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Abstract— Most previous proposals for distributed deadlock
detection are incorrect because they have used informal/intuitive
arguments to prove the correctness of their algorithms. Informal
and intuitive arguments are prone to errors because of the highly
complex nature of distributed deadlock detection/resolution al-
gorithms. In this paper we first correct the priority-based probe
algorithm for distributed deadlock detection and resolution of
Choudhary et al. [3] and then formally prove that the modified
algorithm is correct (i.e., it does detect all deadlocks and does
not report phantom deadlocks). Our proof technique is novel
because we first abstract the properties of the deadlock detection
and resolution algorithm by invariants, and then show that the
invariants imply the desired correctness of the algorithm. This
is the first attempt at a formal proof of the correctness of a
distributed deadlock detection and resolution algorithm.

Index Terms— Correctness proof, distributed algorithms, dis-
tributed databases, distributed deadlock detection, invariant.

I. INTRODUCTION

roof of the correctness of distributed deadlock detection
Palgorithms is very difficult because of the highly complex
operation of these algorithms. This is the primary reason why
most previous proposals for distributed deadlock detection
have either: (i) ignored the correctness proof [16], (ii) have
given informal/intuitive argument of correctness [6], [9], [10],
or (iii) have used a simulation technique to show correctness
[3]. Informal arguments are prone to errors, and correctness
verification by simulation is also prone to errors because it is
not complete (there is no guarantee that the simulation will
pass through all possible states of the algorithm and traverse
all paths). That is why so many distributed deadlock detection
algorithms have been shown to be incorrect [7], [15].

It is only recently that attention has been paid to a rigorous
correctness proof of distributed deadlock detection algorithms
(c.g., [4], [8], [11], [13], [14]). However, due to the highly
complex operation of distributed deadlock detection/resolution
algorithms and lack of an underlying theory for deadlock
detection/resolution, most of these correctness proofs have
used either ad hoc methods (e.g., [4], [11]) or operational
arguments (e.g., [13], [14]) for proof. This paper is geared
towards more systematic and elegant proofs of distributed
deadlock detection algorithms.

In this paper we give a correctness proof of a priority-
based probe algorithm for distributed deadlock detection and
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resolution [3]. A priority-based deadlock detection and res-
olution algorithm assigns priorities to transactions, and uses
these priorities to reduce the number of messages exchanged
to detect a deadlock. We have chosen a priority-based probe
algorithm due the following reasons: (i) recently, there has
been considerable interest in priority-based probe algorithms
for distributed deadlock detection, and they represent a wide
class of deadlock detection algorithms (e.g., [1], [3], [11]-{14],
[16], [17]), (ii) probe-based algorithms are elegant in that they
do not require construction of transaction-wait-for graph (as in
[10]), and (iii) they are efficient because a deadlock detection
is initiated only if a higher priority transaction is blocked by a
lower priority transaction (all deadlock detections initiated by
lower priority transactions are suppressed).

We have chosen Choudhary et al’s deadlock detec-
tion/resolution algorithm [3] for correctness proof because
it is a classical example of the propagation of errors in
distributed deadlock detection and resolution algorithms (and
it also reflects how intuitive arguments for correctness can
be very misleading). Note that in [3], Choudhary et al.
showed that the priority-based probe algorithm for deadlock
detection/resolution of Sinha and Natarajan [16] is incorrect
and fails to detect all deadlocks, and may report false
deadlocks. Choudhary et al. presented an algorithm [3] which
they claim rectifies the problems of the Sinha and Natarajan
algorithm [16]. However, problems have been reported in
Choudhary et al.’s algorithm [2], {13], [14], and it fails to
detect all deadlocks and may report false deadlocks.

