be (.

In the worst case, the local residual function can be X; for

node ¢ and Z, contains X; for every j in OUT/, thus
requiring the representation of

>

- JEOUT Ui}

ouT|

node identifiers. The size of a PIP or ECHQ is the sum of the
estimates of the sizes of R; and Z;. In the best case, this is
the representation of @3 in the worst case, it is the
representation of

>

JEOUT Ui}

[OUTT| + |OUT|

node identifiers, with the added constraint that a node
identifier cannot appear in both ft; and Z;. Although no
empirical data on the size of WFGs or deadlocks is available
for the P-out-of-Q request model, for the single-request and
AND request models, it is argued in [3], [13] that most
deadlock cycles are of length 2 and WFGs are also relatively
small, We expect that for the P-out-of-Q) request model, the
WEGs will not be significantly larger than those for the
AND request model. Hence, even in the worst case,
messages are expected to be small.

For the computational complexity at a node, we again
consider the equivalent P-out-of-Q) representation of un-
blocking functions. We need to determine the computa-
tional complexity of procedure eval, which is executed once
by each node ¢ when it receives its last ECHO or PIP. For
each pass of the outer repeat loop, at least one new node is
inserted in tempR. In the worst case, there will be 4
executions of the repeat loop, where ¥ is the number of
nodes in the subtree of the WFG rooted at 4. Within each
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repeat loop, at most {; Zs are instantiated by the new
members of femplt, and evaluated; this can be done in
parallel in O{1) steps, and serially in O{#;) steps. Hence, in
the worst case, the processing at node ¢ without any
parallelization is O(¢?). In the best case, it is O(1) when
Ri=%or 7 =0

Table 1 compates the performance of the proposed
algorithm and the algorithms in [6], [7], [21], [28] in terms of
the number of phases, time complexity, and message
complexity. The proposed algorithm performs better than
the algorithms in [6], [7], [21], [28]; it has a message
complexity of

(2 % the number of edges in the WEFG)
and the worst-case time complexity of
(2 % the diameter of the WFG) 4 2

hops. Also, the proposed algorithm has information locally
available at the initiator to determine how to resclve a
detected deadlock; other algorithms incur extra time and
message overhead to achieve this. In addition, even if the
initiator is not deadlocked, 7; at the initiator contains
information on the residual function of cach node in the
WFG that could not be even remotely reduced.

We conjecture that the proposed algorithm is optimal in
the number of messages and in time delay if detection of
gencralized deadlocks is to be carried oul under the
following framework:

e No node has complete knowledge of the topology of
the WFG or the system.

o The deadlock detection is to be carried out in a
distributed manner.

This framework is similar to that in [6], [21], [28]. The
algorithm does not introduce the latent message overhead
to acknowledge computation messages (in [7], every
computation message sent has to be individually acknowl-
edged; this greatly increases the message complexity) and
does not have latent delays (as in {7], where the algorithm
blocks until all previously sent computation messages are
acknowledged).

The informal argument to support our conjecture of
optimality is as follows: The only way to identify the
WFEG when the topology of neither the WFG nor the
system is known is to use the diffusion of messages
along the WFG edges (folklore). This takes d+ 1 time
units and ¢ messages. Due to the [ollowing two reasons,
it is necessary that a node respond to every FLOOD
message it receives:

I. If a node is in the indeterminate state when it
receives a second or subsequent FLOOD message, it
must immediately respond to it {e.g., by a PIP) to
avoid deadlocking of the algorithm itself. Consider
an example given in Fig. 5. The thick edges define
the DST. If node 4 does not immediately respond to
the FLOOD messages from nodes 3 and 5, and node
5 does not immediately respend to the FLOOD
message from node 4, the algorithm is deadlocked.

ap

Fig. 5. An example detaction.

2. 1If evaluation of the WFG topology for deadlock is to
be conducted in a distributed manner, each node
involved in the diffusion process must receive a
regponse to the diffusion messages from each of its
direct successor nodes so that it can decide about its
own reducibility. In turn, it must send a response
containing information about its reducibility status
to all nodes from which it received a diffusion
(FLOOD} message.

Thus, at least e return messages are required. Since
return messages sequentially traverse the WEG, they take
d+1 time units to reach the initiator node. Thus, an
additional 4+ 1 time units and at least e messages are
required after the diffusion of messages is over. Hence, we
conjecture that the time and the message complexity of 2d -
2 and 2e, respectively, are optimal,

7 DiscussION AND CONCLUSIONS

Handling Dynamic WFGs. The algorithm was presented for
a static WFG. In practice, nodes are making requests and
requests are being satisfied; therefore, a WFG is dynamic.
Consider an edge from i to j. By the time a FLOOD sent by 4
reaches 7, 7 has already replied to . This edge is a phanton
edge. Treatment of phantom edges that arisc due to the
dynamic nature of the WFG is described in [21]. When a node
jreceives a FLOOD from a nodes, 7 checks if this is a phantom
edge, ie, is i ¢ IN;? If so, then j immediately returns an
ECHO to i. For a phantom edge fromnode ¢ tonode j,node i is
defined to perceive h(j) as zero (0). Node j may still be a part
of the WFG, but parent; # 4 and parent; may perceive a
nonzero value of 17}, The message and the time complexities
of the modified algorithm remain unchanged; however,
phantom edges are appropriately handled in the reachable
WEFG during the diffusion of FLOOD messages.

Handling Concurrent Initiations. Due to the symmetric
nature of the algorithm, mulliple nodes may initiate the
deadlock detection concurrently and a particular node
may initiate it multiple times. Sequence numbers and
initiator-ids distinguish between different instances of the
algorithm. An optimization on the number of messages
can be performed by maintaining a timestamp-based
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priority otder on all invocations of the algorithm and
suppressing lower priority algorithms.
In summary, we presented an efficient algorithm for

detecting deadlocks in replicated databases. Replicated -

databases offer increased fault-tolerance and better respon-
siveness but require quorum algorithms to serialize con-
current read and write operations from different
transactions for concurrency control [1], [4], [5], [12].
Replicated databases thalt use quorum-consensus algo-
rithms are prone to deadlocks because transactions which
are waiting for a quorum to be satisfied may be involved in
an indefinite wait. Requests in replicated databases are P-
out-of-Q or AND-OR type requests and the resulting
deadlocks are generalized deadlocks. The presented alge-
vithm to detect generalized deadlocks is based on the
principle of diffusion computation and performs reduction
of a distributed WFG to detect a deadlock. Deadlock
detection is performed by echoing the diffusion computa-
tion messages at terminating nodes and reducing the graph
when an appropriate condition at a node in the echo phase
is found. If sufficient information to decide the reducibility
of a node is not available at that node, the algorithm
optimizes the performance by attempting the reduction
later in a lazy manner.

We proved the correctness of the algorithm. The
algorithm detects all deadlocks in a finite time and if it
reports a deadlock, the deadlock exists in the system. The
algorithm performs considerably better than the existing
algorithms to detect generalized deadlocks in distributed
systems. It has a message complexity of 2e messages and
the worst-case time complexity of 2d+ 2 hops. We con-
jectured that the algorithm is optimal in time and message
complexity to detect generalized deadlocks if no node has
complete knowledge of the topology of the WFG or of the
system and the deadlock detection is to be carried out in a
distributed manner,

The presented algorithm is applicable to detecting

. deadlocks in other domains such as resource allocation in
distributed operating systems, store-and-forward commu-
nication networks, and communicating processes, where
generalized deadlocks occur, as well as to traditional
domains where single request, AND request, and OR
request deadlocks occur.
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