
Fast and Message-Efficient Global Snapshot
Algorithms for Large-Scale Distributed Systems

Ajay D. Kshemkalyani, Senior Member, IEEE

Abstract—Large-scale distributed systems such as supercomputers and peer-to-peer systems typically have a fully connected logical

topology over a large number of processors. Existing snapshot algorithms in such systems have high response time and/or require a

large number of messages, typically Oðn2Þ, where n is the number of processes. In this paper, we present a suite of two algorithms:

simple_tree, and hypercube, that are both fast and require a small number of messages. This makes the algorithms highly scalable.

Simple_tree requires OðnÞ messages and has Oðlog nÞ response time. Hypercube requires Oðn log nÞ messages and has Oðlog nÞ
response time, in addition to having the property that the roles of all the processes are symmetrical. Process symmetry implies greater

potential for balanced workload and congestion-freedom. All the algorithms assume non-FIFO channels.

Index Terms—Distributed system, global state, message passing, distributed snapshot, checkpoint, hypercube, supercomputer,

cluster, overlay.

Ç

1 INTRODUCTION AND PROBLEM DEFINITION

CONSIDER a distributed system that is modeled as a
directed graph ðN;LÞ, where N is the set of processors

and L is the set of non-FIFO links connecting the processors
in a logical application-layer overlay. Let n ¼ jN j. The
logical overlay is typically fully connected; hence, the all-to-
all logical overlay gives nðn� 1Þ=2 logical channels.
Typically, the rich interconnectivity of the underlying
graph (such as a torus, hypercube, and other regular
topologies) allows for multiple logical paths among any
pair of processors. Such a logical path can be modeled as a
non-FIFO channel in the overlay.

A snapshot of a distributed system represents a consistent

global state of the system [13]. A snapshot consists of

h
S
ifLSig;

S
i;jfSCi;jgi, where LSi is the local state of

processor Pi and SCi;j is the state of the channel Ci;j from

processor Pi to processor Pj. In a system with non-FIFO

channels, SCi;j ¼ {messages sent up to LSi}n{messages

received up to LSj}. Recording distributed snapshots of an

execution is a fundamental problem in asynchronous

distributed systems [7], [12], [13], [31], [39], [46], [48], [65],

and is used for observing various properties of interest [36].
The seminal algorithm by Chandy and Lamport [13]

requires sending a special control message called the marker
message on each of the logical channels in the system. In the
typical case where there exists a fully connected overlay on
the network graph, this amounts to a Oðn2Þ message
overhead. Many variants of the Chandy-Lamport algorithm
have been proposed; a survey is given in [35]. However, in
the traditional literature [13], [39], [48], [65], the best known

bound on the number of messages in a distributed algorithm
in systems assuming either FIFO or non-FIFO channels is
Oðn2Þ because a marker is sent on each logical channel.

We identify two kinds of large-scale distributed systems
in which global snapshots can be taken.

. Present day supercomputing machines and clusters
based on the MIMD architecture have hundreds of
thousands of processors; see the Top-500 list of
supercomputers [66]. Examples of such machines
include the BlueGene supercomputer. Such ma-
chines are distributed systems as they are often
used for solving complex tasks and communicate by
message passing. Typically, a single long-lived task
is distributed in a supervised manner across the
processors which are under a single administrative
domain. Coordinated checkpointing (or recording
global snapshots) is an important problem in such
systems [2], [10], [11], [14], [23], [34], [53], [61].

. Over the past decade, peer-to-peer (P2P) systems
have been designed to accommodate hundreds of
thousands of processors/end-users communicating
by asynchronous message passing over the inter-
domain Internet. P2P networks have a self-organiz-
ing nature that can evenly share the network load
even in the presence of noncooperative peers. The
main design principles are driven by scalable object
storage and search in a completely autonomous
environment, typically characterized by high churn
rates and failure rates. Typical interactions are client-
server; hence, the notion of coordinated checkpoint-
ing appears to be in contradiction to the P2P
philosophy by which each peer is free to do as it
pleases and can join and leave the system at will.
However, recently, it has been shown that P2P
technologies are being successfully adopted in large-
scale IT enterprise infrastructures to improve the
degree of autonomic behavior, and hence, decrease
the complexity of the management and the cost of
ownership [6], [9], [16], [63], [64]. The enterprise

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. X, XXX 2010 1

. The author is with the Computer Science Department, University of
Illinois at Chicago, 851 S. Morgan Street, 1120 Science and Engineering
Offices, Chicago, IL 60607. E-mail: ajay@uic.edu.

Manuscript received 20 Aug. 2009; revised 15 Nov. 2009; accepted 13 Jan.
2010; published online 25 Jan. 2010.
Recommended for acceptance by M. Raynal.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-08-0379.
Digital Object Identifier no. 10.1109/TPDS.2010.24.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

setting is very different from the interdomain one:
peers in the enterprise infrastructure work coopera-
tively in a managed environment, and thus, they are
much more stable than those in Internet-based
applications. Operations that have to be executed
on the peers by enterprise applications are more
complex than the simple search and store operations
implemented by Internet-based applications. For
example, a peer in an enterprise setting may be
required to take control of the P2P system for
auditing, monitoring, or maintenance procedures.
For such auditing, monitoring, and maintenance
procedures, it becomes necessary to perform coordi-
nated checkpointing and snapshot the system state.

Ni et al. [52] have developed a middleware called
P2P Distributed Virtual Machine (P2P-DVM) to allow
scientists’ resources to be readily shared over the
Internet in a P2P manner. Along with MPI-based
message passing over P2P networks, P2P-DVM also
provides decentralized coordinated checkpointing
and restart functionality. Further, emerging P2P
applications such as Massive Multiuser Virtual
Environments (MMVEs) and Massive Multiuser On-
line Gaming (MMOG) [21], [27] deal with a unified
application context across the peers, and hence, there
arises the need for consistently observing the system
state and coordinated checkpointing.