In this paper we first eliminate deficiencies of the priority-
based probe algorithm for distributed deadlock detection and
resolution of Choudhary et al. [3]. We identify the correctness
requirements of a probe-based deadlock detection algorithm,
viz., necessary and sufficient conditions to be satisfied to
detect all deadlocks and to not report false deadlocks. We
then formally prove the correctness of the modified algorithm;
i.e., show that it does detect all deadlocks and does not report
false deadlocks. Our proof technique is novel because we first
abstract the properties of the deadlock detection and resolution
algorithm by invariants, and then use these invariants to show
that the necessary and sufficient correctness conditions are
satisfied.

This is the first attempt at a formal proof of the correctness
of a distributed deadlock detection and resolution algorithm.

The rest of the paper is organized as follows: In the next
section we describe a model of the database used by the
algorithm. In Section Il we correct Choudhary et al.’s priority-
based probe algorithm for distributed deadlock detection and
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Fig. 1. Wait-for dependencies between transactions and a data manager.

resolution and present a modified algorithm. Section IV con-
tains a proof of the correctness for the modified algorithm.
Finally, Section V contains concluding remarks.

II. A MODEL OF DISTRIBUTED DATABASE SYSTEMS

A distributed database system is a collection of sites con-
nected by a communication network. There is no global
memory, so sites communicate by passing messages. The com-
munication network is assumed to be reliable (i.e., messages
are delivered error-free without ever being lost) and messages
arrive in the order sent. A site may contain many data items of
the database. However, to simplify the presentation we assume
that a data item X; has a unique data manager DM, which
has the exclusive right to operate or grant locks on it. Each
data manager DM; maintains a queue, called the Request_Q
(and denoted by Request_Q;), of transactions which are yet
to be granted locks on the data item.

Transactions use two-phase locking for concurrency control.
A transaction may access a data item only after it has obtained
a lock on that data item. If a transaction wishes to access the
data item X, it sends a lock request to DM;. (The transaction
is then called a requester of X;.) DM, immediately grants
this lock request if no other transaction currently holds a lock
on X;. If X; is currently locked by a transaction (called the
holder of X;), then the requester is placed in the Request_Q
of DM;. When the holder of X; releases it, DM, grants the
lock request of one of the transactions in its Request_Q, if
the Request_Q is not empty. This second transaction will be
referred to as the newholder.

Fig. 1 depicts a situation where the transaction 7; is waiting
for data item X, (managed by DM;) which is currently held
by transaction 7. (The notation in Fig. 1 is slightly different
from the notation in the original algorithm [16]. However, we
feel that explicit indication of the data item under contention
enhances the understanding of the algorithm.) Each data item
can only be accessed by one transaction at a time (i.e., accesses
are exclusive). As discussed by Sinha and Natarajan [16], this
restriction can be removed to allow for shared access.

A transaction T; maintains a queue, called a Probe_Q (and
denoted by Probe_();), which contains probes received by
it. This queue contains information relating to transactions
that are waiting on it either directly or transitively. Every
transaction can be in one of two states: active or waiting.
A transaction goes from active to wait state when it issues a
lock request to access a data item. A transaction goes from
wait to active state when it receives a grant of its lock request.

Each transaction is assigned a distinct priority. For two
transactions T; and T}, Priority(T;)>Priority(T}), simply writ-
ten as T; > Ty, iff ¢ < j. In probe-based algorithms a deadlock
is detected by circulating a probe through the deadlock cycle.

Deadlocked
transaction
T Non-deadlocked
transaction

2

DM, DM,
Non-deadlocked Deadlocked
data manager data manager

Fig. 2. Nondeadlocked and deadlocked data managers and transactions.

A probe is an ordered pair (initiator, junior), where initiator
denotes a transaction that has faced an antagonistic conflict
and juntor represents the lowest priority transaction that the
probe has traversed. (An antagonistic conflict occurs between
two transactions, T; and Tj, if T; requests a lock on a data
item for which T is the holder and T; > Tj.) Priority-based
algorithms are more efficient because a probe is initiated (and
propagated) only if an antagonistic conflict occurs.

