
Performance of the Optimal Causal Multicast
Algorithm: A Statistical Analysis

Punit Chandra, Pranav Gambhire, and Ajay D. Kshemkalyani, Senior Member, IEEE

Abstract—An optimal causal message ordering algorithm for asynchronous distributed systems was proposed by Kshemkalyani and

Singhal and its optimality was proven theoretically. For a system of n processes, although the space complexity of this algorithm was

shown to be Oðn2Þ integers, it was expected that the actual space overhead would be much less than n2. It is difficult to determine the

behavior of this algorithm by a theoretical analysis. In this paper, we measure the overheads of two different implementations of the

optimal causal message ordering algorithm via simulation under a wide range of system conditions. The optimal algorithm is seen to

display significantly less message space overhead and log space overhead than the canonical Raynal-Schiper-Toueg algorithm.

Index Terms—Causal multicast, causal ordering, distributed system, performance, simulation.

�

1 INTRODUCTION

Adistributed system consists of a number of processes
communicating with each other by asynchronous

message passing over logical channels. There is no shared
memory and no common clock in the system and we
assume that the channels are reliable. A process execution is
modeled as a set of events, the time of occurrence of each of
which is distinct. A message can be multicast, in which case
it is sent to multiple other processes. Let SendðMÞ denote
the event of a process handing over the message M to the
message ordering subsystem. Let DeliverðMÞ denote the
event of M being delivered to a process after it has been
received by its local message ordering subsystem. The
ordering of events in a distributed system execution is given
by the “happens before” or the causality relation [9],
denoted by �!. For two events e1 and e2, e1�!e2 iff one
of the following conditions is true. 1) e1 and e2 occur on the
same process and e1 occurs before e2, 2) e1 is the event
SendðMÞ and e2 is the event DeliverðMÞ, or 3) there exists
an event e3 such that e1 �! e3 and e3 �! e2. The system
respects causal message ordering [2] iff, for any pair of
messages M1 and M2 sent to the same destination,

ðSendðM1Þ �! SendðM2ÞÞ ¼)
ðDeliverðM1Þ �!DeliverðM2ÞÞ:

Causal message ordering is valuable to the application
programmer because it reduces the complexity of applica-
tion logic and retains much of the concurrency of a FIFO
communication system. Causal message ordering is useful
in numerous areas such as managing replicated database
updates, consistency enforcement in distributed shared

memory, enforcing fair distributed mutual exclusion,
efficient snapshot recording, and data delivery in real-time
multimedia systems. Many causal message ordering algo-
rithms have been proposed in the literature. See [2], [3], [8],
[11], [12] for an extensive survey of applications and
algorithms. Causal message ordering has been implemen-
ted in many systems such as Isis [2], Transis [1], Horus [3],
Delta-4, Psync [10], and Amoeba [7].

Any causal message ordering algorithm implementation
has two forms of space overheads—the size of control
information on each message (message space overhead) and
the size of memory buffer space at each process (log space
overhead). It is important tohaveefficient implementationsof
causal message ordering protocols due to their wide applic-
ability. The causal message ordering algorithm given by
Raynal et al. [11], hereafter referred to as theRST algorithm, is
a canonical solution to the causal message ordering problem.
It has a fixed message space overhead and memory buffer
space overhead of n2 integers, where n is the number of
processes in the system. The Horus [3], Transis [1], and
Amoeba [7] implementations of causal message ordering are
essentially variants of the RST algorithm.

Kshemkalyani and Singhal identified and formulated the
necessary and sufficient conditions on the information
required for causal message ordering and provided an
optimal algorithm to realize these conditions [8]. This
algorithm was proved to be optimal in space complexity
under all network conditions and without making any
simplifying system/communication assumptions. The
authors also showed that the worst-case space complexity
of the algorithm is Oðn2Þ integers, but argued that, in real
executions, the actual complexity was expected to be much
less than n2 integers, the overhead of the RST algorithm.

Although the Kshemkalyani-Singhal algorithm, hereafter
referred to as the KS algorithm, was proven to be optimal in
space complexity by using a rigorous optimality proof,
there are no experimental or simulation results about the
absolute performance of the KS algorithm or about the
quantitative improvement it offers over the canonical RST
algorithm. The correctness proof does not give any intuition

40 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

. P. Chandra and A. Kshemkalyani are with the Department of Computer
Science (MC 152), 851 South Morgan St., University of Illinois at
Chicago, Chicago, Il 60607-7053.
E-mail: {pchandra, ajayk}@cs.uic.edu.

. P. Gambhire is with C-Port Corp., 120 Water St., North Andover, MA
01845. E-mail: Pranav.Gambhire@cportcorp.com.

Manuscript received 21 Dec. 2001; revised 15 Aug. 2002; accepted 16 June
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115622.

1045-9219/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

about the algorithm behavior in the face of changing system
parameters. Furthermore, it is difficult to make any
predictions about the behavior of KS by analyzing it
theoretically. The purpose of this paper is to quantitatively
determine the absolute performance of the KS algorithm
and to determine the improvement offered by the
KS algorithm over the RST algorithm. This is done by
simulating the KS algorithm and comparing the amount of
control information sent per message and the amount of the
memory buffer space requirements with the fixed over-
heads of the RST algorithm. The results over a wide range
of parameters indicate that the KS algorithm performs
significantly better than the RST algorithm and, as the
network scales up, the performance benefits are magnified.
With n ¼ 100, the KS algorithm has about 4 percent of the
overhead of the RST algorithm. This paper builds on a
preliminary performance study [6], by doing more com-
prehensive simulations and by studying the performance of
two implementations of the KS algorithm, that use different
data structures. The simulation results give useful insights
and hints about how to tune the performance of causal
multicast algorithm implementations.

There are three types of overheads in a causal message
ordering protocol—the message space overhead, the log
size overhead at processes, and the time overhead for
processing messages. Our simulations showed that the log
size overhead and message space overhead are correlated in
the KS algorithm. Therefore, in the simulation results, we
present only the message space overhead as the space
overhead. For the KS algorithm, the time (computational)
overhead follows the same pattern as the message space
overhead. Hence, we do not study the time overhead in the
simulation.

An important feature of the KS algorithm is that it is
(proved to be) optimal under all conditions, including all
cases where a process multicasts to a different set of
destinations at the send events. This behavior occurs when
processes participate in different-sized and possibly over-
lapping groups at the same time. Although some algorithms
in the literature [1], [3], [7] use vector clocks for group
multicast, they assume that all messages are multicast to the
same group and, hence, that is equivalent to a broadcast.
This is a special limiting case of the RST and KS algorithms
which allow multicasts to arbitrary sets of processes at each
send event. Algorithms optimized for these special cases,
and unicasts, are certainly important; however, they cannot
be compared with RST and KS when dealing with
dynamically varying or more generic destination sets.
Similarly, we do not compare the KS overheads with the
overheads of algorithms optimized for other special
environments (such as real-time environments—where
algorithms allow delivery out of causal order in order to
satisfy real-time constraints).