A message overhead of Oðn2Þ messages per snapshot
becomes too expensive and is not scalable as the number of
processors increases. Recent work has focused on reducing
the snapshot complexity in such large-scale systems [23], [24].

In this paper, we present a suite of two algorithms:
simple_tree and hypercube, that are both fast and require a
small number of messages. This makes the algorithms
highly scalable. Simple_tree requires OðnÞ messages and has
Oðlog nÞ response time. Hypercube requires Oðn log nÞ
messages and has Oðlog nÞ response time, in addition to
having the property that the roles of all the processors are
symmetrical. Processor symmetry implies greater potential
for balanced workload and congestion-freedom. Each
processor sends log n messages. The sizes of the messages
form a geometric series, and the sum of the message sizes
sent by any processor is OðnÞ.

Section 2 describes the background and related work.
Section 3 gives the proposed algorithms. We compare the
proposed algorithms with the literature in Section 4. Section 5
gives the conclusions.

2 BACKGROUND AND RELATED WORK

2.1 Checkpointing and Snapshots

Fault-tolerance becomes very important for large-scale
systems as the number of system components rises. For
example, if the Mean Time Between Failures (MTBF) of a
node is 10 years, then the MTBF of a 64,000 node system
would be about 1.37 hours [2]. For fault-tolerance of long-
lived computations (such as for number-crunching scien-
tific problems), the age-old checkpoint-and-restart mechan-
ism is very attractive [17]. The high failure rate puts
additional pressure on the checkpoint mechanisms.

There are many mechanisms for taking checkpoints in
distributed systems; two broad categories are coordinated
and uncoordinated checkpointing. In uncoordinated check-
pointing, processes autonomously take a checkpoint. The
drawback of uncoordinated checkpoints is that checkpoints
may be wasted because they are not consistent with
checkpoints taken by other nodes. Further, multiple check-
points need to be recorded at each process because the latest
checkpoint at a process may not be consistent with the latest
checkpoints at other process. Worse, this requires rollback to
a much older system state and redoing computation from
that older system state. In coordinated checkpointing, the
nodes collectively record a consistent global state (i.e.,
snapshot) of the system so that no checkpoint is wasted.
Coordinated checkpointing based on recording global snap-
shots is the preferred way of checkpointing in the high-
performance massively parallel systems community [2], [10],
[11], [14], [23], [34], [53], [61].

2.2 Related Work on Snapshots over Non-FIFO
Channels

The Lai-Yang algorithm [39] works as follows:

1. Each process is initially white and turns red while
taking a local snapshot.

2. A white (red) process sends white (red) colored
messages.

3. Each process takes a local snapshot at any time
before receiving a red message.

Each process keeps a log of all messages sent and received
along each incident channel. After the local snapshots are
collected at an initiator, the in-transit messages SCi;j are
computed as the set-theoretic difference per channel Ci;j.

The Chandy-Lamport algorithm for a FIFO system and its
variant by Mattern for a non-FIFO system [48] use a marker
per logical channel. The role of a marker is threefold.

1. To inform processors that some processor has
initiated the snapshot execution.

2. To distinguish white (prerecording) messages from
red (postrecording) messages.

3. To mark the end of the white messages. In a system
with non-FIFO channels, the computation messages
are explicitly colored. To determine the number of
white messages to be expected, Mattern’s variant of
the Chandy-Lamport algorithm works as follows
[48]: It piggybacks the number of white messages
sent along the channel on the corresponding marker
sent on that channel. This allows the receiver to
know how many white messages to expect before
termination. The white messages are then reported
by the receiver to the initiator. We name this
algorithm as piggyback, in contrast to the deficiency
counting and vector counter algorithms also intro-
duced by Mattern [48].

The deficiency counting algorithm works as follows [48]:
The algorithm uses the white/red coloring and does not use
markers, analogous to [39]. Each processor keeps a counter
that counts the number of messages sent minus the number
of messages received. The counter gets recorded as part of
the local state recording. When the initiator collects the local

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. X, XXX 2010

snapshots, it knows how many white messages are in
transit to the processors in the snapshot. Each red processor
is required to report to the initiator each in-transit (white)
message that is received. This continues until the deficit
count is matched at the initiator.

The vector counter algorithm works as follows [48]: The
algorithm uses the white/red coloring and does not use
markers, analogous to [39]. This is a two-phase algorithm,
where two waves are executed on any topology. For ease of
exposition, a ring is assumed. Each processor Pi maintains a
vector Vi½1::n�, where Vi½j� tracks the number of white
messages it sent to Pj. Vi½i� gives the negative of the number
of white messages received by Pi from all other processors.
A control message with a control vector C½1::n� circulates
around the ring, performing C � C þ Vi;Vi � 0 (for all
components of the vectors). In this round, a white processor
is also colored red, and the local snapshots are collected
along with Ci. After the first round completes, C½i� indicates
the number of white messages that are in transit to Pi in the
global snapshot. In the second round of the control
message, the control message waits at each Pi until
Vi½i� þ C½i� � 0, i.e., all the white in-transit messages to Pi
have been received. In the second round, relevant informa-
tion about the in-transit messages is also collected.

The snapshot algorithms above can be repeatedly
executed by introducing a third color and using the three
colors cyclically [48]. (This technique can be adopted by our
algorithms also to repeatedly execute the proposed snap-
shot algorithms.)