When a transaction is involved in a deadlock, only one of the
data managers where it is a holder is part of the deadlock cycle.
We call such a data manager the deadlocked data manager of
that transaction. Other data managers are called nondeadlocked
data managers of that transaction. For example, in Fig. 2 for
transaction T;, D M, is the deadlocked data manager and DM,
is the nondeadlocked data manager. Similar to this definition,
we can have deadlocked and nondeadlocked transactions for a
data manager. For example, in Fig. 2, for data manager DM,
Ty is a deadlocked transaction and 75 is a nondeadlocked
transaction.

III. A MODIFIED PRIORITY-BASED
DEADLOCK DETECTION ALGORITHM

In this section we present a priority-based deadlock detec-
tion and resolution algorithm which is a corrected version
of Choudhary et al’s algorithm [3]. We first give a brief
description of Choudhary et al.’s algorithm, then point out
problems with it and present remedies, and then finally present
a probe-based deadlock detection and resolution algorithm
which eliminates the deficiencies of their algorithm [3].

Choudhary et al.’s algorithm has two phases: the deadlock
detection phase and deadlock resolution phase. In the deadlock
detection phase, a deadlock detection is initiated only if a
higher priority transaction is blocked by a lower priority
transaction. Deadlock initiation consists of the generation of a
probe message and its propagation in the wait-for path or cycle.
A deadlock is detected when the probe initiated on behalf of
a transaction returns to it. (In a deadlock cycle this happens
only with the highest priority transaction, because a transaction
suppresses all the probes initiated on the behalf of lower
priority transactions.) The second phase in which the deadlock
is resolved is entered only after a transaction has detected a
deadlock. The detector of a deadlock resolves the deadlock by
aborting the lowest priority transaction (called victim) in the
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T, T, T,

Fig. 3. An example.

cycle. Note that all the probes sent on behalf of the victim
or propagated by it must be cleaned from the system. This is
accomplished by propagating a “clean” message through the
cycle and reinitiating the valid probes that got cleaned (by the
clean message).

Although Choudhary et al.’s algorithm has fixed most of
the problems of the Sinha and Natarajan algorithm, it has the
deficiencies listed below.

A. Insufficient Regeneration of Probes

In Choudhary et al’s algorithm, after the Probe_Q of a
transaction has been purged by a clean message, it is not
rebuilt properly. The problem is that a transaction rebuilds
its Probe_Q only with the help of the data manager which
is part of the resolved deadlock, and does not rebuild the
Probe_Q with the help of its nondeadlocked data managers.
Consequently, it fails to regenerate probes which were initiated
or propagated by nondeadlocked data managers. The loss of
these probes may result in a failure to detect a later deadlock
involving transactions waiting directly or transitively on a
transaction in the currently resolved deadlock cycle, as pointed
out in [13] and [14].

For example, in Fig. 3, suppose that deadlock has been
resolved by aborting T after T} has circulated a clean message
in the cycle. In this example, after the probe (T1,T%) has
been purged from the Probe_Q of T3, the probe (11, T: o) never
gets re-sent to T5. This is because after transaction 75 in the
deadlock cycle has purged its Probe_Q in response to the clean
message, it does not rebuild its Probe_Q with the help of the
data manager DM, where it is a holder. Probe (71, T2) never
gets replaced in the Probe_Q of T after it has been purged by
the clean message from Ty. This will result in an undetected
deadlock if later T5 or any of its successors waits on 7.

Remedy: For correctness, a transaction must rebuild its
Probe_Q with the help of not only the data manager in the
resolved deadlock cycle, but also with the help of all other
(nondeadlocked) data managers for which it is a holder [13].
For example, in Fig. 3, after the Probe_Q of transaction To
has been purged, T, should also use the information at data
manager DM (besides the information at data manager D M4)
to rebuild its Probe_Q.

B. Transmission of Invalid Probes by a Victim

In Choudhary et al.’s algorithm, a victim enters the abort
phase only after it receives the clean message it initiated.
It is only after entering the abort phase that a victim starts

discarding any message that it receives. However, it handles
all the messages normally before entering the abort phase.
That is, it may propagate some of the probes after it has sent a
clean message, but before receiving the clean message! Note
that this will result in improper cleaning of probes and may
cause detection of false deadlocks. (Shyam and Dhamdhere
have shown that this algorithm indeed detects false deadlocks
[14].)

