
A Fine-Grained Modality Classification
for Global Predicates
Ajay D. Kshemkalyani, Senior Member, IEEE

Abstract—Specifying and detecting predicates in a distributed execution is an important problem. Distributed execution observation

has classically used two modalities—Possiblyð�Þ and Definitelyð�Þ—for predicate �. Based on the temporal interactions of intervals,

the author identified a complete, orthogonal set of relationships < between pairs of intervals in a distributed execution. This paper

shows how to map the rich, orthogonal classification of modalities of pairwise interval interactions, to the classical coarse-grained

classification, Possiblyð�Þ and Definitelyð�Þ, for specifying predicates defined on any number of processes. This increases the power

of expressing the temporal modalities under which predicates can be specified, beyond the current Possibly/Definitely classification.

This paper also gives timestamp-based tests for the orthogonal modalities in the refined classification.

Index Terms—Predicates, causality, synchronization, distributed execution, distributed system, global state.

æ

1 INTRODUCTION

PREDICATE specification and detection is an important
problem in distributed systems. It is useful in specifying

synchronization and coordination conditions in an execu-
tion in areas such as sensor networks, distributed debug-
ging, and industrial process control. While stable predicates
(once a stable predicate becomes true, it remains true) can
be detected by techniques such as global snapshot
algorithms, unstable predicates are difficult to deal with
because snapshot algorithms cannot capture such predi-
cates. The main difficulties in specifying and detecting
unstable predicates in a distributed execution are the
following: 1) The asynchronous nature of the process
execution speeds and message delivery times leads to
many interleavings of the events at different processes, each
of which leads to a different sequence of global states
corresponding to a different observation of the same
execution. 2) A global observation of the execution across
different processes is inherently not possible in a distrib-
uted system.

A global predicate is defined on variables local to more

than one process. Two modalities, Possiblyð�Þ and

Definitelyð�Þ, for the satisfaction of a global predicate � in

a distributed execution were defined by Cooper and

Marzullo [3] and Marzullo and Neiger [15]. For a given

execution, 1) Possiblyð�Þ is true if some observation of the

execution may pass through a state in which � is true, and

2) Definitelyð�Þ is true if every observation of the execution

will pass through a state in which � is true. These two

modalities have become widely accepted. The modality

classification—Possibly and Definitely—is coarse-grained.

The formalism and axiom system given by Kshemkalyani

[9] identified a complete orthogonal set < of 40 fine-grained

temporal interactions between intervals in a distributed
execution. Here, any pair of intervals must be related by one
and only one of the mutually exclusive interaction types
identified in <. We show that this formalism provides more
expressive power than the Possibly and Definitely modalities
of [3] and [15] for specifying predicates. Specifically, we
show how to map the rich, orthogonal classification of
modalities of pairwise interval interactions to the classical
coarse-grained classification, Possiblyð�Þ and Definitelyð�Þ,
for specifying predicates defined on any number of
processes. This gives flexibility and power to monitor,
synchronize, and control distributed executions. We also
give timestamp-based tests to detect the modality of
predicates defined on variables local to a pair of proces-
ses—these tests can then be applied to all pairs of processes
to detect global predicates defined on variables local to
more than two processes.

The power of our approach stems from the fact that we
model intervals as in [9], as opposed to individual events as
in [3], [15], in the distributed execution. The intervals at each
process are the local time durations of interest. Specifically,
in each interval at a process, the local variables using which
the global predicate � is defined, can potentially satisfy �.
Note that the notion of an interval corresponds to an abstract
event or a nonatomic event as used by Lamport who argued
that “it is useful to assume that primitive elements between
which concurrency is modeled are nonatomic” [14]. A
nonatomic event naturally models the execution of a code
fragment by a process and is an important concept in
reasoning about the interaction between multiple code
fragments executed by different processes [11].

Section 2 gives the system model and reviews back-
ground material. Section 3 shows the refinement of the
Possiblyð�Þ and Definitelyð�Þ classification in terms of the
40 possible interaction types < [9]. Section 4 gives the
timestamp-based tests to check for the 40 orthogonal
relations. Section 5 discusses the significance and some
applications of the fine-grained modality classification.
Section 6 gives the conclusions.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003 807

. The author is with the Department of Computer Science, University of
Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607.
E-mail: ajayk@cs.uic.edu.

Manuscript received 23 July 2001; revised 23 Aug. 2002; accepted 13 Nov.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 114585.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

2 SYSTEM MODEL AND BACKGROUND

2.1 System Model

In a distributed system, a set of processes N communicate
with one another by asynchronous message passing over
logical channels. There is no shared memory and no
common clock. A poset event structure model ðE;�Þ,
where � is an irreflexive partial ordering representing
the causality relation on the event set E, is used as the
model for a distributed system execution. E is partitioned
into local executions at each process. Ei is the linearly
ordered set of events executed by process Pi. An event
executed by Pi is denoted ei. The causality relation on E is
the transitive closure of the local ordering relation on each
Ei and the ordering imposed by message send events and
message receive events [13]. A subset of set Ei identifies a
duration or an interval at Pi that is demarcated by the
earliest and latest events. Such intervals are linear intervals
and denote linear abstract events. As stated earlier, our
intervals are such that in each interval at a process, the local
variables using which the global predicate � is defined, can
potentially satisfy �. Further semantics of intervals of
interest are discussed in Section 3. A more general
definition of intervals, and an extension of the definition
to a space-time setting, and to a collection of arbitrary,
possibly noncontiguous events of interest from different
processes, are given in [9], [11].

A cut C is a subset of E such that if ei 2 C, then
ð8e0iÞ e0i � ei¼)e0i 2 C. Thus, a cut is downward-closed with-
in partitions. A consistent cut C is a downward-closed subset
of E in ðE;�Þ [17], i.e., if e 2 C, then ð8e0Þ e0 � e¼)e0 2 C.
Only all downward-closed subsets of E preserve causality
and denote observable execution prefixes. For event e, there
are two special consistent cuts # e and e " . # e is the maximal
set of events that happen before e. e " is the set of all events up
to and including the earliest events at each process for which e
happens before the events.