The two-dimensional grid-based algorithm by Garg et al.
[23], [24] uses Oðn3=2Þ messages, each of size

ffiffiffi
n
p

, by
assuming a logical grid overlay on the underlying archi-
tecture and by using message coloring. Furthermore, the
roles of the different processors are asymmetric. Each
processor maintains a vector white sent½1::n�, where
white sent½j� gives the number of white messages sent to
processor Pj. The grid-based algorithm performs accumula-
tion of the white sent vectors along the grid diagonal, and
the diagonal elements then distribute the values to non-
diagonal elements.

The centralized and tree-based algorithms by Garg et al.
[23], [24] are based on deficit counting of the sum of in-
transit messages, as used by Mattern in his deficiency
counting algorithm [48]. The initiator computes the sys-
tem-wide deficit, i.e., the total number of white messages in
transit to all the processors in the snapshot. Let M be the
total deficit. The initiator distributes M tokens throughout
the system. The arrival of an in-transit message consumes a
token. The tree-based algorithm is a round-based algorithm
which guarantees that in each round, the global deficit is
halved. Thus, there are at most dlog ðM=nÞe rounds. The
algorithm uses a tree structure, local coloring of processors
to relate the number of in-transit messages received to the
number of tokens available, and color transitions, to
guarantee some invariants which give the bound on the
number of rounds. Each round requires Oðn log nÞ mes-
sages. The centralized is similar to the tree-based algorithm;
it differs in the manner in which the control messages are
exchanged and processed. Each of the OðlogðM=nÞÞ rounds
requires OðnÞ messages. We use m to denote M=n.

2.3 Tree and Hypercube Overlays

In this paper, we propose the simple_tree and hypercube
algorithms.

The simple_tree algorithm uses a tree overlay over the
system. A tree overlay is easy to realize in clusters and
large-scale supercomputers; as well as in large-scale
dynamic peer-to-peer systems.

The hypercube algorithm uses a hypercube overlay over
the system. A hypercube overlay can be easily implemented
on clusters and supercomputers because they are under
control by a management system that can instantiate a clear
initial knowledge. The MPI library facilitates the use of
interprocess communication over the hypercube overlay
[62]. Figueira and Reddi showed how to build hypercube
structures in heterogeneous networks [22].

A hypercube overlay can also be implemented over a
P2P network. The survey by Risson and Moors [56] refers to
some of these efforts; some other efforts are highlighted
next. The pioneering P2P work by Plaxton et al. [54], Pastry
[57], and Tapestry [67] all used hypercube routing. This
hypercube routing has been studied to be effective under
churn and failures [40], [42]. The Kad network that is
accessed by the eMule client implemented the Kademlia
protocol that relies on hypercubic networks [49]. Kuhn et al.
used the dynamic hypercube graph topology to show
robustness of their P2P system against worst-case joins and
leaves [38]; the same dynamic hypercube graph was used in
the eQuus distributed hash table by Locher et al. [43].
Streaming media systems over P2P overlays have been
based on hypercubic topologies [44], [45] and cloud
computing services with P2P online storage have also been
based on hypercubes [26]. Load balancing of multimedia
content streaming distribution over a hypercube overlay in
structured P2P networks is shown by Han [30]. A very
robust P2P system based on skip graphs [4], which are
variants of hypercubes, is given in [32]. Naor and Weider
presented a simple but general approach to build
dynamic hypercubic P2P topologies [51]. Han showed
how to build a hypercube overlay in a distributed setting
[29], and Ren et al. showed how to provide a hypercube-
based P2P information service for the data grid [55].
Hypercubes have been explicitly used in dynamic P2P
networks by Schlosser et al. [59], [60]. Adler et al. showed
that the hypercube-topology-based distributed hash table
achieves asymptotically optimal load balance, among other
nice logarithmic properties [1]. The hypercube topology for
P2P systems was shown to be highly desirable for
genealogical research [15]. The performance of approximate
queries on a P2P network was studied on a hypercube
overlay in [50]. Anceaume et al. designed a hypercube-
based P2P overlay that is robust against Byzantine collusion
and churn [3]. Hypercube-based P2P data stores were
formally studied [19] and their churn resistance has also
been studied [18], [20]. A tag-based system for managing
XML data in a hypercubic overlay network was studied by
Li et al. [41]. An open P2P architecture for XML message
exchange was designed based on the hypercube network
[58]. A leader election algorithm for P2P applications was
presented for a hypercube overlay by Han and Xia [28]. A
mechanism for wildcard search in structured P2P networks

KSHEMKALYANI: FAST AND MESSAGE-EFFICIENT GLOBAL SNAPSHOT ALGORITHMS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 3

assuming a logical hypercube overlay was proposed by

Joung and Yang [33]. A symmetric VoIP conferencing

network that allows for multigroup communication in P2P

networks was presented for the hypercube overlay by

Berndt [8].

3 SNAPSHOT ALGORITHMS

3.1 Hypercube Algorithm

We assume a hypercube overlay topology on the distributed
system. Let n ¼ 2d. A hypercube overlay can be easily
implemented; see Section 2.3. For convenience, we assume a
preestablished spanning tree. A minimum spanning tree can
be set up at a one-time cost of Oðn log nÞ time and
OðjLj log nÞmessages. We also assume that a single process
runs at each processor as part of the distributed application.

Logically, a process can be in one of two states: white
(prerecording) or red (postrecording). All processes are
initially white. Application messages sent by a white
process are colored white (prerecording messages). When
some process records its local state, the algorithm is
initiated. To inform other processes of this, a broadcast is

done using RECORD control messages on a precomputed
spanning tree. On receiving a RECORD message or a red
computation message, a (white) process atomically records
its local state (if it has not already done so) and turns red.
Application messages sent by a red process are colored red
(postrecording messages).