The KS algorithm, which is optimal, assumes reliable
processes and channels. For any algorithm to be resilient to
network failures, a certain degree of redundant data must
exist; conversely, if an algorithm for a reliable network is
provably optimal, it will not contain any redundant data.
(RST, which is not optimal, also assumes reliable commu-
nication.) However, in the simulation, we do account for

transmission delays due to packet losses and retransmis-
sions at the TCP layer.

We chose to use simulations rather than benchmarking
for performance evaluation because we are not aware of any
standard and widely accepted benchmarking programs that
generate event-driven/phase-driven message patterns for
multicast or causal ordering algorithms in the distributed
computing literature.

Section 2 outlines the RST algorithm and the
KS algorithm. Section 3 presents the model of the message
passing distributed system in which the KS algorithm is
simulated. Section 4 shows the simulation results of the
KS algorithm in comparison to the results expected from the
RST algorithm. Section 5 gives the conclusions.

2 OVERVIEW OF THE CAUSAL ORDERING

ALGORITHMS

This section briefly introduces the RST algorithm [11] and
the optimal KS algorithm [8] for causal message ordering.
Both algorithms assume FIFO communication channels and
that processes fail by stopping.

2.1 The RST Algorithm

Every process in a system of n processes maintains a n� n
matrix—the SENT matrix. SENT ½i; j� is the process’s best
knowledge of the number of messages sent by process Pi to
process Pj. A process also maintains an array DELIV of
size n, where DELIV ½k� is the number of messages sent by
process Pk that have already been delivered locally. Every
message carries, piggybacked on it, the SENT matrix of the
sender process. A process Pj that receives message M with
the matrix SP piggybacked on it is delivered M only if, 8 i,
DELIV ½i� � SP ½i; j�. Pj then updates its local SENT matrix
SENTj as:

8k8l 2 f1; . . . ; ng; SENTj½k; l� ¼ maxðSENTj½k; l�; SP ½k; l�Þ:

The space overhead on each message and in local storage at
each process is the size of the matrix SENT , which is
n2 integers.

2.2 The KS Algorithm

Kshemkalyani and Singhal identified the necessary and
sufficient conditions on the information required for causal
message ordering, and proposed an algorithm that imple-
ments these conditions. To outline the algorithm, we first
introduce some formalisms. The set of all events E in the
distributed execution (computation) forms a partial order
ðE;�!Þ which can also be viewed as a computation graph:
1) There is a one-one mapping between the set of vertices in
the graph and the set of events E and 2) there is a directed
edge between two vertices iff either these vertices correspond
to two consecutive events at a process or correspond to a
message send event andadelivery event, respectively, for the
same message. The causal past (respectively, future) of an
event e is the set fe0 j e0�!eg (respectively, fe0 j e�!e0g). A
path in the computation graph is termed a causal path.

Let DeliverdðMÞ denote the event DeliverðMÞ at
process Pd. The algorithm assumes that each process
maintains a logical scalar clock and events are timestamped
by the local clock value when they occur. Specifically, the

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 41

ath event at process Pi is denoted ði; aÞ. Let Mi;a denote the
multicast of message M by process Pi at local time a, i.e., its
ath event, and let Mi;a:Dests denote the set of destinations
of the multicast. Note that a multicast can be implemented
as a set of (simultaneous) unicasts. The log at process Pi is
denoted Logi. Certain information is piggybacked on
messages and stored in logs to help enforce causal order.
When a message arrives, the local log is updated with the
piggybacked information if it is more current. When a
message is sent, the information from the local log is
piggybacked on it and the local log is updated with
information about the message sent.

Similar to the RST algorithm and all other algorithms, the
KS algorithm follows a Delivery Condition which states the
following: A message M� that carries information “d is a
destinationofM,”denotedas“d 2 M:Dests,”wheremessage
M was sent to d in the causal past of SendðM�Þ, is not
delivered to d if M has not yet been delivered to d. The
optimality of the KS algorithm is based on two main
principles, explained next.

If the causal past of an event ðj; bÞ contains the event
DeliverdðMi;aÞ, then the information “d 2 Mi;a:Dests” must
not be stored or propagated any longer because causal
delivery of any message sent henceforth in the causal future
to destination d can never be violated with respect to
message Mi;a. This constraint on the propagation of
information is called Propagation Constraint I.

Consider threemessages,Mi;a,Mk;c, andMj;b, all of whose
destination sets includedestination d. LetSendðMi;aÞbe in the
causal past ofSendðMk;cÞ andSendðMk;cÞ be in the causal past
of SendðMj;bÞ. Consider the propagation of “d2 Mi;a:Dests.”
1) If message Mk;c sent to destination d contains the
piggybacked information “d2 Mi;a:Dests,” then theDelivery
Condition ensures that it is delivered in causal order with
respect to Mi;a at destination d. 2) If message Mj;b sent to
destination d contains the piggybacked information “d 2
Mk;c:Dests,” then the Delivery Condition ensures that it is
delivered in causal orderwith respect toMj;b at destination d.
Observe that it is not necessary for Mj;b to carry the
piggybacked information “d 2 Mi;a:Dests” because, by tran-
sitivity,Mi;a is guaranteed to be delivered in causal order with
respect to Mj;b. Only information about the causally most
recent send event(s) to the same destination need to be
piggybacked. Although there are some finer points in this
explanation, this principle captures the constraint on the
propagation of information “d 2 Mi;a:Dests” and is called
Propagation Constraint II.

We now summarize the twomain principles leading to the
optimality of KS. The KS algorithm achieves optimality by
storing in local message logs and propagating on messages,
information of the form “d 2 M:Dests” about a message M
sent in the causal past, as long as and only as long as

1. (Propagation Constraint I:) It is not known that the
message M is delivered to d, and

2. (Propagation Constraint II:) It is not guaranteed that
the message M will be delivered to d in causal order.

Information about a message (I) not known to be
delivered to d and (II) not guaranteed to be delivered to d
in causal order is explicitly tracked by the KS algorithm.
To achieve optimality, this information is deleted as soon

as a process “learns” that either (I) or (II) becomes false.
In order to perform such deletions, we see the necessity
to store and propagate information about 1) messages
known to be delivered to their destination and 2) mes-
sages that are guaranteed to be delivered to their
destination in causal order with respect to any messages
sent in the future. Such information must not be explicitly
represented to help achieve optimality; rather, the
algorithm should have a way to infer such information.
Information about messages already delivered and mes-
sages guaranteed to be delivered in causal order is
implicitly tracked without storing or propagating it and is
inferred from the explicit information by the following
logic: “As the necessary and sufficient information (about
(I) and (II)) for correctness is explicitly tracked, any
information (about older or current messages) that is not
explicitly tracked can be inferred to be valid information
about messages already delivered or messages guaranteed
to be delivered in causal order.” This implicit information
is deduced and learned from the explicit information.