For example, in Fig. 3, suppose T is the victim chosen
to resolve the deadlock. Consider the following sequence of
actions: (i) T sends a “clean” message to D M3 and waits for
it to return before aborting. (ii) In the meanwhile, it receives
probe (Ty,T>) from DM, and forwards the probe to DMos.
(iii) 7> now receives its own “clean” message and aborts. (iv)
T, becomes active (when T3 releases D M3) and starts waiting
on 7} through data manager DMs (not shown in Fig. 3). (V)
T, receives the probe (T1,T2) from DM, and forwards it to
DM; (where T; is the holder). (vi) DM; declares the false
deadlock cycle (T3, T2, Ty).

Remedy: This problem can be taken care of by putting the
following restriction: “A victim discards all the messages
which it receives after it has sent out a ‘clean’ message.”
This will correct the problem because no probe can get past
a victim after it has initiated a clean message for cleaning the
probes which denote nonexistent dependencies. For example,
in Fig. 3, after T, sends out a “clean” message (step @), it
does not forward the probe (T7,7%) it receives.

C. A Remark

Since a transaction uses a two-phase locking algorithm,
the information in its Probe_Q remains pertinent until the
transaction commits or aborts. After a transaction has entered
the second phase of locking (i.e., releasing of locks has begun),
it can no longer be involved in a deadlock cycle because it
will not request any more locks. Therefore as a minor change
to Choudhary et al.’s algorithm, a transaction will discard its
Probe_Q when it enters the second phase of locking. Note that
keeping Probe_Q even after entering the second phase does not
cause any problem. This change is primarily made to simplify
the definition of irrelevant probes later and consequently the
proof of correctness. Without this change the proof would be
more complicated.

Next, we present a modified deadlock detection and resolu-
tion algorithm which eliminates the deficiencies of Choudhary
et al. s’ algorithm [3]. (All the changes to the algorithm are
underlined.)

D. The Modified Deadlock Detection/Resolution Algorithm

Deadlock detection occurs in three basic steps: data manager
initiation of probes, sending and receiving of probes by
transactions, and reception of probes by data managers.

1) Data Manager Initiation of a Probe: A data manager
initiates, propagates, or reinitiates a probe in the following
situations:

1) When a data item is locked by a transaction, if a lock

request arrives from a transaction of higher priority, the
data manager initiates the probe (requester,holder)
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and sends it to the holder. (This is a case where the
requester faces an antagonistic conflict.)

2) A transaction releases a data item during its second
phase in the two-phase locking protocol, or when it
aborts. When the current holder releases a data item,
the data manager performs the actions: (a) schedules
a waiting lock request, called newholder, and removes
newholder from its Request_Q. (Any policy can be
used to select a newholder.) (b) Initiates the probe
(requester, newholder) for each lock request in its
Request_Q such that requester > newholder, and
sends it to the newholder.

3) When the current holder releases a data item, the data
manager requests all transactions in its Request_Q to
retransmit their complete Probe_Qs to itself. It then for-
wards each probe (initiator, junior) to the newholder,
such that initiator > newholder. (This allows probes
which would have otherwise been lost with the previous
holder to be propagated to the newholder.)

2) Receiving and Sending of Probes by a Transaction: Recall
that the Probe_Q of a transaction contains information about
transactions that are waiting on it either directly or transitively.
Since a transaction uses a two-phase locking protocol, the
information in its Probe_Q remains valid until the transaction
commits or aborts.

After a transaction enters the second phase of locking it
does not need its Probe_Q any more. A probe received in the
second phase is ignored. Otherwise, if the transaction is in the
first phase, it sends a copy of its Probe_Q to its data manager
where its waiting in the following three cases:

1) When a transaction T receives the probe (initia-
tor, junior), it performs the following:
if (Junior > T)
then
Junior =T,
save probe in the Probe_Q;
if (7' is in wait state)
then
transmit a copy of the saved
probe to the data manager
where it is waiting;

2) When a transaction issues a lock request to a data
manager and waits for the lock request, it transmits a
copy of its Probe_Q to that data manager.