Definition 1 (Past of an event e). # e ¼ fe0je0 � eg
(Future of an event e). e " = fe0je0 6� eg

S
fei; i ¼

1; . . . ; jNj j ei � e
V
ð8e0i � ei; e

0
i 6� eÞg.

The system state after the events in a cut is a global state
[2]; if the cut is consistent, the corresponding system state is
termed a consistent global state and denotes a meaningful
observation of a global state.

We assume the availability of vector clocks Clk to
maintain logical time [5], [17]. Vector clocks have the
property that e � f()ClkðeÞ < ClkðfÞ. A vector clock has

size n ¼ jN j, with the < operator defined as follows:
1) Clk � Clk0 if and only if ð8k 2 NÞ Clk½k� � Clk0½k�, and
2) Clk < Clk0 if and only if Clk � Clk0 and Clk 6¼ Clk0. The
following rules update the clock at each process:

V1. (Internal event) Before process Pi executes the event,
Clki½i� ¼ Clki½i� þ 1.

V2. (Send event) Before process Pi executes the event,
Clki½i� ¼ Clki½i� þ 1. Send message timestamped with
Clki.

V3. (Receive event) When process Pj receives a message
timestamped T from process Pi, ð8k 2 NÞ Clkj½k� =
maxðClkj½k�, T ½k�); Clkj½j� ¼ Clkj½j� þ 1; deliver the
message.

The timestamp T of an event ei is the local clock value
ClkðeiÞ that results after the execution of the event. Unless
otherwise indicated, we do not assume any restriction on
the predicates defined on the execution. Given a literal/
Boolean b, b denotes its complement. A variable x local to
process Pi is denoted as xi. To simplify notation, the process
set N is also represented as the set of integer process
indices. For example, we use “ð8i 2 NÞ” instead of
“ð8Pi 2 NÞ.” Such usage should be clear from the context.

2.2 Prior Work

For abstract events X and Y , Lamport defined the following
two relations [14]:

1. ÿ!: Xÿ!Y iff 8x 2 X; 8y 2 Y ; x � y.
2. ÿÿ ! : X ÿÿ ! Y iff 9x 2 X; 9y 2 Y ; x � y.

Four additional relations besides ÿ! and ÿÿ ! were
defined in [9] to capture the interaction between a pair of
intervals or abstract events. Henceforth, we will refer to
relations ÿ! and ÿÿ ! by R1 and R4, respectively.
Relations R1 (strong precedence), R2 (partially strong
precedence), R3 (partially weak precedence), and R4 (weak
precedence) define causality conditions, whereas S1 (event
with no coupling) and S2 (round-trip coupling) define
coupling conditions. The relations R1-R4 and S1-S2 are
expressed in Table 1.

Axiom 1 gives the density axiom for time in terms of the
events/time instants in an interval. It states that any
interval X is defined over an infinite dense set E, and each
X that is not a single-member set contains 1 number of
elements.

Axiom 1 (Density Axiom). Each interval X is dense, i.e.,
8x1; x2 2 X; x1 � x2¼)9x3 2 X j x1 � x3 � x2.

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003

TABLE 1
Some Relations for Interactions between Intervals X and Y [9]

Assuming that time is dense, it was shown in [9] that there
are 29 possible interaction types between a pair of intervals, as
given in the upper part of Table 2. The significance of the
second part of the table, as well as of the use of the italic type,
will beexplained later. Of the 29 interactions, there are 13 pairs
of inverses, while three are inverses of themselves. The 29
interaction types are specified using Boolean vectors. For
intervals X and Y , the six relations R1-R4 and S1-S2 form a
Boolean vector of length 12, (six bits for rðX;Y Þand six bits for
rðY ;XÞ). An example of how to interpret Table 2 follows.
Consider interaction IB and its inverse IR. We have
IBðX;Y Þ ¼ IRðY ;XÞ. The vector components for interaction
IBðX;Y Þ are

R1ðX;Y Þ; R2ðX;Y Þ; R3ðX;Y Þ; R4ðX;Y Þ; S1ðX;Y Þ;
S2ðX;Y Þ; R1ðY ;XÞ; R2ðY ;XÞ; R3ðY ;XÞ; R4ðY ;XÞ;
S1ðY ;XÞ; S2ðY ;XÞ:

Analogously, the vector components for IRðX;Y Þ are

R1ðX;Y Þ; R2ðX;Y Þ; R3ðX;Y Þ; R4ðX;Y Þ; S1ðX;Y Þ;
S2ðX;Y Þ; R1ðY ;XÞ; R2ðY ;XÞ; R3ðY ;XÞ; R4ðY ;XÞ;
S1ðY ;XÞ; S2ðY ;XÞ:

Note that with the dense time assumption, R1 to R4, and
either S1 or S2 are sufficient to determine the interaction
type.

Figs. 1 and 2 (reproduced from [9]) illustrate the complete
set of 29 orthogonal relations for dense time. In Fig. 1, interval
X is shown in a fixed position using a rectangular box,

whereas interval Y , indicated using horizontal lines, is in

different positions relative to X. minðXÞ and maxðXÞ denote

the least and greatest element of linear interval X, respec-

tively. # minðXÞ, # maxðXÞ, minðXÞ "; and maxðXÞ " denote

consistent cuts. The different types of interactions are

identified by the various positions of Y relative to X. Each

position of Y is labeled by an interaction type, IA through IX

(and their modifiers). Five positions ofY have two labels each.

For each of these five positions of Y , the distinction between

the two interaction types, represented by the two labels, is

KSHEMKALYANI: A FINE-GRAINED MODALITY CLASSIFICATION FOR GLOBAL PREDICATES 809

TABLE 2
The 40 Orthogonal Relations in <, between Intervals X and Y [9]

The upper part of the table gives the 29 relations assuming dense time. The lower part of the table gives 11 additional relations assuming nondense
time. For each independent relation, the dominating values (prime implication cover) of the dependent relations in < are in italics [10].

Fig. 1. Illustration of interaction types between intervals under the dense
time model [9].

illustrated using Fig. 2. In this figure, the positions of Y are
indicated using a thick horizontal line.