In the example in Fig. 1, a timing diagram is used to
illustrate 1) the propagation of explicit information “P6

2 M5;1:Dests” and 2) the inference of implicit information
that “M5;1 has been delivered to P6 or is guaranteed to be
delivered in causal order to P6 with respect to any future
messages.” A thick arrow indicates that the corresponding
message contains the explicit information piggybacked on
it. A thick line during some interval of the time line of a
process indicates the duration in which this information
resides in the log local to that process. The number a next to
an event indicates that it is the ath event at that process.

1. (Multicasts M5;1 and M4;2.) Message M5;1 sent to
processes P4 and P6 contains the piggybacked
information “M5;1:Dests ¼ fP4; P6g.” Additionally,
at the send event (5, 1), the information
“M5;1:Dests = fP4; P6g” is also inserted in the
local log Log5. When M5;1 is delivered to P6, the
(new) piggybacked information “P4 2 M5;1:Dests”
is stored in Log6 as “M5;1:Dests = fP4g”; informa-
tion about “P6 2 M5;1:Dests” which was needed
for routing must not be stored in Log6 because of
Constraint I. Symmetrically, when M5;1 is delivered
to process P4 at event (4, 1), only the new
piggybacked information “P6 2 M5;1:Dests” is in-
serted in Log4 as “M5;1:Dests = fP6g,” which is
later propagated during multicast M4;2.

2. (Multicast M4;3.) At event (4, 3), the information
“P6 2 M5;1:Dests” in Log4 is propagated on multicast
M4;3 only to process P6 to ensure causal delivery
using the Delivery Condition. The piggybacked
information on message M4;3 sent to process P3

must not contain this information because of Con-
straint II. (The piggybacked information contains
“M4;3:Dests ¼ fP6g.” As long as any future message
sent to P6 is delivered in causal order w.r.t. M4;3 sent
to P6, it will also be delivered in causal order w.r.t.
M5;1 sent to P6.) And, as M5;1 is already delivered to
P4, the information “M5;1:Dests ¼ ;” is piggybacked
on M4;3 sent to P3. Similarly, the information
“P6 2 M5;1:Dests” must be deleted from Log4 as it
will no longer be needed because of Constraint II.

42 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

“M5;1:Dests ¼ ;” is stored in Log4 to remember that
M5;1 has been delivered or is guaranteed to be
delivered in causal order to all its destinations.

3. (Learning implicit information at P2 and P3.) When
message M4;2 is received by processes P2 and P3,
they insert the (new) piggybacked information in
their local logs as information “M5;1:Dests ¼ fP6g.”
They both continue to store this in Log2 and Log3
and propagate this information on multicasts until
they “learn” at events (2, 4) and (3, 2) on receipt of
messagesM3;3 andM4;3, respectively, that eitherM5;1

is delivered to P6 or any future message is
guaranteed to be delivered in causal order to P6,
w.r.t. M5;1 sent to P6. Hence, by Constraint I or
Constraint II, this information must be deleted from
Log2 and Log3. The logic by which this “learning”
occurs is as follows.

. When M4;3 with piggybacked information
“M5;1:Dests ¼ ;” is received by P3 at (3, 2), this
is inferred to be valid current implicit informa-
tion about multicast M5;1 because the log Log3
already contains explicit information “P6

2 M5;1:Dests” about that multicast. Therefore,
the explicit information in Log3 is inferred to be
old and must be deleted to achieve optimality.
M5;1:Dests is set to ; in Log3.

. The logic by which P2 learns implicit knowledge
on the arrival of M3;3 is identical.

4. (Processing at P6.) Recall from Step 1 that when
message M5;1 is delivered to P6, only “M5;1:Dests
¼ fP4g” is added toLog6. Further, P6 propagates only
“M5;1:Dests ¼ fP4g” (fromLog6) onmessageM6;2 and
this conveys the current implicit information “M5;1 has
beendelivered toP6”by its very absence in the explicit
information.

. When the information “P6 2 M5;1:Dests” arrives
on M4;3, piggybacked as “M5;1:Dests ¼ fP6g,” it
is used only to ensure causal delivery of M4;3

using the Delivery Condition, and is not inserted
in Log6 (Constraint I)—further, the presence of

“M5;1:Dests ¼ fP4g” in Log6 implies the implicit
information thatM5;1 has already been delivered
to P6. Also, the absence of P4 inM5;1:Dests in the
explicit piggybacked information implies the
implicit information that M5;1 has been delivered
or is guaranteed to be delivered in causal order
to P4 and, therefore, M5;1:Dests is set to ; in
Log6.

. When the information “P6 2 M5;1:Dests” arrives
onM5;2, piggybacked as “M5;1:Dests ¼ fP4; P6g,”
it is used only to ensure causal delivery of M5;2

using the Delivery Condition and is not inserted
in Log6 because Log6 contains “M5;1:Dests ¼ ;,”
which gives the implicit information thatM5;1 has
been delivered or is guaranteed to be delivered in
causal order to both P4 and P6. (Note that, at
event (5, 2), P5 changes M5;1:Dests in Log5 from
fP4; P6g to fP4g, as per Constraint II, and inserts
“M5;2:Dests ¼ fP6g” in Log5.)

5. (Processing at P1.)

. When M2;2 arrives carrying piggybacked infor-
mation “M5;1:Dests ¼ fP6g,” this (new) informa-
tion is inserted in Log1.

. WhenM6;2 arriveswith piggybacked information
“M5;1:Dests ¼ fP4g,” P1 “learns” implicit infor-
mation“M5;1 hasbeendelivered toP6”by thevery
absence of explicit information “P6 2 M5;1:Dests”
inthepiggybackedinformationand,hence,marks
information “P6 2 M5;1:Dests” for deletion from
Log1. Simultaneously, “M5;1:Dests ¼ fP6g” in
Log1 implies the implicit information that M5;1

has been delivered or is guaranteed to be
delivered in causal order to P4. Thus, P1 also
“learns” that the explicit piggybacked informa-
tion “M5;1:Dests ¼ fP4g” is outdated.M5;1:Dests
in Log1 is set to ;.

. Analogously, the information “P6 2 M5;1:Dests”
piggybacked on M2;3 that arrives at P1 is
inferred to be outdated (and, hence, ignored)

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 43

Fig. 1. Example to illustrate propagation constraints.

using the implicit knowledge derived from
“M5;1:Dests ¼ ;” in Log1.