3) If a transaction is waiting and receives a request for its
Probe_Q from the manager where it is waiting, it sends
a copy of all the probes in its Probe_Q to that data
manager.

3) Reception of a Probe by a Data Manager: When a data
manager receives the probe (initiator, junior), it performs
the following actions:

if (holder > initiator)
then discard the probe;
else if (holder < initiator)
then propagate probe to the holder
else declare deadlock and initiate
deadlock resolution;

When a deadlock is detected, the detecting data manager
has the identity of two transactions in the cycle, initiator and
jungor. Junior is chosen by the data manager as the victim
(i.e., the transaction to be aborted to resolve the deadlock)

E. Deadlock Resolution

To resolve a deadlock, not only must the victim be aborted,
but all Probe_Q’s of transactions that received probes sent on
behalf of the victim or propagated by it must be updated. This
is accomplished by propagating a “clean” message through
the cycle and rebuilding the Probe_Q’s that got cleaned.
Resolution can be explained in four basic steps: roll-back of
the victim, handling of a clean message by a data manager,
handling of a clean message by a transaction, and handling of
a rebroadcast message by a data manager.

1) Roll-back of the Victim: To abort the wvictim, the data
manager that detected the deadlock must send an abort_signal,
abort (junior, initiator) to the victim. Before the victim is
aborted, it is necessary to update all Probe_Q’s of transactions
in the cycle. Hence on receiving an abort_signal, the victim
takes the following two actions:

1) It initiates a message, clean (victim, initiator), and
sends it to the data manager where it is waiting. It
discards any message that it receives from now on.

2) The victim enters the abort phase only when it receives
the clean message it originated. Once it cnters the
abort phase, the victim releases all the locks it holds,
withdraws its pending request by having its id removed
from the Request_Q of the data manager where it is
waiting, and aborts.

2) Handling of a Clean Message by a Data Manager: When
a data manager receives a clean (victim, initiator) message,
it does the following:

1) Propagates the clean message to its holder.

2) Reinitiates probes for each requester in its Request_Q,
such that requester > holder. (This reinitiation of
probes is necessary as the holder’s Probe_Q was cleaned
by the clean message.)

3) It requests each nondeadlocked transaction in its Re-
quest_Q to retransmit its Probe_Q.

Each transaction in its Request_Q, except the one from
which it received the clean message, is a nondeadlocked
transaction. Nondeadlocked data managers and nondeadlocked
transactions can be identified by adding an extra field indicat-
ing the last data manager or transaction that forwarded the
clean message, to the clean message, or from the information
derivable from the communication protocol. For simplicity, we
assume such information is available.

3) Handling of a Clean Message by a Transaction: A correc-
tion is needed in this part of Choudhary et al. ’s algorithm so
that after a transaction has purged its Probe_Q, it rebuilds its
Probe_Q properly (i.e., with the help of all data managers
where it is a holder). In order to do this, after purging
its Probe_Q, a transaction requests all of its nondeadlocked
data managers (by sending them a rebroadcast message) to
reinitiate and propagate probes on behalf of all the transactions
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in its Request_Q. The transaction then uses this additional
information to help rebuild its Probe_Q.
When a transaction T receives a clean (junior, initiator)
message, it acts as follows:
purge every probe from its Probe_Q;
send a Rebroadcast Request to all nondeadlocked
data managers at which 7T currently holds a lock;
if(T is waiting)
then
if (T = junior)
then
enter the abort phase and
release all locks
else propagate the clean message to the
data manager where T is waiting
else discard the clean message
All data managers at which a transaction currently holds a
lock, except the data manager from which the clean message
is received, are nondeadlocked data managers. Nondeadlocked
data managers can be identified as explained in Section IHI-
E.2..
4) Handling of a Rebroadcast Message by a Data Manager:
When a data manager receives a rebroadcast message, it acts
as follows:
if (Request_Q not empty)
then
request each transaction in Request Q
to retransmit Probe_Q and reinitiate
probes for each requester in Request Q
such that requester > holder
else discard the rebroadcast message.