When Axiom 1 does not hold, the intervals may be
nondense. This model is significant because clocks which
measure dense linear time use a nondense linear scale in
practice. Additionally, in some environments, local predi-
cates may meaningfully be defined to hold only when a
discrete event occurs. This model is also significant because
actions at each node in a distributed system form a linear
sequence of discrete events. This model permits 11 interaction
types between a pair of intervals, defined in the lower part of
Table 2, in addition to the 29 identified before. Of these, there
are five pairs of inverses, while one is its own inverse. The
reader is requested to refer to [9] for pictorial illustrations and
further explanations of these interaction types.

3 REFINING THE POSSIBLYð�Þ / DEFINITELYð�Þ
CLASSIFICATION

3.1 Background and Approach

Specifying predicates on the system state provides an
important handle to specify and detect the expected
behavior of the system. Unstable predicates pose two
challenges for detection in a system execution, as observed
in [16]. 1) The predicate may no longer be true at the time
the predicate is evaluated by a monitor. 2) Even if a
predicate is found to be true, it still may not have ever held
during the actual run. In particular, snapshot algorithms are
not useful to detect unstable predicates because even if a
predicate is detected, it may never have held, and the
predicate may have held even if it is not detected.
Evaluating nonstable predicates over global states con-
structed from observations of runs has the same drawbacks.
To overcome these drawbacks, Cooper and Marzullo [3],
Marzullo and Neiger [15] proposed to extend predicates to
apply to the entire distributed execution rather than to
individual observations or global states of it. They defined:

. Possiblyð�Þ: There exists a consistent observation of
the execution such that � holds in a global state of
the observation.

. Definitelyð�Þ: For every consistent observation of
the execution, there exists a global state of it in which
� holds.

Consider the example in Fig. 3. The execution is run at

processes P1 and P2. Event eki denotes the kth event at

process Pi. Variable a is local to P1 and variable b is local

to P2. Observe that Definitelyðaþ b ¼ 10Þ holds by the

following reasoning: When b is assigned 7 at event e1
2,

process P1’s execution may be in any state from the initial

state up to the state preceding event e3
1, in which a ¼ 3.

However, before the value of b changes from 7 to 5 at

event e4
2 and, in fact, before P2 executes event e3

2, P1 must

have executed event e1
1 at which time a ¼ 3. This is true

for all equivalent executions. Hence, Definitelyðaþ b ¼
10Þ holds. Although predicate ðaþ b ¼ 5Þ is never true in

the shown execution, observe that Possiblyðaþ b ¼ 5Þ
holds by the following reasoning: The predicate aþ b ¼
5 can be true only if: 1) a ¼ 3 ^ b ¼ 2, 2) a ¼ 0 ^ b ¼ 5,

or 3) a ¼ 8 ^ b ¼ ÿ3, simultaneously in some equivalent

execution. State (1) is possible in physical time after the

occurrence of event e5
2 and before the occurrence of e4

1. In

the execution shown, e5
2 occurs after e4

1. However, in an

equivalent execution, event e4
1 may be delayed to occur

after event e5
2, in which case b changes to a value other

than 2 after a becomes 8. Hence, the predicate is true in

this equivalent execution. It so happens that a similar

argument also holds for (2) and (3).
Clearly, Definitelyð�Þ implies Possiblyð�Þ, but the im-

plication does not hold the other way unless � is stable. We
observe that for any predicate �, three orthogonal modal
possibilities hold: 1) Definitelyð�Þ, 2) : Definitelyð�Þ ^
Possiblyð�Þ, and 3) : Possiblyð�Þ. Based on the formalism
in [9], we now show that these three orthogonal modal
possibilities can be refined into the exhaustive set of 29 (or 40)
possibilities between each pair of intervals, based on whether
time is assumed to be dense (or nondense), respectively.

The definitions of the modalities on predicates use
system states. However, observe that the definitions
essentially demarcate intervals at each process such that
in each interval, the values of local variables using which �
is defined, may satisfy �. In general, the semantics of the
intervals depends on predicate �. For a conjunctive
predicate � ¼ ^i�i, where �i is a conjunct (predicate) local
to process Pi, each interval at Pi can be locally determined
to be the maximum local duration in which local predicate �i
is true. For a nonconjunctive predicate, the interval at a

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003

Fig. 2. Ilustration of interaction types between intervals under the dense

time model (cont.) [9].

Fig. 3. An example execution.

process needs to be identified carefully, possibly after

reexpressing �, depending on the structure of �, and

examining the state lattice for the execution. Whatever

semantics is used to identify the intervals, the fine-grained

modalities apply.

3.2 Predicate � Defined over Two Processes

Let us first consider the case when predicate � is defined on

variables that are local to two processes. For a large class of

applications, such as those using a pair of interacting agents

or a client-server interaction, predicates are defined on

variables local to two processes.
For the dense time model, we can formulate an alternate

definition of Possibly and Definitely, based on linear

extensions of partial orders. For the poset ðE;�Þ, its linear

extension is a total order that preserves the partial order.

Each linear extension represents a consistent observation of

the execution.

Definition 2. Assume the dense time model. Let intervals X and

Y at two processes be such that during these intervals, the local

predicates are true.

. Possiblyð�Þ: (For some such intervals X and Y ,)
there exists a linear extension of ðE;�Þ such that
the string ½minðXÞ;maxðXÞ� overlaps with the
string ½minðY Þ;maxðY Þ�.

. Definitelyð�Þ: (For some such intervals X and Y ,) for
every linear extension of ðE;�Þ, the string ½minðXÞ;ÿ
maxðXÞ� overlaps with the string ½minðY Þ;maxðY Þ�.

Observe that intervals are qualified before the linear

extensions to express the modalities in terms of one interval

at each process.

Theorem 1. For the dense time model, the mappings of the
29 interaction types to the three classes 1) Definitelyð�Þ,
2) :Definitelyð�Þ ^ Possiblyð�Þ, and 3) :Possiblyð�Þ, are
given in the top part of Table 3.