A final point of explanation remains. To prevent the
accumulation of entries such as “Mi;�:Dests ¼ ;” in a log,
the following principle of learning of implicit information is
used. “Mi;a:Dests ¼ ;” can be implicitly inferred by the
presence of any (more recent) information of the form
“Mi;a0 :Dests (whether empty or nonempty), for any a0 > a.”
Thus, the algorithm need not store entries of the form
“Mi;a:Dests ¼ ;” for messages sent earlier by Pi. Using this
principle, if a log does not contain any data for Mi;a and it
contains data for Mi;b, for b > a, the (implicit) information
can be inferred that Mi;a has been delivered to all its
destinations or is guaranteed to be delivered in causal order
to all its destinations.

The explicit information and the encoded implicit
information is the bare minimum causal dependency
information required to be stored and transmitted to
enforce causal ordering optimally as per the Propagation
Constraints. The algorithm stores/propagates only this
information. No extra space is required for the implicit
information, thus achieving optimality.

Observe, from the algorithm, that there is a definite
relationship between the log space overhead and the
message space overhead. The time overhead has the same
pattern as the log space and message space overheads. This
is because processing can be done in one pass over the local
log for a send event, and in one pass over the local and
piggybacked logs for a delivery event.

In an implementation of KS, M:Dests can be represented
in the local logs at processes and piggybacked on messages
using the data structures shown in Fig. 2. The log is a
variable length array of type LogStruct. Assuming that
process_id is an integer, the size of a LogStruct structure
is 3þ sizeðdestsÞ integers, where sizeðXÞ is the number of
elements in the array X. The log space overhead is the sum
of the sizes of all the entries in the log. The amount of
overhead on a message required by the KS algorithm is the
size of the MsgOvhdStruct structure sent on it. The size of
the MsgOvhdStruct structure can be determined as

4þ sizeðdestsÞ þ SIZEðologÞ;

where SIZEðXÞ is the sum of the sizes of all the entries in
the array X of LogStructs. The message and log space
overheads of the KS algorithm, as measured using this data
structure, are denoted by KS in our simulation.

Instead of storing the log as a variable length array of type
LogStruct, a two-dimensional bit array logArray can be

used to potentially simplify the log data structure.
logArray½i�½j� ¼ 1 flags the presence of an entry in the log,
corresponding to the latest message sent by Pi to Pj. The
modified log now only contains the clock value of the send
eventsof themessageswhose entries are flagged inLogArray.
The total overhead, measured in the number of integers, is
now n2=W þ ðnumber of entries in the logÞ, where W is the
number of bits used in the representation of an integer. The
message and log space overheads of the KS algorithm, as
measured using this modified data structure and assuming
W ¼ 32, are denoted by KS’ in our simulation. Henceforth, a
reference to algorithm KS’ will be to the KS algorithm
implemented with this data structure. The values of the
overhead for KS’ are dependent on the value of n and the
sparsity of the log.

2.3 Objectives

With the optimality conditions of the KS algorithm, the space
overhead onmessages and in the local log at processes is less
than the n2 overhead of the RST algorithm. Although the
optimality of the KS algorithm for causal multicast has been
proven theoretically, its description and correctness proof
offer no insight into its behavior under different network
conditions, there is no performance data available, and a
theoretical or analytical analysis of its performance is
difficult. In the KS algorithm, there are two opposing forces.
1) Message transmissions increase the distribution of explicit
information about messages not known to be delivered and
not guaranteed to be delivered in causal order—this tends to
increase the size of logs at processes. 2) Simultaneously,
message transmissions also distribute implicit information
about messages already delivered or guaranteed to be
delivered in causal order—this prunes the size of logs at
processes. In the face of these two opposing forces, the exact
performance of KS is hard to determine theoretically. To
ascertain the exact performance, we therefore use simula-
tions. Intuitively, the followingparameterswouldseemlikely
to affect the KS overhead. These parameters are introduced
formally in Section 3.

1. Number of processes (to test scalability). A greater
number of processes generate quadratically more
explicit information that needs to be stored and
propagated. Yet, we have the opposing trend that
more implicit information is also propagated on
messages and stored in logs. We would like to
ascertain how these opposing trends interact as
system size increases.

2. Intermessage time (function of how communication-
intensive the program is). A slow rate of message

44 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 2. The log data structure and message overhead data structure.

generation implies a slower generation and propa-
gation of explicit as well as of implicit information.
We would like to ascertain how the generation of
explicit information and its purging by the implicit
information interact as this parameter is varied. We
hypothesize that, in the steady state of operation, the
message space overhead would not be very sensitive
to this parameter.

3. Message transmission time (function of physical
network distances, network speed, and congestion).
Faster transmission implies faster distribution of
both explicit and implicit information. We would
like to ascertain how the two opposing trends:
generation of explicit information and its purging
by the implicit information interact as this parameter
is varied. The Internet is a complex entity and
exhibits effects that no current simulation can
reproduce [5]. First, the properties of links are very
different—some links are slow while others are fast
and some are long while others are short. Second,
the link load in the Internet constantly changes. This
makes it difficult to model transmission time by a
single parameter for the Internet. Therefore, we need
to choose an appropriate distribution to model
transmission time to characterize delay that is
representative of the various links in the network.
A high value of mean transmission time implies
1) large average geographical distance between
processes, and/or 2) slower links, and/or 3) con-
gestion over the links. We hypothesize that, in the
steady state of operation, the message space over-
head would not be very sensitive to this parameter.

4. Percentage of message-send events that are multi-
casts (function of program behavior). A greater
number of multicasts implies that more explicit
information is generated and propagated faster. At
the same time, the implicit information also gets
generated and propagated by the greater number of
messages. Thus, information generation and purging
seem counter-balanced. We hypothesize that the
message space overhead should not be sensitive to
the number and frequency of multicasts.

As it is difficult to theoretically predict the behavior of KS
with the variation of the above parameters, therefore the
goal of this study is to examine the statistical behavior of KS
under a wide range of system conditions via simulation.

3 SIMULATION SYSTEM MODEL

A distributed system consists of asynchronous processes
running on processors which are typically distributed over
a wide area and are connected by a network. It can be
assumed without any loss of generality that each processor
runs a single process. Each process can access the
communication network to communicate with any other
process in the system using asynchronous message passing.
The communication network is reliable and delivers
messages in FIFO order between any pair of processes.

3.1 Process Model

Aprocess is composed of two subsystems viz., the application
subsystem and themessage ordering subsystem. The application
subsystem is responsible for the functionality of the process

and the message ordering subsystem is responsible for
providing it with causally ordered messaging service. The
message ordering subsystem implements the causalmessage
ordering algorithm in the simulation. The application
subsystem generates message patterns that exercise the
causal message ordering algorithm. The message ordering
subsystem maintains a floating-point clock that is different
fromanyclock in the causalmessageorderingalgorithm.This
clock is initialized to zero and tracks the elapsed run time of
the process. Every process has a priority queue, called the
in_queue, that holds incomingmessages. This queue is always
kept sorted in increasing order of the arrival times of
messages in it.