Three roles of a marker were described in Section 2.2. The

hypercube algorithm does not use markers. However, the use

of RECORD and red messages fulfills the first role of the

marker. The coloring of messages fulfills the second role of

the marker.
The third role of the marker is fulfilled by letting each

process know the number of white messages sent to it.
Rather than using a marker, this is achieved indirectly
based on the following observation [48]: it is sufficient to
know the total number of white messages sent to a process
by all other processes. This number can be conveyed to a
process using less than n messages, i.e., by not requiring a
dedicated message from every other process. The proposed
distributed algorithm can achieve this in n log n messages,
wherein each process sends log n messages. (The length of
the messages is analyzed in Section 3.1.2.) Specifically, we

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. X, XXX 2010

Fig. 1. Hypercube algorithm for snapshot recording. Code is shown for processor Pi. � is the XOR operator.

use the hypercube overlay and perform n reductions
concurrently in log n iterations.

There are three steps in the algorithm which is shown
in Fig. 1.

1. Snapshot initiation: The snapshot initiator triggers a
one-to-all broadcast of RECORD control messages.
The RECORD messages can be sent along a
preestablished spanning tree.

2. On receiving the RECORD message or a red colored
message, the process records the local state and turns
from white to red. It initializes the states of all the
incoming channels to the empty set. (Henceforth, a
red process sends red-labeled computation mes-
sages.) The algorithm then conveys the sum of the
number of all white messages sent by all the processes
to x, to that x, for every process x. The symmetrical
manner in which this is achieved is the main
innovation here.

Each process Pi maintains white senti½1::n� to
count in white senti½j� the number of white messages
it sent to process Pj. SENTi½1::n� is initialized to
white senti½1::n�. Using a hypercube overlay, the
algorithm performs n all-to-one reductions concur-
rently in log n iterations. Each concurrent reduction
is an in-network aggregation of the number of
messages sent to a particular destination Pi. The
in-network aggregation for Pi happens on a logical
convergecast tree rooted at Pi and based on the order
of the dimensions in the hypercube, from the MSB
dimension to the LSB dimension. With respect to any
destination Pi, the partial sum of the count of white
messages sent to Pi exists in a hypercube that keeps
halving in size in each of the log n iterations. In
iteration count, where count ranges from d� 1 to 0,
Pi communicates to Pi�2count the entries SENTi½j�, for
all j satisfying the following. Process j lies in the
half-hypercube where j’s label differs from i’s label
in the ðcountþ 1Þth LSB and the d� count� 1 MSBs
match those of i’s label. These j are characterized by

fði; countÞ ¼ d� count� 1 MSBs of i

� ðcountþ 1Þth LSB of i � � � . . . �|fflfflfflffl{zfflfflfflffl}
count LSB bits

:

At the end of log n iterations, the sum of the
number of white messages sent to Pi is accumulated
in SENTi½i�, i.e.,

P
j2N white sentj½i� ¼ SENTi½i�.

If white recdi ¼ SENTi½i�, the algorithm terminates
locally.

Observe that the processes are implicitly synchro-
nized [5] across the for loop of the variable count.
Also, observe that a white process can receive a
message of the form SENT�. For simplicity and ease
of exposition, this message is kept in the buffer and
not processed while the process is white.

3. Recording channel states: When a white message is
received from Pj by a red process Pi, it is added to
the state of channel Cj;i and the count white recdi
is incremented. When step (2) is completed and
white recdi equals SENTi½i�, all white messages

have been received, and the algorithm can termi-
nate locally.

Optionally, if the snapshot needs to be assembled, a
convergecast on a spanning tree can be performed after
the termination of the local snapshot recording at each
process. This also detects global termination of the
algorithm. For checkpointing in large-scale systems, the
checkpoints may be stored locally.

3.1.1 Correctness

The correctness of the local state recording is evident because
we adapt Mattern’s algorithm [48]. We only need to show
that the channel states correctly record the in-transit white
messages. For all j 2 N , consider the n initial entries
white sentj½i� and the logical convergecast tree rooted at Pi.
The sum of these n initial entries represents the number of
white messages sent to process Pi. In iteration count
(0 � count � d� 1) of the main loop of step (2), 2count entries
of this form get added concurrently at various processes
along the convergecast tree rooted at Pi. The total number of
additions after all the rounds is

Xd�1

0

2count ¼ 2d � 1 ¼ n� 1;

yielding the desired sum of the n numbers.
P

j white sentj½i�
is thus correctly computed. The channel recording termi-
nates when

P
j white sentj½i� ¼ white recdi.

3.1.2 Complexity Analysis

Theorem 1. The distributed snapshot algorithm in Fig. 1 requires
log n messages to be sent by each process and the sum of the
message sizes sent by all the processes is Oðn2Þ.

Proof. There are log n ¼ d iterations in the main step (2). In
each iteration, one message is sent and received by each
process. Hence, a total of log n messages are sent and
received by each process.

The messages sent in the various iterations have
different sizes. In iteration one, n=2 integers are sent and
received by a process. In iteration two, n=4 integers are
sent and received by a process. In iteration k, n=2k integers
are sent and received by a process. Specifically, the total
number of integers sent and received by each process over
all iterations is

Xlog n

k¼1

n

2k
¼ n

Xd

1

1

2k
¼ n� 1:

ut

Observe that the message sizes form a geometric series.
The sum of the lengths of all the messages in bits is
32ðn2 � nÞ.