Proof. Definition 2 gives an alternate formulation of the
Possibly and Definitely modalities using linear exten-
sions of the partial order ðE;�Þ. If the strings
½minðXÞ;maxðXÞ� and ½minðY Þ;maxðY Þ� do not overlap
in any linear extension, then R1ðX;Y Þ _ R1ðY ;XÞ and
even Possiblyð�Þ cannot be true. The overlap of the
strings in every linear extension of the partial order
implies Definitelyð�Þ, and this overlapping is equiva-
lently characterized as R4ðX;Y Þ ^R4ðY ;XÞ. Otherwise,
the strings overlap in some linear extensions and not
in some others, which implies Possiblyð�Þ ^:
Definitelyð�Þ. This is expressed in Fig. 4 in terms of
the dependent relations R1 and R4. Mapping these
conditions of Fig. 4 to the 29 orthogonal relations, we
get the mapping shown in the upper part of Table 3.tu

KSHEMKALYANI: A FINE-GRAINED MODALITY CLASSIFICATION FOR GLOBAL PREDICATES 811

TABLE 3
Refinement Mapping

The upper part shows the 29 mappings when the dense time model is assumed. For the nondense time model, the mappings under three possible
interpretations of Possibly and Definitely are shown in the lower part.

Observe that the mapping of the 29 relations to the three
classes uses only a little of the information that is necessary to
distinguish the 29 relations from one another. This is because
we are mapping to a coarser granularity: 1) Definitelyð�Þ,
2) :Definitelyð�Þ ^ Possiblyð�Þ, and 3) :Possiblyð�Þ. To give
the reader a feel of this fine-to-coarse mapping which follows
from the rules in Fig. 4, we consider one interaction type in
each coarse-grained class.

. For interaction type ID defined by R3ðX;Y Þ ¼ 1 ^
R4ðX;Y Þ ¼ 1 ^ S1ðX;Y Þ ¼ 1 ^ S2ðX;Y Þ ¼ 1 ^
R2ðY ;XÞ ¼ 1 ^ R4ðY ;XÞ ¼ 1 and all other rela-
tions being false, we have that as R4ðX;Y Þ ¼ 1 ^
R4ðY ;XÞ ¼ 1, Definitelyð�Þ must hold. Similarly
for its inverse IX.

. For interaction type IB defined by R2ðX;Y Þ ¼ 1 ^
R3ðX;Y Þ ¼ 1 ^ R4ðX;Y Þ ¼ 1 and all other relations
being false, R3ðX;Y Þ ¼ 1 implies Y may be concur-
rent withX.X andY will necessarily overlap in time if
we have R4ðY ;XÞ. However, as R4ðY ;XÞ, therefore,
IB gets mapped to :Definitelyð�Þ ^ Possiblyð�Þ.
Similarly for its inverse IR.

. For interaction type IA defined by R1ðX;Y Þ ¼ 1, the
durations X and Y can never be concurrent.
Interaction IQ being the inverse of interaction IA,
the same holds for IQ. Hence, both get mapped to
:Possiblyð�Þ.

Definition 2 needs to be applied cautiously to the
nondense time model because the original definitions [3],
[15] were formulated implicitly assuming dense time. Three
possible interpretations of Possibly and Definitely under
nondense time are described next. The resulting rules for
the fine-to-course-grained mapping are given in Fig. 5.

Interpretation 1. When events are discrete and predicates can
meaningfully take on values only at the events, over-
lapping strings ½minðXÞ;maxðXÞ� and ½minðY Þ;maxðY Þ�

do not imply the existence of a single instant in global time

at which the global predicate is necessarily true. Hence,

Definitelyð�Þ can never hold.

An example application where this interpretation is
useful is in particle physics studies. A particle impinging on
a surface denotes a discrete event, and a local predicate,
although defined on other local variables at the surface,
may be meaningfully true only at the time of occurrence of
the discrete event.

Interpretation 2. Despite the nondense time model and
events being discrete, if we apply Definition 2, then all
the 11 new interaction types for nondense time map to
Definitelyð�Þ. The mapping for the other 29 interactions
is the same as for dense time.

Interpretation 3. To explicitly capture the notion of the
strong coupling of events in X and Y for Definitelyð�Þ to
hold, we can require S2ðX;Y Þ or S2ðY ;XÞ, which
explicitly signify a “round-trip dependence chain of
events” between the two intervals, to be true. This would
be in addition to the requirement in Definition 2 that
strings ½minðXÞ;maxðXÞ� and ½minðY Þ; maxðY Þ� overlap
for all linear extensions. The condition for Definitelyð�Þ
to hold can be expressed as R4ðX;Y Þ ^R4ðY ;XÞ ^
ðS2ðX;Y Þ _ S2ðY ;XÞÞ.
With this interpretation, observe that interaction type

IM maps to Possiblyð�Þ ^ :Definitelyð�Þ, instead of to
Definitelyð�Þ if the dense time model had been used. The
mappings for the other 28 interactions (applicable to the
dense time model) are the same as for the dense time
model. Of the 11 new interactions for nondense time, IM00,
IMN, and IMN00 map to Possiblyð�Þ ^ :Definitelyð�Þ,
whereas the others map to Definitelyð�Þ.
Theorem 2. For the nondense time model, the mappings of the

40 interaction types to the three classes 1) Definitelyð�Þ,
2) :Definitelyð�Þ ^ Possiblyð�Þ, and 3) :Possiblyð�Þ, as
per the three interpretations above, are given in the lower part
of Table 3.

Proof. The proof follows by combining the explanations of
the three interpretations, the proof of Theorem 1, Table 2,
and Definition 2. The logic for the mappings is expressed in
Fig. 5 in terms of the dependent relationsR1,R4, and S2.tu

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003

Fig. 4. Pseudocode for the mapping of the refined relations under dense

time.

Fig. 5. Pseudocode for the mappings of the refined relations for nondense time. The mappings for three interpretations are given.