Message structure. A message is the fundamental entity
that transfers information from a sender process to one or
more receiver processes. Each message M has a causal info
field, a time stamp field, and a payload field. The causal info
field is just a sequence of bytes onwhich aparticular structure
is imposed by the causal message ordering algorithm. The
RST algorithm imposes an n� n matrix structure on the
causal info field. The KS algorithm imposes the structure
given in Fig. 2. The KS’ implementation imposes the data
structure given at the end of Section 2.2. The message
ordering subsystem uses the time stamp field to simulate
the message transmission times. The in queues are kept
sorted by the time stamp field. The information that is
contained in a message is referred to as its payload. In a real
system, this would contain the application-specific packet of
information according to the application-level protocol.

3.2 Simulation Parameters

The system parameters whose effects we want to examine
on the performance of the KS algorithm are discussed next.

. Number of processes (n):While most causal message
ordering algorithms show good performance for a
small number of processes, a good causal message
ordering algorithmwould continue todo so for a large
number of processes. It is hence necessary to simulate
any causal message ordering algorithm over a wide
range of the number of processes. The number of
processes in the system is limited only by thememory
size and processor speed of the machine running the
simulation.On an Intel Pentium IIImachinewith 1GB
RAM and the simulation framework being imple-
mented in J2SE 1.4.1 SDK, we could simulate up to
100processes. Typically,much larger networks can be
organized in a hierarchical manner with separate
causal orderingalgorithms runningat each level of the
hierarchy.

. Mean intermessage time (MIMT): The mean inter-
message time is the average period of time between
two message send events at any process. It deter-
mines the frequency at which processes generate
messages. The intermessage time is modeled as an
exponential distribution about this parameter.
Although real programs tend to be event-driven or
phase-driven, as we are not aware of any standard
or widely-accepted benchmarking programs for
causal ordering/multicast algorithms in the distrib-
uted computing literature, we did not generate
event-driven/phase-driven message patterns. Thus,
we chose an approximation which is the exponential

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 45

distribution for MIMT. We believe this is a reason-
able approximation because we are measuring the
long-term average message size overhead.

. Multicast frequency (M/T): It cannot be analytically
predicted how the KS algorithm would behave with
an increasing number of multicasts. The ratio of the
number of send events at which data is multicast to
more than one process (M) to the total number of
message send events (T) is the parameter (M/T) on
the basis of which the multicast sensitivity of the
KS algorithm can be determined. Note that a
multicast may be implemented as a set of (simulta-
neous) unicasts as in the simulation—however, all
these simultaneous unicasts denote a single send
event. Processes like distributed database updators
use all broadcasts and a collection of FTP clients use
point-to-point communication. Processes that parti-
cipate in multiple overlapping groups have an
intermediate value of M/T between 0 and 1. We
simulate the KS algorithm with M/T varying from 0
to 1. The number of destinations of a multicast is
given by a uniform distribution ranging from 1 to n.
By varying M/T from 0 to 1, we try to capture the
program behavior when each process is multicasting
to different-sized and partially overlapping groups
to which it belongs.

. Mean transmission time (MTT): The transmission
time of a message usually refers to the msg. size/
bandwidth þ propagation delay, where the propagation
delay is the delay imposed by the physical medium
andqueuingdelays at intermediate routers. In aWAN
setting and even for moderately-sized messages, the
propagation delay dominates and this is what is
referred to here. The Internet is a complex entity and
exibits effects that no current simulation can repro-
duce [5]. As modeling delays in the Internet is very
difficult and we use a single metric to characterize
1) physical network size/distances, 2) speed for all
links, and () congestion, therefore, we model trans-
mission time as an exponential distribution about the
mean, MTT, as representative of all the links. This is a
highly asymmetrical distribution and, hence, the
distances/delays between pairs of processes vary
over a wide range, i.e., are also asymmetrical. In the
simulation, we do account for transmission delays
due the loss of packets and subsequent retransmission
at the TCP layer. TCP uses slow start to retransmit
packets,which can result inhighvalueof transmission
time and a complex distribution. The overall behavior
can be reasonably modeled by an exponential dis-
tribution about the MTT.

To enforce this mean, multicasts are treated as
multiple unicasts and transmission time is indepen-
dently determined for each unicast. The formulation
of the transmission time can violate FIFO order over
a link. As most causal message ordering algorithms
assume FIFO ordering, it is implemented explicitly
in our system. Every process maintains an array LM
of size n to track the arrival time of the last message
sent to each other process. LM½i� is the time at which
the last message from the current process to
process Pi will reach Pi. Should the transmission
time determined be such that the arrival time for the

next message at Pi is less than LM½i�, then the arrival
time is fixed at ðLM½i� þ 1Þms. LM½i� is updated
after every message send to Pi.

MTT is a measure of the physical distances in the
network and the speed of the network, with fast
networks having small MTTs. MTT also serves as a
measure of network congestion. We have varied
MTT from 20ms to 6000ms in these simulations so as
to model a wide range of networks. As a reference
point, the round-trip time (RTT) for a ping from
Chicago to Urbana, Boston, London, and Mumbai
was 5:6ms, 30ms, 115ms, and 236ms, respectively.
We model network congestion indirectly—by in-
creasing the MTT.

An important parameter that is dependent on the above
is the ratio of MIMT to MTT. This parameter abstracts away
the absolute values of MIMT and MTT. A smaller value of
this ratio indicates greater traffic; a larger value indicates
less traffic. As this parameter is derivable from MIMT and
MTT, we do not model it explicitly, but rather mention the
range of values of this parameter for each experiment.

3.3 Process Execution

All the processes in the system are symmetric and generate
messages according to the same MIMT and M/T. The
processes in a distributed system execute concurrently. But,
simulating each process as an independent process/thread
involves interprocess/thread communication and the in-
volved delays are not easy to control. Instead, a round-robin
scheme was used to simulate the concurrent processes. Each
simulated process is given control for a time slot of 500ms.
A systemwide clock keeps track of the current time slot.

When a process is in control, it generates messages
according to the MIMT. The sender of a message deter-
mines the transmission time using MTT, adds it to its
current clock, and writes the result into the time_stamp field
of the message. It then inserts this message into the in queue
of the destination process.

When a process gets control, it first invokes the message
ordering subsystem. The message ordering subsystem looks
at the head of its in queue to determine if there are any
messages whose time stamp is less than or equal to the
current value of theprocess clock. Suchmessages are the ones
that must have already arrived and, hence, should have been
processedbefore/during this time slot.All suchmessages are
extracted from the queue and handed over to the causal
message ordering delivery procedure in the order of their
timestamps. The causal delivery procedure will buffer
messages that arrived out of causal order. Note that this
buffer is distinct from the in queue. Messages in causal order
are delivered immediately to the application subsystem.
Blocked messages remain blocked till the messages that
causally precede them have been delivered. The application
subsystem then gets control and it generates messages
according to the MIMT. The messages are handed over to
the message ordering subsystem for delivery.