3.2 Simple_tree Algorithm

This is a three-phase algorithm that assumes a spanning
tree. The processes are arranged in a logical tree. The three
phases are as follows:

1. A tree broadcast by the root initiates the recording of
local states, and turning red of white processes. A
process may already be red if it has received a red

KSHEMKALYANI: FAST AND MESSAGE-EFFICIENT GLOBAL SNAPSHOT ALGORITHMS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 5

message. A red process simply propagates the
broadcast along the tree. When a process records
its local state, it also records the value of the vector
white sent½1::n�.

2. After the broadcast completes, a convergecast
(initiated by the leaves) accumulates the vector
white sentj½1::n�, for all j, at the root. After the
convergecast completes, white sent½k� in the vector
at the root contains the count of white messages sent
to process Pk.

3. A tree broadcast initiated by the root distributes the
accumulated values of white sent to the processes.
The kth component of the accumulated vector gives
the sum of the number of white messages sent to Pk.
Pk waits to receive this number of white messages
before terminating the snapshot recording of chan-
nel states.

4 DISCUSSION

Table 1 compares the proposed algorithms, denoted as the
simple_tree and hypercube algorithms, with other noninhibi-
tory algorithms for non-FIFO channels. We compare with
the Lai-Yang algorithm [39], the deficiency counting, vector
counter, and piggyback algorithms [48], and the two-dimen-
sional grid-based, tree-based, and centralized algorithms by
Garg et al. [23], [24].

All the algorithms are compared against the following
metrics: number of messages, total message space, local
storage, whether the roles of the processes are symmetrical,
response time (or latency), and parallel communication
time. We define the roles of the processes to be symmetrical
if the processes execute identical code. In a symmetrical
algorithm, there is perfectly uniform distribution of work-
load, no bandwidth and processing bottlenecks, and greater
elegance. Response time is defined as the net parallel time of
the control messages (to record the local states and enable
detection of in-transit messages) in the parallel algorithm,
counting the processing time for a message as one unit. A
more refined version of the response time metric is the
parallel communication time [25]. Here, the time for a message
is ts þ twx, where ts is the local processing overhead per

message (at the sender and the receiver), tw is the
transmission time per word, and x is the number of words
in the message. The parallel communication time is the net
parallel message time in the parallel algorithm.

4.1 Symmetry

The tree-based, grid-based, and the centralized algorithms
[23], [24] all have varying degrees of asymmetry among the
processes. Specifically, the grid-based algorithm performs
accumulation of the white sent vectors along the grid
diagonal, and the diagonal elements then distribute the
values to nondiagonal elements. The tree algorithms
(simple_tree and tree-based) have asymmetrical roles among
leaf nodes, internal nodes, and the root node. Note that in
vector counter, the initiator plays the additional role of
changing the phases of the algorithm; hence, we classify it
as being asymmetric. The only distributed algorithms that
have perfectly symmetric roles for the processes are the
piggyback and hypercube algorithms. Observe from Table 1
that the proposed hypercube algorithm has the lowest
number of messages from among algorithms in which the
roles of all the processes are completely symmetrical.

4.2 Number of Messages

The vector counter algorithm and simple_tree use fewer
messages than the hypercube algorithm. Notwithstanding
the asymmetry of roles in the grid-based and tree-based
algorithms [23], [24], the hypercube algorithm is also superior
to the grid-based and tree-based algorithms in terms of the
number of messages and in terms of response time/parallel
communication time. As the system scales up in terms of
the number of processors, the number of messages becomes
very important. It is more efficient to send few large
messages than more small messages.

4.3 Response Time

The response time of the hypercube algorithm is log n because
the messages in step (2) are immediately pipelined after the
RECORD messages. Hence, there is no latency for the
initiation phase. Compared to the simple_tree algorithm, the
hypercube algorithm has lower response time: log n, as

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. X, XXX 2010

TABLE 1
Comparison of Noninhibitory Snapshot Algorithms for Non-FIFO Channels

n is the total number of processes. m is the average number of messages in transit to each process (on its incident channels) in the snapshot. ts is
the local start-up time and local reception time per message. tw is the transmission time per word. Constants can vary depending on implementation.

against 3 log n for the sequential convergecast and broadcast
that follow the initiation phase in simple_tree. Simple_tree is
asymmetric as it requires different roles to be played by leaf
nodes, internal nodes, and the root node. The response time
of the hypercube and simple_tree algorithms isOðlog nÞ, which
is better than that of all other algorithms.

4.4 Parallel Communication Time

This metric is a refined version of the response time metric.
The parallel communication time of the hypercube is
ðlog nÞts þ twðnÞ. This is the lowest among all the algorithms,
indicating that this is the fastest algorithm in terms of
completing the snapshot recording globally. In a fast
algorithm, the time window for the transmission of algorithm
messages is lowered. Hence, the snapshot gets recorded
earlier, subject to the arrival of the in-transit (white) messages.

The parallel communication time of the hypercube is
lowest among all algorithms. We make the following
conjectures, based on the properties of the hypercube
architecture [25]:

1. Among distributed snapshot recording algorithms
that are perfectly symmetrical, i.e., identical code is
executed by the processes, the hypercube algorithm in
Fig. 1 is optimal in terms of the number of messages
used.

2. Among distributed snapshot recording algorithms,
the hypercube algorithm in Fig. 1 is optimal in terms
of parallel communication time.

Note, however, that the hypercube overlay may contain
multiple edges compared to the tree overlay; this may
impact the parallel communication time, as well as the
hypercube property of a perfectly balanced workload and
absence of any bottlenecks.