In the example of Fig. 3, it can be shown that IMðX1ða ¼
3Þ; Y2ðb ¼ 7ÞÞ (for dense time) and IMN 00ðX1ða ¼ 3Þ; Y2ðb ¼
7ÞÞ (for Interpretation 2 of nondense time) hold; hence,
Definitelyða ¼ 3 ^ b ¼ 7Þ. The following can also be shown:
1) IBðX1ða ¼ 3Þ; Y2ðb ¼ 2ÞÞ, hence, Possiblyða ¼ 3 ^ b ¼ 2Þ ^
:Definitelyða ¼ 3 ^ b ¼ 2Þ, 2) IGðX1ða ¼ 8Þ, Y2ðb ¼ 5ÞÞ,
hence, Possiblyða ¼ 8 ^ b ¼ 5Þ ^ :Definitelyða ¼ 8 ^ b ¼ 5Þ,
and 3) IV ðX1ða ¼ 8Þ; Y2ðb ¼ 7ÞÞ, hence, Possiblyða ¼ 8 ^ b ¼
7Þ ^ :Definitelyða ¼ 8 ^ b ¼ 7Þ.

3.3 Predicate � Defined over More than Two
Processes

In general, a predicate is defined on variables local to some
subset V of the set of all the processes,N . When a predicate �
is defined over variables that are local to more than two
processes, one can express the three modal possibilities
1) Definitelyð�Þ, 2) :Definitelyð�Þ ^ Possiblyð�Þ, and
3) :Possiblyð�Þ, in terms of the more fine-grained pairwise
orthogonal modalities in <, between C

jV j
2 pairs of processes.

Note that not all 40C
jV j
2 combinations will be valid—the

combinations have to satisfy the axioms given in [9]. When
considering the nondense time model in the rest of this
section, the proofs implicitly assume Interpretation 2 of
Possibly and Definitely. The proofs for the other interpreta-
tions follow directly.

Theorem 3. For a conjunctive predicate � defined on processes in
V � N , let � be expressed as

V
i2V �i, where �i is the

component of � local to process Pi. The following results are
implicitly qualified over a set of intervals, containing one
interval from each process.

1. Definitelyð�Þ holds if and only if
V
ð8i2V Þð8j2V Þ

½Definitelyð�i ^ �jÞ�.
2. :Definitelyð�Þ ^ Possiblyð�Þ holds if and only if

.

ð9i 2 V Þð9j 2 V Þ:Definitelyð�i ^ �jÞ
^

^
ð8i2V Þð8j2V Þ

½Possiblyð�i ^ �jÞ�

0@ 1A:
3. :Possiblyð�Þ holds if and only if ð9i 2 V Þð9j 2 V Þ
:Possiblyð�i ^ �jÞ.

Proof. Part 1 : Definitelyð�Þ implies that every observation
of the execution must include a state in which � holds.
Thus, in every linear extension of the execution, the
strings ½minðXÞ;maxðXÞ� and ½minðY Þ;maxðY Þ� for each
pair of intervals X and Y overlap. We also have that in
every observation of the execution, there must exist an
instant in time when � =

V
i �i is true. At this instant, the

consequent must hold for the predicate decomposed
pairwise, i.e., the execution must pass through this
instant at which

V
ð8i2V Þð8j2V Þð�i ^ �jÞ.

We now prove that
V
ð8i2V Þð8j2V Þ ½Definitelyð�i ^ �jÞ�

implies Definitelyð�Þ. The antecedent implies that in each
linear extension, for each pair of intervalsX andY ,minðXÞ
precedes maxðY Þ. Hence, given any linear extension, its
maxðfminðXiÞ j i 2 V gÞ precedes its minðfmaxðYjÞ j j 2
V gÞ with � being true between the two. Hence,

Definitelyð�Þ holds. We prove this alternately using time
durations. Definitelyð�i ^ �jÞ implies that for every ob-
servation of the execution, there exists a time instant when
intervals Ii and Ij overlap. Let I be the set of jV j intervals,
one per process, that overlap pairwise thus. Assume that
jI j is a power of 2. (If it is not, add 2ðdlogjI jeÞ ÿ jIj duplicates
of any elements of I to I ; I can be viewed as a multiset in
this part of the proof.) Assign the elements of I to an array
A that represents the leaf nodes of a complete binary tree.
We use induction on the distance h of nonleaf nodes from
the leaf nodes in the tree to show that the invariant on line 4
of the algorithm in Fig. 6 is true.

For the base case iteration h ¼ 1, the invariant is true for
all j between 1 and 2dÿ1 because there are two intervals in
the set, and we have that each pair of intervals overlaps in
time. We assume that the invariant is true for iteration
h ¼ x, x � 1. We now show that the invariant holds for
iteration h ¼ xþ 1. The 2xþ1 intervals in the set fA½2xþ1 �
ðjÿ 1Þ�; . . . ; A½2xþ1 � jÿ 1�g correspond to an internal node
in the tree at height xþ 1 from the leaves. The two child
nodes correspond to intervals in the two setsGL = fA½2xþ1 �
ðjÿ 1Þ�; . . . ; A½2xþ1 � ðjÿ 1Þ þ 2x ÿ 1�g and GR = fA½2xþ1 �
ðjÿ 1Þ þ 2x�; . . . ; A½2xþ1 � jÿ 1�g of size 2x each. As the
invariant holds for height x, intervals in each set overlap at
some point in time. Let dL and dR denote the overlap
durations of the intervals inGL andGR, respectively. If dL
and dR do not overlap, we have the scenario in Fig. 7 where
time is divided into five zones Z1 to Z5. There must exist
some interval ILj occurring in GL and some interval IRk
occurring in GR, that do not extend into zone Z3. Hence,
intervals ILj and IRk will not overlap in time, a contradiction
because each pair of intervals must overlap in time. Thus,
dL and dR must overlap and the invariant holds. When
h ¼ log jI j, all the intervals in I overlap at a common
instant in time. This reasoning is true in all observations.
Hence, Definitelyð�Þ holds.

Part 2 : If Possiblyð�Þ, then some observation of the

execution includes a state in which � holds. Thus, in

some linear extension of the execution, the strings

KSHEMKALYANI: A FINE-GRAINED MODALITY CLASSIFICATION FOR GLOBAL PREDICATES 813

Fig. 6. Recursive combining to demonstrate overlap of intervals.