A process Pi stops generating messages once it has
generated a sufficient number of messages (see Section 4)
and flags its status as completed. The simulation stops
when all the processes have their status flagged as
completed.

46 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

4 SIMULATION RESULTS

The two implementations of the KS algorithm, identified in
Section 2.2 as KS and KS’, were simulated in the framework
presented in Section 3. The framework and the algorithm
were implemented in Java2 1.4.1 SDK using ObjectSpace
JGL 4.0. The performance metrics used are the following:

. the average number of integers sent per message
under various combinations of the system para-
meters, viz., n, MTT, MIMT, and M/T,

. the average size of the log in integers under the same
conditions.

We report four experiments, in each of which we vary
one of the four parameters n, MTT, MIMT, and M/T,
respectively. For each combination of parameters in each
experiment, 10 runs were executed for KS and 10 runs were
executed for KS’. The results of the 10 runs did not differ
from each other by more than a percent. Hence, only the
mean of the 10 runs is reported for each combination and
the variance is not reported.

For each simulation run, datawas collected for 25,000mes-
sages after the first 5,000 system-wide messages to eliminate
the effects of startup. Every process Pi in the system
accumulates the sumof the number of integers Ii that it sends
out on outgoing messages. After every message send event
and every message delivery event, it determines the log size
and accumulates it into a variable Li. It also tracks ms

i , the
number of messages sent, and mr

i , the number of messages
delivered, during its lifetime. Once Pi has sent out ms

i ¼
30; 000=n number of messages, it flags its status as complete
and computes its mean message space overhead, denoted
MMVi, as Ii=m

s
i and its mean log space overhead, denoted as

LVi, asLi=ðmr
i þms

i Þ. These results are then sent toprocessP0,
which computes the systemwide average message space
overhead as

P
MMVi=n and the systemwide average log

space overhead as
P

LVi=n. All the overheads for KS andKS’
are reported as a percentage of their corresponding determi-
nistic overheadn2 of the RST algorithm. For each experiment,
the absoluteoverhead for eachdatapoint ofKSandKS’ canbe
computed by multiplying the percentage by n2 integers.

It can be seen from Fig. 2 that the log size overhead is
related to the message size overhead. In the simulations, the
results for the log size overhead followed the same pattern as
the results for the message size overhead in all the experi-
ments. Hence, only the message space overhead is shown.

4.1 Scalability with Increasing n

RST scales poorly to networks with a large number of
processes because of its fixed overhead of n2 integers.
Although the KS algorithm has Oðn2Þ overhead, it is
expected that the actual overhead will be much lower than
n2. We test the scalability of the KS algorithm by simulation
of its two implementations KS and KS’.

The simulations were performed for (MTT, MIMT, M/T)
fixed at S1 (50ms, 100ms, 0.1), S2 (400ms, 100ms, �0:1Þ,
S3ð50ms; 1600ms;�0:1Þ, and S4ð50ms; 400ms; 0:99Þ. These
four settings correspond to an MIMT to MTT ratio of 2, 0.25,
32, and 8, respectively. The number of processes was varied
from 10 up to 100. The results for the average message space
overhead are shown in Fig. 3.Observe that,with increasingn,

the message space overhead rapidly decreases as a percen-
tage of RST. For the case of 100 processes, for all the
simulations of KS, the overhead is only 4 percent that of
RST. For the case of 15 processes, the overheads reported for
KS andKS’ are about 25 and 15 percent , respectively, of those
of RST, but the overhead of RST itself is low for such systems.
The simulations S1, S3, and S4 show that the improvement in
overhead is unaffected bywhether a send event is a unicast or
a multicast, or by the number of destinations of a multicast.

It can be seen from Fig. 3 that the performance (overhead
as a percentage of the RST algorithm) gets better when the
number of processes is increased, keeping MTT, MIMT, and
M/T constant. This demonstrates the scalability of the
algorithm. The increasingly lower overhead as a percentage
of the RST algorithm can be explained as follows: Observe
that there are two opposing trends as n is increased. On the
one hand, more explicit information of the form “d is a
destination of message M” needs to be tracked in the logs.
On the other hand, each log also stores more implicit
information and each message also brings with it this
additional implicit information, thereby providing impetus
for the Propagation Constraints to work and prune the logs
when the message is delivered to the recipient. For the data
sets simulated, the overhead appears almost linear in n.

The curves for KS and KS’ show a somewhat similar
trend and are close together for high values of n. As
expected for lower values of n, KS’ is much more efficient
than KS. At higher values of n, KS outperforms KS’ because
the n2 bit-array adds more overhead than it reduces the size
of the actual log entries of KS. We expect that, for any set of
traffic parameters, eventually, as n keeps increasing, a
threshold will be reached beyond which KS performs better
than KS’. For example, the threshold is n ¼ 45 for S4 and
n ¼ 62 for S3.

From simulations S1 through S4 and the above analysis,
it can be concluded that both implementations of the
KS algorithm have a better network capacity utilization and,
hence, better scalability than RST.

4.2 Impact of Increasing Transmission Time

An increasing MTT is indicative of 1) a geographically
more dispersed network, 2) a decrease in available
bandwidth or slower links, and 3) increasing network
congestion. The space overheads of the RST algorithm are
fixed at n2 integers, irrespective of these network
conditions. We ran simulations for systems consisting of
15 and 40 processes under varying MIMT and M/T to
analyze the impact of increasing MTT. The results for the
average message space overhead are shown in Fig. 4. The
simulations were performed for (MIMT, M/T, n) fixed at
S1ð1600ms; 0:1; 15Þ, S2ð400ms; 0:1; 15Þ, S3ð400ms; 0:1; 40Þ,
and S4ð1600ms; 0:9; 15Þ. The MTT was increased from
20ms to 6000ms for the first two settings, while it has a
range of 50ms to 1000ms for the latter two settings. Thus,
the four settings had the MIMT to MTT ratio varied from
80 to 0.267, 20 to 0.067, 8 to 0.4, and 32 to 1.6, respectively.

The overhead of the KS algorithm as a percentage of the
RST overhead first increases gradually, but soon reaches
steady state despite further increases in MTT. This is
explained as follows: When a message is sent, it causes
some information about it to be added to the sender’s log,

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 47

which also helps to prune the log contents using the

Propagation Constraints. When a message is delivered, it

causes some of the information piggybacked on it to be

added to the recipient’s log and it also uses some of its

piggybacked information to prune the recipient’s log using

the Propagation Constraints. Also recall that the sizes of the

logs are bounded [8]; once a process Pi has a log record of a

message sent to process Pj, a log record of a new message

sent to Pj can potentially erase all previous log records of

messages sent to Pj. The resulting two actions of adding to

the log and purging the log are in opposition to each other.