Ultimately, the performance of hypercube depends on
how well the overlay is constructed. Despite this, we note
that even in the case of a poorly constructed overlay, the
parallel communication time is largely unaffected because
of the cut-through routing that can be used in the overlay.
The full expression for the parallel communication time is:
ts þ lth þ twm, per message. Here, th is the per hop
communication time; l is the number of hops taken by the
message and represents the dilation of the overlay embed-
ding. As pointed out by Grama et al. [25], “th is dominated
by the start-up latency ts for small messages and by twm for
large messages. Since the maximum number of hops l in
most networks is relatively small, the per-hop time can be
ignored with little loss of accuracy.”

In the hypercube overlay, when n 6¼ 2d, some dummy
nodes need to be added, which disturb the symmetry of roles
in the perfect case when n ¼ 2d. However, many large MIMD
machines and distributed systems have a number of nodes
which is a round and even number if not a power of two.

There are two potential drawbacks of simple_tree and
hypercube. Compared to the centralized algorithm [23], [24]
and the tree-based algorithm (which is essentially a centra-
lized ðlog mÞ-phase algorithm) [23], [24], simple_tree and
hypercube require OðnÞ local storage instead of Oð1Þ local
storage. This may not be a serious drawback because OðnÞ
data structures, such as for vector clocks [47], often need to be
maintained. The total message space for simple_tree and
hypercube may also be higher than for the essentially
centralized algorithms [23], [24]. Despite these drawbacks,
the algorithms offer the advantages of being fast and
message-efficient. In addition, the hypercube algorithm is

symmetrical and has greater potential for balanced workload
and congestion-freedom than the algorithms in [23], [24].

5 CONCLUSIONS

A message overhead of Oðn2Þ messages per snapshot
becomes too expensive and is not scalable as the number of
processors increases. Recent work has focused on reducing
the snapshot complexity in such systems. Garg et al.
proposed a grid-based, tree-based, and centralized algo-
rithm to reduce this overhead [23], [24]. This paper presented
two simple snapshot algorithms: simple_tree and hypercube,
that 1) use fewer messages than the algorithms in [23], [24]
and 2) have lower response time and parallel communication
times than the algorithms in [23], [24]. In addition, the
hypercube algorithm is symmetrical and has greater potential
for balanced workload and congestion-freedom than the
algorithms in [23], [24]. The algorithms find direct applica-
tion in large-scale distributed systems such as peer-to-peer
systems and MIMD supercomputers which have a fully
connected topology of a large number of processors.

ACKNOWLEDGMENTS

A preliminary version of this result appears as a poster
paper [37].

REFERENCES

[1] M. Adler, E. Halperin, R.M. Karp, and V.V. Vazirani, “A
Stochastic Process on the Hypercube with Applications to Peer-
to-Peer Networks,” Proc. ACM Symp. Theory of Computing (STOC),
pp. 575-584, 2003.

[2] S. Agarwal, R. Garg, M. Gupta, and J. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,” Proc.
Int’l Conf. Supercomputing, pp. 277-286, 2004.

[3] E. Anceaume, R. Ludinard, A. Ravoaja, and F. Brasileiro,
“PeerCube: A Hypercube-Based P2P Overlay Robust against
Collusion and Churn,” Proc. Second Int’l Conf. Self-Adaptive and
Self-Organizing Systems, pp. 15-24, 2008.

[4] J. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 384-393, 2003.

[5] B. Awerbuch, “Complexity of Network Synchronization,” J. ACM,
vol. 32, no. 4, pp. 804-823, 1985.

[6] R. Baldoni, R. Jimenez-Peris, M. Patino-Martinez, L. Querzoni,
and A. Virgillito, “Dynamic Quorums for DHT-Based Enterprise
Infrastructures,” J. Parallel and Distributed Computing, vol. 68, no. 9,
pp. 1235-1249, 2008.

[7] R. Baldoni, F. Quaglia, and P. Fornara, “An Index-Based
Checkpointing Algorithm for Autonomous Distributed Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 2, pp. 181-
192, Feb. 1999.

[8] P. Berndt, “Using Symmetric Distributed Processing for Peer-to-
Peer VoIP Conferencing in Auditory Virtual Environments,” Proc.
Seventh Int’l Workshop Peer-to-Peer Systems (IPTPS), 2008.

[9] W.J. Bolosky, J.R. Douceur, D. Ely, and M. Theimer, “Feasability of
a Serverless Distributed File System Deployed on an Existing Set
of Desktop PCs,” Proc. ACM SIGMETRICS ’00, pp. 34-43, 2000.

[10] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill,
“Automated Application-Level Checkpointing of MPI Pro-
grams,” Proc. Symp. Principles and Practice of Parallel Programming
(PPoPP ’03), pp. 84-94, 2003.

[11] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill,
“Collective Operations in Application-Level Fault-Tolerant
MPI,” Proc. Int’l Conf. Supercomputing, pp. 234-243, 2003.

[12] G. Cao and M. Singhal, “On Coordinated Checkpointing in
Distributed Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 12, pp. 1213-1225, Dec. 1998.

[13] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determin-
ing Global States of Distributed Systems,” ACM Trans. Computer
Systems, vol. 3, no. 1, pp. 63-75, 1985.

KSHEMKALYANI: FAST AND MESSAGE-EFFICIENT GLOBAL SNAPSHOT ALGORITHMS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 7

[14] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.
Rodriguez, and F. Cappello, “Blocking vs. Non-Blocking Coordi-
nated Checkpointing for Large-Scale Fault Tolerant MPI,” Proc.
Int’l Conf. Supercomputing ’06, Nov. 2006.

[15] R. Crowther and S. Woodfield, “Hypercubes: A Superior
Topology for Real-Time Genealogical Collaboration Networks,”
Proc. Family History Technology Workshop, 2001.