Thus in response to a rebroadcast message, a data manager
reinitiates all those probes which were initiated or propagated
by it on behalf of the transactions in its Request_Q before
the holder purged its Probe_Q. Note that all these probes
genuinely belong to the Probe_Q of the holder, because
their initiator transactions are still waiting. However, the
data manager may reinitiate/retransmit some duplicate probes,
because not all of the probes it had first initiated/retransmitted
may have reached the holder when its Probe_Q was purged.
We assume that all duplicate probes are discarded.

IV. PROOF OF CORRECTNESS

A. Preliminaries

We first abstract the state of the system by a wait-for graph
referred to as the TWFG (transaction wait-for graph), where
we associate each data manager DM, with transaction T; such
that T; = holder(DM;). A dependency from 7; to T} through
a data manager (where 7} is the requester and Tj is the
holder) is represented by an edge from T to T} in the TWFG.
This makes data managers transparent.!

! This abstraction is sufficient for our proofs even though some information
is lost. Consider T; and T} waiting on 7;. When T; releases a data item
which is allocated to T;, we have two distinct possibilities: (i) i continues
waiting on 7; for a different data item, and (ii) T now waits on T ,
because Ty was waiting for the same data item as 7; was on Tj.

In the single-request model, the TWFG of the system is a
forest of isolated trees. Whenever the root of a tree begins
waiting on one of its descendants, the “tree” is deadlocked.
At any instant, a “tree” can contain only a single deadlock.
When a “tree” is deadlocked, all the transactions in the
tree are blocked. This state persists until the deadlock is
resolved, at which instant the tree structure is re-established.
All concurrently existing deadlocks involve distinct sets of
data items and transactions.

We give a formal description of the TWFG changes in the
system using a graph model. All the nodes in the graph (i.e.,
transactions in the system) have a unique identifier. Let R(3),
a TWFG tree rooted at node i, be the set containing all the
nodes in the tree. Only the root of a tree is active and can block
on other nodes. An edge (¢, j) forms when node ¢ blocks on
node j. When the root node ¢ of a tree R(i) blocks on a node
in R(i), the tree R(i) transforms into a nontree denoted by
R.(4). An edge (4, j) is removed when node j replies to node
¢ or node 7 aborts. The predicate abort(i) is used to indicate
that node i has aborted after its last deadlock. The TWFG
changes due to various actions in the system are described
using state transitions in the Appendix.

A dependency path from ¢ to j, denoted by i = 3,
indicates that node i is waiting directly or transitively on
node j. We now make the following two pertinent observations
based on the system model:

Observation1: 1fi —— j and j does not lie in a deadlock,
then no node on the path i —— j lies in a deadlock.

Observation 2: 1f i — j and j does lie in a deadlock,
then no node on the path s —— j lies in another deadlock.

Since the existence of a dependency and a probe at a
transaction manager/data manager varies with time, we use
temporal logic operators [5] to get a convenient handle on the
invariants for the algorithm. The operator () stands for “next
step/instant assuming time is discrete.” We use the “step” to
mean a message hop. The operator (I stands for “henceforth.”

We define a deadlock C(R.(k)) C R.(k) to contain all the
nodes in R.(k) that are reachable from themselves:

Definition 1:  C(R.(k)) = {i |i € Re(k) \i—> i}

Therefore R.(k) — C(R.(k)) contains all the nodes of R.(k)
that are not part of the deadlock cycle C(R.(k)). In the
single request model, all the nodes reachable from a node
in C(R.(k)) belong to C(R.(k)).

Remark 1: (Vi,Vj ] € C(R.(k))

i 2ok =5 = (OG = k = j) until abort(k))).