At low values of MTT, message transmission is very fast. As

MTT grows, i.e., the message transmission speed falls, the

log sizes show a small increase in size. This may be

attributed to the fact that more recent information reaches

processes later and older information tends to stay in the
logs longer. However once MTT increases, all the log sizes
tend to a “steady-state” proportion of n2 (determined by
other system parameters) but significantly less than n2. This
trend is because old information is purged from the logs at
about the rate that new information is added. The pruning
of the logs by the Propagation Constraints is still effective
and the rate of pruning is not much affected by the MTT.

Note that, despite an initial increase, the overhead is
always significantly less than that of RST. For example, for
simulations S1, S2, and S3, where n = 15, the message space
overhead is never more than 35 percent that of RST. For
simulation S4, where n = 40, the overhead is always less
than 11 percent of that of RST. Thus, we can conclude that
the KS algorithm has better performance than RST, even
under high MTT.

48 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 4. Average message space overhead as a function of MTT .

Fig. 3. Average message space overhead as a function of n.

The curves for KS and KS’ show a very similar trend and
are very close together for simulation S3, which has a higher
value of n than for S1, S2, and S4, where KS’ noticeably
outperforms KS. This behavior was analyzed in Section 4.1.

The simulations S1 and S4 show that increasing multicast
frequency, thus increasing the network load, does not affect
the overhead appreciably. This is because the log sizes have
already reached a “steady-state” proportion of n2 and
multicasts cannot increase them much further. Note that
multicasts effectively distribute the log information faster
into the system because they convey information to more
processes. Thus, when a multicast message is delivered, it
can potentially cause a lot of log pruning at the destination
even if it causes more newer information to be added to the
log. In steady-state, an equilibrium is maintained between
these effects. This sensitivity to M/T is tested in Section 4.4.

4.3 Behavior under Decreasing
Communication Load

The next experiment is aimed at determining the over-
head behavior when the KS algorithm is used in
applications that use communication sparingly. The
values of (MTT, M/T, n) were fixed at S1ð50ms; 0:1; 40Þ,
S2ð50ms; 0:1; 20Þ, S3ð400ms; 0:1; 20Þ, and S4ð50ms; 0:9; 20Þ.
MIMT was varied from 50ms to 1,200ms for S1 and S2.
For S3 and S4, MIMT was varied from 50ms to 12,000ms;
however, as the overhead stayed almost constant beyond
MIMT = 1,200ms, the graphs for S3 and S4 show MIMT
only up to 1,200ms. Thus, the four settings had an MIMT
to MMT ratio varied from 1 to 24, 1 to 24, 0.125 to 30, and
1 to 240, respectively. The results for the average message
space overhead are shown in Fig. 5.

The message space overhead is almost constant for each
of S1, S2, S3, and S4, although there is a slight fluctuation for
low values of MIMT for S2 and S3, which represent a low
M/T ratio and a relatively smaller number of processes. The
absence of any fluctuations when n is larger or when M/T
is larger may be attributed to the stabilizing effect caused by
the more uniform distribution of information. The slight

fluctuations in overhead for S2 and S3 may be attributed to
a slight imbalance between the log pruning and log increase
trends when messages are generated extremely frequently
(low MIMT).

The more frequent message generation at low MIMT
disseminates log information faster and, thus, helps purge
log entries using the implicit information (about messages
already delivered and messages guaranteed to be delivered
in causal order) quicker, but it also adds new explicit log
entries quicker. With increasing MIMT, the implicit in-
formation that is required by the Propagation Constraints to
perform pruning of logs takes more time in reaching all the
processes that have the log record of a message send event.
Hence, the pruning of logs slows and log records tend to
grow in size with increasing MIMT. However, the genera-
tion of messages also becomes infrequent and, hence, the
growth of a process’s log to track newer messages is also
reduced. These opposing trends cause the log sizes to level
off as MIMT increases.

The overhead for KS’ is noticably lower than that of KS in
all cases. Note that, despite the slight initial increases, the
overheads are always much less than those of RST. Even for
a relatively low value of n = 20, the overhead of KS and KS’
is less than 20 percent and less than 12 percent of that of
RST, respectively.

4.4 Overhead for Increasing Multicast Frequency

This experiment aims to study the overhead as multicast

frequency is varied. In the simulations, M/T was increased

from 0.1 to 1.0 in steps of 0.1. The values of (MTT, MIMT, n)

were fixed at S1ð75ms; 500ms; 12Þ; S2ð50ms; 500ms; 40Þ;
S3ð50ms; 400ms; 20Þ; and S4ð50ms; 1600; 15Þ. The four set-

tings had an MIMT to MMT ratio of 6.67, 10, 8, and 32,

respectively. The results for the average message space

overhead are shown in Fig. 6.

For all simulations, the KS’ implementation had a lower

overhead than theKS implementation. For the simulationsS2

and S3, the overheads are constant for KS and KS’. For the

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 49

Fig. 5. Average message space overhead as a function of MIMT .

other simulations, the overheads for KS show a very slight

decreasewith increase inM/T,whereas theoverheads forKS’

tend to be unaffected. Simulations S2 and S3 represent

networks with more processes than the other simulations.

Increasing themulticast ratio, while causing effectively more

messages in the system and more up-to-date information to

be inserted in the logs, also causes greater distribution of

information, which is useful to prune logs by the application

of the Propagation Constraints. These two effects are held in

balance, as also explained at the end of Section 4.2. Increasing

multicast frequency does not decrease the overhead from the

already existing minimal overhead. However, for simula-

tionsS1 andS4, which have fewer processes and either higher

MTT or higher MIMT, increasing multicasts causes more

efficient distribution of information which is useful to prune

logs. As the algorithm maintains the minimum possible

overhead in the first instance, this effect of increasingM/T is

quite small.
Effectively, the algorithm overhead is less sensitive to the

M/T ratio, though, for smaller networks, a greater propor-
tion of multicasts distributes up to date information
somewhat more efficiently and this decreases the overhead
by a marginal amount.

We also explored two alternate ways to vary the
multicast frequency. First, we varied the parameter
bjDestsj=nc, defined as the fraction of the destination set
size for each send event, from 0.1 to 1. Thus, jDestsj=n = 0.6
indicates that for every send event, its destination set size is
0.6 times (n), and the destinations were chosen at random
each time. Fig. 7 shows the overhead for the same four
settings of (n, MIMT, MTT) as in Fig. 6, which varied M/T.
Second, we varied the parameter B/T, defined as the
fraction of send events that broadcast messages, with all
other send events unicasting messages. Thus, B/T = 0.6
indicates that 60 percent of the send events broadcast
messages, whereas the other 40 percent send events unicast
messages. Fig. 8 shows the overhead for the same four
settings of (n, MIMT, MTT) as in Fig. 6, which varied M/T.
For both Figs. 7 and 8, the overhead for each setting is very

similar to that when varying M/T and leads to the same
conclusions. The only difference is that, for simulation S2
(which denotes a larger number of processes), algorithm
KS’ has marginally more overhead than KS when varying
B/T, whereas, when varying M/T or jDestsj=n, the over-
heads were almost equal or KS’ had marginally lower
overhead than KS. These alternate ways of varying multi-
cast frequency corroborate the observations made by
varying M/T.