[16] G. De Candia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
Proc. 21st ACM SIGOPS Symp. Operating Systems Principles,
pp. 205-220, 2007.

[17] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys, vol. 34, no. 3, pp. 375-408, Sept. 2002.

[18] D. Fahrenholtz and V. Turau, “Improving Churn Resistance of
P2P Data Stores Based on the Hypercube,” Proc. Fifth Int’l Symp.
Parallel and Distributed Computing, pp. 263-270, 2006.

[19] D. Fahrenholtz and A. Wombacher, “A Formal Communication
Model for Lookup Operations in a Hypercube-Based P2P Data
Store,” Proc. First Int’l Conf. Collaborative Computing: Networking,
Applications and Worksharing, Dec. 2005.

[20] D. Fahrenholtz, “A Hypercube-Based Peer-to-Peer Data Store
Resilient against Peer Population Fluctuation,” PhD thesis,
Hamburg Univ. of Technology, 2008.

[21] L. Fan, H. Taylor, and P. Trinder, “Design Issues for Peer-to-Peer
Massively Multiplayer Online Games,” Proc. Second Int’l Workshop
Massively Multiplayer Virtual Environments, 2008.

[22] S. Figueira and V. Reddi, “Topology-Based Hypercube Structures
for Global Communication in Heterogeneous Networks,” Proc.
European Conf. Parallel Computing (Euro-Par ’05), pp. 994-1004, 2005.

[23] R. Garg, V. Garg, and Y. Sabharwal, “Scalable Algorithms for
Global Snapshots in Distributed Systems,” Proc. 20th Ann. Conf.
Supercomputing, pp. 269-277, Nov. 2006.

[24] R. Garg, V. Garg, and Y. Sabharwal, “Efficient Algorithms for
Global Snapshots in Large Distributed Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 21, no. 5, pp. 620-630, May 2010.

[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, second ed. Addison-Wesley, 2003.

[26] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer,
“Havelaar: A Robust and Efficient Reputation System for Active
Peer-to-Peer Systems,” Proc. First Workshop Economics of Networked
Systems (NetEcon), June 2006.

[27] T. Hampel, T. Bopp, and R. Hinn, “A Peer-to-Peer Architecture for
Massive Multiplayer Online Games,” Proc. Fifth ACM SIGCOMM
Workshop Network and System Support for Games, 2006.

[28] S.C. Han and Y. Xia, “Optimal Leader Election Scheme for Peer-to-
Peer Applications,” Proc. Sixth Int’l Conf. Networking, 2007.

[29] S.C. Han, “Distributed Many-to-Many Mapping Algorithm in the
Hypercube Network,” Proc. Fourth Int’l Conf. Networked Computing
and Advanced Information Management, 2008.

[30] S.C. Han, “Load-Balancing Content Distribution in Structured
Peer-to-Peer Networks,” Proc. Fourth Int’l Conf. Networked Comput-
ing and Advanced Information Management, 2008.

[31] J.-M. Helary, A. Mostefaoui, and M. Raynal, “Communication-
Induced Determination of Consistent Snapshots,” IEEE Trans.
Parallel and Distributed Systems, vol. 10, no. 9, pp. 865-877, Sept.
1999.

[32] R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Taubig, “A
Polylogarithmic Time Algorithm for Distributed Self-Stabilizing
Skip Graphs,” Proc. 28th ACM Symp. Principles of Distributed
Computing (PODC), pp. 131-140, Aug. 2009.

[33] Y.-J. Joung and L.-W. Yang, “Wildcard Search in Structured Peer-
to-Peer Networks,” IEEE Trans. Knowledge and Data Eng., vol. 19,
no. 11, pp. 1524-1540, Nov. 2007.

[34] A. Kangarlou, P. Ruth, D. Xu, and P. Eugster, “Taking Snapshots
of Virtual Networked Environments,” Proc. Virtualization Technol-
ogies in Distributed Computing Workshop ’07, Nov. 2007.

[35] A. Kshemkalyani, M. Raynal, and M. Singhal, “An Introduction to
Snapshot Algorithms in Distributed Computing,” Distributed
Systems Eng., vol. 2, no. 4, pp. 224-233, 1995.

[36] A. Kshemkalyani and B. Wu, “Detecting Arbitrary Stable Proper-
ties Using Efficient Snapshots,” IEEE Trans. Software Eng., vol. 33,
no. 5, pp. 330-346, May 2007.

[37] A. Kshemkalyani, “A Symmetric O(n log n) Message Distributed
Algorithm for Large-Scale Systems,” Proc. IEEE Int’l Cluster
Computing Conf., 2009.

[38] F. Kuhn, S. Schmid, and R. Wattenhofer, “A Self-Repairing Peer-
to-Peer System Resilient to Dynamic Adversarial Churn,” Proc.
Fourth Int’l Workshop Peer-To-Peer Systems (IPTPS), pp. 13-23, Feb.
2005.

[39] T.-H. Lai and T. Yang, “On Distributed Snapshots,” Information
Processing Letters, vol. 25, no. 3, pp. 153-158, 1987.

[40] S.S. Lam and H. Liu, “Failure Recovery for Structured P2P
Networks: Protocol Design and Performance Evaluation,” Com-
puter Networks, vol. 50, pp. 3083-3104, 2006.

[41] Y. Li, M.T. Ozsu, and K.-L. Tan, “XCube: Processing XPath
Queries in a Hypercube Overlay Network,” Peer-to-Peer Network-
ing Applications, vol. 2, pp. 128-145, 2009.

[42] H. Liu and S.S. Lam, “Neighbour Table Construction and Update
in a Dynamic Peer-to-Peer Network,” Proc. IEEE Int’l Conf.
Distributed Computing Systems, 2003.