Fig. 7. Nonoverlapping of intervals leads to a contradiction. The shaded

durations dL and dR denote the overlap durations of intervals in GL and

GR, respectively.

½minðXÞ;maxðXÞ� and ½minðY Þ;maxðY Þ� for each pair of
intervals X and Y overlap. We also have that in some

observation of the execution, there must exist an instant

in time when � =
V
i �i is true. At this instant, the

consequent must hold for the predicate decomposed

pairwise, i.e., the execution must pass through this

instant at which
V
ð8i2V Þð8j2V Þ Possiblyð�i ^ �jÞ.

We now show that
V
ð8i2V Þð8j2V Þ ½Possiblyð�i ^ �jÞ�

implies Possiblyð�Þ. We have that for each pair of
processes, there exists a linear extension in which the

corresponding interval strings ½minðXÞ;maxðXÞ� and

½minðY Þ;maxðY Þ� overlap. Hence, (from the properties

of linear extensions), it follows that there must also exist

some linear extension (of the same execution) in which

minðXÞ can precede maxðY Þ for each pair of intervals X

and Y . Analogous to Part (1) for Definitelyð�Þ, in this

linear extension, each pair of intervals overlap at some
instant in time. Hence, Possiblyð�Þ holds.

We now have the lemma: “Possiblyð�Þ holds if and

only if
V
ð8i2V Þð8j2V Þ Possiblyð�i ^ �jÞ.” The expression for

:Definitelyð�Þ ^ Possiblyð�Þ follows.
Part 3 : The third mutually exclusive possibility

:Possiblyð�Þ must correspond exactly to the remaining
cases ð9i 2 V Þð9j 2 V Þ:Possiblyð�i ^ �jÞ when consider-
ing the intervals pairwise. tu

By Theorem 3, given a predicate � defined on any

number of processes, Definitelyð�Þ and Possiblyð�Þ can be

expressed in terms of the Possibly and Definitely mod-

alities on predicates defined over pairs of processes. By

Theorems 1 and 2, the Possibly and Definitely modalities

on predicates defined over a pair of processes have been

refined into the set < of 40 orthogonal modalities. Therefore,

Definitelyð�Þ and Possiblyð�Þ, where � is defined over any

number of processes, can be expressed in terms of the fine-

grained orthogonal set < of modalities over predicates

defined over various pairs of processes.
As an example, consider �: ai ¼ 2 ^ bj ¼ 3 ^ck ¼ 5. Let

ai, bj, and ck be 2, 3, and 5, respectively, in intervals Xi,

Yj, and Zk, respectively, and let IDðXi; YjÞ, IV ðYj; ZkÞ,
and INðZk;XiÞ be true. Then, by Theorems 1 and 2, we

have 1) Definitely ðai ¼ 2 ^ bj ¼ 3Þ, 2) Possibly ðbj ¼ 3

^ ck ¼ 5Þ and :Definitely ðbj = 3 ^ ck = 5), and

3) Definitely ðai ¼ 2 ^ck ¼ 5Þ. By Theorem 3, we have

the modality Possiblyð�Þ ^:Definitelyð�Þ. Conversely, if

Possiblyð�Þ ^ :Definitelyð�Þ is known in the classical

course-grained classification, the fine-grained classification

gives the added information: IDðXi; YjÞ, IV ðYj; ZkÞ, and

INðZk;XiÞ.
Based on the above, the alternate definition (Definition 2)

of Possibly and Definitely for jV j ¼ 2 processes is enhanced

for jV j > 2 processes. Let I be a set of intervals, one from

each process, such that during these intervals, the local

predicates are true.

. Possiblyð�Þ: (For some such set I of intervals,) there
exists a linear extension of ðE;�Þ such that for each
pair of intervals X and Y in I , the string ½minðXÞ;ÿ
maxðXÞ� overlaps with the string ½minðY Þ;maxðY Þ�.

. Definitelyð�Þ: (For some such set I of intervals,) for
every linear extension of ðE;�Þ, for each pair of
intervals X and Y in I , the string ½minðXÞ;maxðXÞ�
overlaps with the string ½minðY Þ;maxðY Þ�.

Without loss of generality, we now assume that � can be
expressed as

fð�1; �2; . . . ; �kÞ ¼ g8i2V ;8j2V ;i 6¼jðhi;jð�i; �jÞÞ;

where f , g, and h map to ftrue; falseg, and �i denotes the
predicate �’s component variables local to process Pi. This
expression of f occurs naturally when � is a conjunction of
local predicates, as assumed by the earlier works [6], [7], [8].
However, nonconjunctive predicates such as ðxi þ yj ¼
5Þ ^ ðxi þ zk ¼ 10Þ and xi þ yj þ zk ¼ 10 are also expressible
in this way (perhaps after reexpressing them using
infinitely many clauses). The notation �i;j will be used as
shorthand for hi;jð�i; �jÞ. For such nonconjunctive predi-
cates �, a result analogous to Theorem 3 can be stated by
replacing �i ^ �j by �i;j in the statement.

We remark that to use this result in any way for
nonconjunctive predicates, the intervals need to be identi-
fied carefully, perhaps after examining the state lattice of
the execution.

4 TESTS FOR THE INTERACTION TYPE

Each of the 29 (40) possible orthogonal interaction types in the
dense (nondense) model of time can be tested using the bit-
patterns for the dependent relations, as given in Table 2.
Rather than test for the 12 dependent relations to determine
which particular orthogonal interaction type holds, if one is
interested only in determining whether a specific interaction
type holds, one can test only for the prime cover for that
relation [10]. Table 2 shows a prime cover in italics for all
40 orthogonal relations. Each orthogonal interaction type is
uniquely identified by those dependent relations whose
values are in displayed in italics. For example, ICðX;Y Þholds
if and only if R2ðX;Y Þ ^ R3ðX;Y Þ ^ R4ðY ;XÞ holds.
IKðX;Y Þ holds if and only if R4ðX;Y Þ ^ R2ðY ;XÞ ^
R3ðY ;XÞ ^ R4ðY ;XÞ holds. Note that such a prime cover
need not be unique.