5 CONCLUDING REMARKS

Causal multicast is an important paradigm for ordering
message delivery to distributed applications. Although the
optimality of the KS algorithm for causal multicast has been
proven theoretically, its description and correctness proof
offer no insight into its behavior, there is noperformance data
available, and a theoretical or analytical analysis of its
performance is difficult. Hence, this paper conducted a
performance analysis of the space complexity of the optimal
KS algorithm under a wide range of system conditions using
simulations. The simulations considered two different
implementations—KS and KS’—of the KS algorithm and
examined the performance by varying four different system
parameters. The KS algorithm was seen to perform much
better than the canonical RST algorithmunder thewide range
of network conditions simulated. In particular, as the size of
the system increased to 100 processes, the KS algorithm
performed very well and had an overhead rate of less than 4
percent of that for the canonicalRSTalgorithm.Thealgorithm
also performed very well under stressful network loads
besides showing better scalability. The results are summar-
ized as follows:

1. Scalability with respect to n: KS and KS’ scale very
well, almost linear in n; for large n, KS outper-
forms KS’.

2. Impact of mean transmission time (MTT), which is
indicative of network distances, available band-
width, and network congestion: As transmission

50 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 6. Average message space overhead as a function of M=T .

time increases, there is a small initial gradual
increase in the overhead, but the overhead soon
reaches a steady value. Overall, overhead is much
less than that of RST.

3. Impact of frequency of communication (MIMT): For
low values of MIMT, there is a slight fluctuation in
the overhead; otherwise, it is almost constant and
much less than that of RST.

4. Impact of multicast communication (M/T): The
overhead is almost independent of the multicast
frequency and is much less than that of RST.

As such, the simulations described in this paper indicate

that the KS algorithm, which has been shown theoretically

to be optimal in the space overhead, does offer large savings

over the standard canonical RST algorithm and is thus an

attractive and efficient way to implement the causal

multicast abstraction. They also give useful insights and

hints about how to tune the performance of causal multicast

algorithm implementations.
Total order is another very useful form of message

ordering. Some systems, such as NewTOP [4], provide total

order implicitly based on causal order, whereas other

systems, such asTransis [1], that provide total order explicitly

impose causal order. The algorithm analyzed here can be

used a base for the latter type of total order systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the US

National Science Foundation under Grant No. CCR-

9875617. The authors gratefully thank the referees for their

valuable comments about many practical aspects of the

simulations. A preliminary performance study of one

implementation was published as [6].

CHANDRA ET AL.: PERFORMANCE OF THE OPTIMAL CAUSAL MULTICAST ALGORITHM: A STATISTICAL ANALYSIS 51

Fig. 7. Average message space overhead as a function of jDestsj=n.

Fig. 8. Average message space overhead as a function of B=T .

REFERENCES

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A
Communication Sub-System for High-Availability,” Proc. 22nd
Int’l Symp. Fault-Tolerant Computing, pp. 337-346, 1991.

[2] K. Birman and T. Joseph, “Reliable Communication in the
Presence of Failures,” ACM Trans. Computer Systems, vol. 5, no. 1,
pp. 47-76, Feb. 1987.

[3] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal
and Atomic Group Multicast,” ACM Trans. Computer Systems,
vol. 9, no. 3, pp. 272-314, Aug. 1991.

[4] P. Ezhilchelvan, R. Macedo, and S.K. Shrivastava, “Newtop: A
Fault-Tolerant Group Communication Protocol,“ Proc. 15th IEEE
Int’l Conf. Distributed Computing Systems, pp. 296-306, 1995.

[5] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,”
IEEE/ACM Trans. Networking, vol. 9, no. 4, pp. 392-403, Aug. 2001.

[6] P. Gambhire and A.D. Kshemkalyani, “Evaluation of the Optimal
Causal Message Ordering Algorithm,” Proc. Seventh Int’l High
Performance Computing Conf., pp. 83-95, Dec. 2000.

[7] M.F. Kaashoek and A.S. Tanenbaum, “Group Communication in
the Ameoba Distributed Operating System,” Proc. Fifth ACM Ann.
Symp. Principles of Distributed Computing, pp. 125-136, 1986.

[8] A.D. Kshemkalyani and M. Singhal, “Necessary and Sufficient
Conditions on Information for Causal Message Ordering and
Their Optimal Implementation,” Distributed Computing, vol. 11,
no. 2, pp. 91-111, Apr. 1998. (Also appears as IBM Technical
Report 29.2040, July 1995 and in conference format as A.D.
Kshemkalyani, and M. Singhal, “An Optimal Algorithm for
Generalized Causal Message Ordering,” Proc. 15th ACM Symp.
Principles of Distributed Computing, p. 87, 1996.)

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[10] L.L. Peterson, N.C. Bucholz, and R.D. Schlichting, “Preserving and
Using Context Information in Interprocess Communication,”
ACM Trans. Computer Systems, vol. 7, no. 3, pp. 217-246, 1989.

[11] M. Raynal, A. Schiper, and S. Toueg, “The Causal Ordering
Abstraction and a Simple Way to Implement It,” Information
Processing Letters, vol. 39, pp. 343-350, 1991.

[12] A. Schiper, A. Eggli, and A. Sandoz, “A New Algorithm to
Implement Causal Ordering,” Proc. Third Int’l Workshop Distributed
Systems, pp. 219-232, 1989.

Punit Chandra received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, in 1999 and the MS degree
in computer science from the University of
Illinois at Chicago, in 2001. Currently, he is in
the doctoral program at the University of Illinois
at Chicago and works for Siemens. His research
interests are in distributed computing, computer
networks, and operating systems.

Pranav Gambhire holds a Bachelor’s degree in computer science and
engineering from Osmania University, Hyderabad, India, 1998, and a
Master’s degree in computer science from the University of Illinois at
Chicago, 2000. His research interests include distributed system
architectures, network processor architectures, security protocols, and
QoS mechanisms for IP and ATM networks. He is currently a senior
software engineer at C-Port Corporation.

Ajay D. Kshemkalyani received the PhD
degree in computer and information science
from Ohio State University in 1991 and the
BTech degree in computer science and engi-
neering from the Indian Institute of Technology,
Bombay, in 1987. His research interests are in
computer networks, distributed computing, algo-
rithms, and concurrent systems. He has been an
associate professor at the University of Illinois at
Chicago since 2000, before which he spent

several years at IBM Research Triangle Park working on various
aspects of computer networks. He is a member of the ACM and a senior
member of the IEEE and the IEEE Computer Society. In 1999, he
received the US National Science Foundation’s CAREER Award.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

52 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