[43] T. Locher, S. Schmid, and R. Wattenhofer, “eQuus: A Provably
Robust and Locality-Aware Peer-to-Peer System,” Proc. Sixth IEEE
Int’l Conf. Peer-to-Peer Computing (P2P), pp. 3-11, Sept. 2006.

[44] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-Pull
Peer-to-Peer Live Streaming,” Proc. 21st Int’l Symp. Distributed
Computing (DISC), pp. 388-402, Sept. 2007.

[45] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Robust Live
Media Streaming in Swarms,” Proc. 19th Int’l Workshop Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pp. 121-126, June 2009.

[46] D. Manivannan, R.H.B. Netzer, and M. Singhal, “Finding
Consistent Global Checkpoints in a Distributed Computation,”
IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 6, pp. 623-
627, June 1997.

[47] F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Proc. Workshop Parallel and Distributed Algorithms,
M. Cosnard, ed., pp. 215-226, 1988.

[48] F. Mattern, “Efficient Algorithms for Distributed Snapshots and
Global Virtual Time Approximation,” J. Parallel and Distributed
Computing, vol. 18, no. 4, pp. 423-434, 1993.

[49] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” Proc. First Int’l
Workshop Peer-to-Peer Systems (IPTPS), pp. 53-65, 2002.

[50] A. Mowat, R. Schmidt, M. Schumacher, and I. Constantinescu,
“Extending Peer-to-Peer Networks for Approximate Search,” Proc.
23rd ACM Symp. Applied Computing, pp. 455-459, 2008.

[51] M. Naor and U. Wieder, “Novel Achitectures for P2P Applica-
tions: The Continuous-Discrete Approach,” ACM Trans. Algo-
rithms, vol. 3, no. 3, 2007.

[52] L. Ni, A. Harwood, and P.J. Stuckey, “Realizing the E-Science
Desktop Peer Using a Peer-to-Peer Distributed Virtual Machine
Middleware,” Proc. Fourth Int’l Workshop Middleware for Grid
Computing (MCG ’06), pp. 7-12, 2006.

[53] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative Checkpointing:
A Robust Approach to Large-Scale Systems Reliability,” Proc. Int’l
Conf. Supercomputing ’06, pp. 14-23, 2006.

[54] G. Plaxton, R. Rajaraman, and A. Richa, “Accessing Nearby Copies
of Replicated Objects in a Distributed Environment,” Proc. ACM
Symp. Parallel Architectures and Algorithms, pp. 311-320, June 1997.

[55] H. Ren, Z. Wang, and Z. Liu, “A Hypercube Based P2P
Information Service for Data Grid,” Proc. Fifth Int’l Conf. Grid
and Cooperative Computing, pp. 508-513, 2006.

[56] J. Risson and T. Moors, “Survey of Research towards Robust Peer-
to-Peer Networks: Search Methods,” Computer Networks, vol. 50,
no. 17, pp. 3485-3521, 2006.

[57] A. Rowstron and P. Druschel, “Pastry: Scalable Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms, pp. 329-350,
Nov. 2001.

[58] B. Schandl, “OPAX—An Open Peer-to-Peer Architecture for XML
Message Exchange,” Diploma thesis, Univ. of Vienna, 2004.

[59] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Ontology-Based
Search and Broadcast in HyperCuP,” Proc. Int’l Semantic Web
Conf., 2002.

[60] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “HyperCuP—
Hypercubes, Ontologies, and Efficient Search on Peer-to-Peer
Networks,” Agents and Peer-to-Peer Computing, pp. 112-124,
Springer, 2003.

[61] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali,
and P. Stodghill, “Implementation and Evaluation of a Scalable
Application-Level Checkpoint-Recovery Scheme for MPI Pro-
grams,” Proc. Int’l Conf. Supercomputing ’04, Nov. 2004.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. X, XXX 2010

[62] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI: The Complete Reference. MIT Press, 1996.

[63] C. Tang, R.N. Chang, and E. So, “A Distributed Service
Management Infrastructure for Enterprise Data Centers Based
on Peer-to-Peer Technology,” Proc. IEEE Int’l Conf. Services
Computing, pp. 52-59, 2006.

[64] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A Scalable
Application Placement Controller for Enterprise Data Centers,”
Proc. 16th Int’l Conf. World Wide Web (WWW), C.L. Williamson,
M.E. Zurko, P.F. Patel-Schneider, and P.J. Shenoy, eds., pp. 331-
340, 2007.

[65] S. Venkatesan, “Message-Optimal Incremental Snapshots,” Proc.
IEEE Int’l Conf. Distributed Computing Systems, pp. 53-60, 1989.

[66] Top 500 Supercomputer Sites, <http://www.top500.org>, 2009.
[67] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.

Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE J. Selected Areas in Comm., vol. 22,
no. 1, pp. 41-53, Jan. 2004.

Ajay D. Kshemkalyani received the BTech
degree in computer science and engineering
from the Indian Institute of Technology, Bombay,
in 1987, and the PhD degree in computer and
information science from The Ohio State Uni-
versity in 1991. He is a professor of computer
science at the University of Illinois at Chicago.
Previously, he spent several years at IBM
Research Triangle Park working on various
aspects of computer networks. His research

interests are in computer networks, distributed computing, algorithms,
and concurrent systems. In 1999, he received the National Science
Foundation’s CAREER Award. He is currently on the Editorial Board of
the Elsevier Journal, Computer Networks. He is a distinguished member
of the ACM and a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KSHEMKALYANI: FAST AND MESSAGE-EFFICIENT GLOBAL SNAPSHOT ALGORITHMS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 9