The tests for the relations R1, R2, R3, R4, S1, and S2 in
terms of vector timestamps are given in the third column of
Table 4. Intervals X and Y are assumed to occur at process
Pi and Pj, respectively, and are also denoted as Xi and Yj,
respectively. We use T ðXÿi Þ and T ðXþi Þ to denote the vector
timestamp at process Pi at the start of interval Xi and at the
end of an interval Xi, respectively. The mth component of
the timestamps would be T ðXÿi Þ½m� and T ðXþi Þ½m�, respec-
tively. T ðxiÞ denotes the vector timestamp of event xi (at
process Pi). Processes can send certain timestamps of their
intervals to a central server, which runs the tests in Table 4.
The tests for R1, R2, R3, and R4 take one comparison each.
The test for S1 is as follows—given T ðY ÿj Þ½j�, identify the
first event x00i on Pi such that T ðx00i Þ½j� � T ðY ÿj Þ½j�; then, the
event preceding x00i on Pi is event x0i; then, S1 is true iff
T ðx0iÞ½i� 6� T ðY þj Þ½i�. The test for S2 is as follows—given
T ðXÿi Þ½i�, identify the first event y0j on Pj such that T ðy0jÞ½i�
� T ðXÿi Þ½i�; then, S2 holds iff T ðy0jÞ½j� � T ðXþi Þ½j�. Note
that to test for S1 and S2, it is not sufficient to have the

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003

timestamps of the start and end events of the intervals;
timestamps of events in the intervals are also needed to
detect the events x0i and y0j, respectively. Also note that in
the tests for S1 and S2, the “if” conditions are redundant;
however, when S1 or S2 do not hold, the redundant
condition provides the answer using two comparisons only.

When a predicate is defined over n (> 2) processes, a
naive approach to detect Possiblyð�Þ and Definitelyð�Þ, in
terms of the above tests for a more fine-grained classifica-
tion per pair of processes, will require Oðn2Þ times the
overhead for two processes, because Cn

2 pairings of
processes may have to be tested for. The axioms given in
[9] can be used to reduce this overhead. It is a challenging
problem to devise algorithms to detect Possiblyð�Þ and
Definitelyð�Þ in terms of the fine-grained modalities per
pair of processes, that have the same complexity overhead
as [3], [6], [7], [8], [15], [18], [19], which simply detect
Possiblyð�Þ and Definitelyð�Þ. Such algorithms have been
devised for conjunctive predicates [1]. The global predicate
detection problem is formulated as the Detection of
Orthogonal Relations (DOOR) problem as follows: “Given
a relation ri;j from < for each pair of processes Pi and Pj,
devise an algorithm to identify the intervals, if they exist,
one from each process, such that each relation ri;j is satisfied
by the ðPi; PjÞ process pair.”

5 APPLICATIONS

For a large class of applications, such as those involving a
pair of interacting agents, a client-server interaction, or
industrial process control, predicates are defined on
variables local to two processes. The pairwise interaction
between processes is a critical mode of communication and
information exchange even in many large-scale and peer-to-
peer distributed systems. Examples of such systems are
sensor networks, ad-hoc mobile networks, mobile agent
systems, and online collaborative motion planning and
navigation systems. In a sensor network being set up
dynamically, the sensors configure themselves by exchan-
ging messages with their neighboring sensors. In the case of
ad-hoc mobile networks, pair-wise information exchange
with neighbors is used 1) to dynamically compute global
functions such as to select routes (AODV), or 2) to
dynamically compute time-dependent local functions such
as the velocity of the mobile agent during navigation in a

collaborative endeavor. In adaptive routing algorithms at
the network layer—such as distance vector routing and link
state routing—periodic information exchange with neigh-
boring routers is a key feature of computing the global
routing function. We note that the paradigm of pair-wise
information exchange with each neighbor is common in
other contexts also. Dynamic and online computation of
local functions are used for centroidal Voronoi tessellations
(a Voronoi tessellation whose generating points are the
centroids of the corresponding Voronoi diagrams) with
applications to problems as diverse as the following
[4]—image compression, quadrature, finite difference meth-
ods, optimal placement of resources (e.g., mailboxes in a
city, or cache servers in the internet), cellular biology,
statistics, navigation by animals (e.g., flock of birds or
school of fish), and territorial behavior of animals.

Information about the specific interaction type can
provide useful information to the application. Consider a
specific execution and the interaction types that map to
Possiblyð�Þ ^ :Definitelyð�Þ in the dense time model—IB,
IC, IG, IH, II, and their inverses (refer to Table 3). Recall that
we assume intervals X and Y occur at Pi and Pj,
respectively, and are denoted by Xi and Yj, respectively.
Examples of information useful to the application are the
following:

. IB and II imply that even though interval Yj may
possibly have occurred concurrently, Pi’s local state
at the end of interval Xi is necessarily visible to the
other process Pj before its interval Yj ends, in all
equivalent executions. Therefore, Pj can perform
actions in interval Yj by taking into account Pi’s state
at the end of Pi’s interval Xi. This is not the case for
IC, IG, and IH.

. IG implies that even though the other interval Yj
may have occurred concurrently, in all equivalent
executions, neither is Pi’s state at any time during
interval Xi visible to the other process Pj at any time
during its interval Yj, nor is the other process Pj’s
state at any time during its interval Yj visible to Pi at
any time during interval Xi. Therefore, there is no
mutual knowledge about the other interval. This is not
the case for IB, IC, IH, and II.

. IG, IH, and II imply that even though interval Yj of
the other process Pj may have occurred concur-
rently, in all equivalent executions, the other process

KSHEMKALYANI: A FINE-GRAINED MODALITY CLASSIFICATION FOR GLOBAL PREDICATES 815

TABLE 4
Timestamp-Based Tests for the Set of Six Dependent Relations R1-R4 and S1 and S2

Intervals Xi and Yj occur at processes Pi and Pj, respectively.

Pj’s execution during the interval could not be fully
controlled by Pi’s state as it existed at the start of
interval Xi. This is not the case for IB and IC.

Such information (not just Possiblyð�Þ ^ :Definitelyð�Þ)
distinguishes each interaction type from every other, and
allows processes to infer about the degree of information
transfer that has occurred between the two intervals at
different processes. This enables application-specific actions
to be taken in and at the end of each interval. A similar
analysis can reveal that the fine-grained classification for
Definitelyð�Þ, as well as for the three coarse-grained
categories under the nondense time model under each of
the three interpretations, provides useful information to the
application. Thus, the fine-grained modality classification
provides useful information that is not available under the
Possibly=Definitely classification.

6 CONCLUSIONS

Specifying temporal modalities on predicates in a distributed
execution is an important problem. Distributed execution
observation has classically used two modalities—Possiblyð�Þ
and Definitelyð�Þ—for predicate �. Based on the temporal
interactions of intervals, a complete, orthogonal set of
relationships < between pairs of intervals in a distributed
execution had been identified by Kshemkalyani [9]. We
leveraged this set of orthogonal interactions between pairs of
intervals and mapped this rich, orthogonal classification of
modalities of pairwise interval interactions, to the classical
coarse-grained classification, Possiblyð�Þ and Definitelyð�Þ,
for specifying predicates defined on any number of processes.
This significantly increases the power of expressing the
temporal modalities under which predicates can be specified,
beyond the current Possibly=Definitely classification. We
also gave timestamp-based tests for the orthogonal mod-
alities in the refined classification.

Algorithms to detect the orthogonal relations of the fine-
grained classification between pairs of processes, in addi-
tion to identifying the Possibly or Definitely modality, have
recently been devised [1]. Future work would be to explore
how the fine-grained orthogonal relations can formalize the
information exchange patterns for applications such as
those described in Section 5, and to integrate this frame-
work in reasoning about applications.

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation under Grant No. CCR-9875617.

Figs. 1 and 2 and Tables 1 and 2 (except its italicized
prime cover), are reprinted from the Journal of Computer and
System Sciences, volume 52, 1996, Kshemkalyani, Temporal
Interactions of Intervals in Distributed Systems, pages 287-
298, Copyright 1996, with permission from Elsevier Science.

REFERENCES

[1] P. Chandra and A. Kshemkalyani, “Algorithms for Detecting
Global Predicates under Fine-Grained Modalities,” Univ. of
Illinois at Chicago Technical Report UIC-ECE-02-05, Apr. 2002.

[2] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determin-
ing Global States of Distributed Systems,” ACM Trans. Computer
Systems, vol. 3, no. 1, pp. 63-75, 1985.

[3] R. Cooper and K. Marzullo, “Consistent Detection of Global
Predicates,” Proc. ACM/ONR Workshop Parallel and Distributed
Debugging, pp. 163-173, May 1991.

[4] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi
Tessellations: Applications and Algorithms,” SIAM Rev., vol. 41,
no. 4, pp. 637-676, 1999.

[5] C.J. Fidge, “Timestamps in Message-Passing Systems That
Preserve Partial Ordering,” Australian Computer Science Comm.,
vol. 10, no. 1, pp. 56-66, Feb. 1988.

[6] V.K. Garg and B. Waldecker, “Detection of Weak Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 3, pp. 299-307, Mar. 1994.

[7] V.K. Garg and B. Waldecker, “Detection of Strong Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 12, pp. 1323-1333, Dec. 1996.

[8] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Efficient
Distributed Detection of Conjunctions of Local Predicates,” IEEE
Trans. Software Eng., vol. 24, no. 8, pp. 664-677, 1998.

[9] A.D. Kshemkalyani, “Temporal Interactions of Intervals in
Distributed Systems,” J. Computer and System Sciences, vol. 52,
no. 2, pp. 287-298, Apr. 1996.

[10] A.D. Kshemkalyani, “Temporal Interactions of Intervals in
Distributed Systems,” IBM Technical Report 29.1933, (this
includes the contents of [9] and the prime covers), 1994.

[11] A.D. Kshemkalyani, “A Framework For Viewing Atomic Events
in Distributed Computations,” Theoretical Computer Science,
vol. 196, nos. 1-2, pp. 45-70, Apr. 1998.

[12] A.D. Kshemkalyani, “A Fine-Grained Modality Classification for
Global Predicates,” Univ. of Illinois at Chicago Technical Report
UIC-EECS-00-10, 2000.

[13] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[14] L. Lamport, “On Interprocess Communication, Part I: Basic
Formalism; Part II: Algorithms,” Distributed Computing, vol. 1,
pp. 77-85 and 86-101, 1986.

[15] K. Marzullo and G. Neiger, “Detection of Global State Predicates,”
Proc. Fifth Workshop on Distributed Algorithms, Springer-Verlag,
pp. 254-272, Oct. 1991.

[16] S. Mullender, Distributed Systems. second ed. ACM Press, 1993.
[17] F. Mattern, “Virtual Time and Global States of Distributed

Systems,” Parallel and Distributed Algorithms, pp. 215-226, 1989.
[18] S. Stoller, “Detecting Global Predicates in Distributed Systems

with Clocks,” Distributed Computing, vol. 13, no. 2, pp. 85-98, Apr.
2000.

[19] S. Venkatesan and B. Dathan, “Testing and Debugging Distrib-
uted Programs Using Global Predicates,” IEEE Trans. Software
Eng., vol. 21, no. 2, pp. 163-177, Feb. 1995.

Ajay Kshemkalyani received the BTech degree
in computer science and engineering from the
Indian Institute of Technology, Bombay, in 1987,
and he received the PhD degree in computer
and information science from The Ohio State
University in 1991. His research interests are in
computer networks, distributed computing, algo-
rithms, and concurrent systems. Since 2000, he
has been as associate professor at the Uni-
versity of Illinois at Chicago. Before that, he
spent several years at IBM Research Triangle

Park working on various aspects of computer networks. In 1999, he
received the US National Science Foundation’s CAREER Award. He is a
member of the ACM and a senior member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003