Next, we describe the features of a probe-based algorithm.
A probe-based deadlock detection algorithm uses control
messages (probes) of the form, probe (initiator,)), such
that:

1) 4nitiator is the initiator of the probe message.

2) A probe carries only bounded information that is inde-
pendent of the size of the system or the path traced by
the probe.

3) A probe (initiator,A) at node j computes a function
A = fp({nodesvisited by probe)).

4) A probe is only sent forward or backward along existing
dependency edges in the TWFG.
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5) A copy of a received probe that is not discarded is
forwarded as soon as possible.
6) A node i detects a deadlock when it receives a probe
where initiator = 1.
Theorem 1: The necessary and sufficient condition for
detecting all deadlocks is :

(C1)(3i i € C(Re(k))::
C(R(k)) =
OICREDI (probe (i, ,(i = 1)) at node i).

Proof: (Necessity:) By Remark 1, C(R.(k)) continues
to exist unless some node in it aborts. A node in C(R.(k))
can abort only after C(R.(k)) is detected. If for no node %
in the cycle its probe traverses the entire cycle in |C(R.(k))|
steps of its formation, then the deadlock containing the path
i — ¢ will not be declared because: (i) a node 7 detects a
deadlock only under feature (6) of a probe-based algorithm,
(i) all probe information will have been forwarded within
|C(R.(K))| steps of deadlock formation by feature (5) above,
and (iii) the particular deadlock C(R.(k)) is detected only
if the probe function A = f,(i 5 4) (feature (3) of a
probe-based algorithm).

(Sufficiency:) If (C1) holds, then some node ¢ will detect
deadlock C(R.(k)) (which contains the path : — 4) within
O'C(Rc(k))‘ steps of its formation (follows from features (5)
and (6) of a probe-based algorithm). O

Theorem 2: The necessary and sufficient conditions for
not detecting false deadlocks are:

(C2)((¥i):i € RG) Vi € Re(j) — C(R.()
probe(initiator, *) at node i = initiator # i), and
(C2){(¥i) : i € C(Rc(j)) = probe(i, A) at node i =
(i =i Afp(i = 1) = X))

Proof: (Necessity:) If (C2) does not hold, a nondead-
locked node i can detect deadlock when it receives a probe
with snitiator = i. If (C2') does not hold, a deadlocked node
i may declare itself a part of another (nonexistent) deadlock
when it receives a probe (i, \), where f,(i —i) # A.

(Sufficiency:) Node ¢ declares itself deadlocked only when
it receives a probe with initiator = i. (C2) guarantees that
a nondeadlocked node never receives such a probe. (C2')
guarantees that a deadlocked node receives its own probe (4, A)
only if it is forwarded by the nodes in the deadlock C'(R.(k)),
and hence f,(i ——1i) = A. |

Next, we identify and prove two invariants (I1) and (I12)
for the corrected priority-based probe algorithm presented in
Section III. The invariants (I1) and (I2) will be used to prove
that the algorithm meets (C'1) and (C2 A C2'), respectively.
To reason about the algorithm, we confine attention only to
transaction nodes in the TWFG.

Definition 2: A path T; — T; is antagonistic, denoted
by T; 25 Ty, if (VTx) : Tx lies along Ty ~— T = (T; >
Tk /\ Ti > Tj).

Invariant 11: (NT;)(VT;) = T 257 = (In, O
(T, junior) € ProbeQ; \ —(T; R T;))) [proved in
Corollary 2].

The probe initiated for a blocked transaction T; is propa-
gated to all transactions T; to which there is an antagonistic
path from T; within a finite number n of message hops or
the path ceases to exist. This invariant is used to show that all
deadlocks are detected (in Theorem 3).

Invariant 12: (VT;)(¥T}) = (T, junior) € Probe.Q; =
T; 2 T, [proved in Lemma 4].

A probe with initiator T} exists in the Probe_Q of trans-
action T; at any instant only if there is an antagonistic path
from 7; to T; at that instant. This invariant is used to show
that no false deadlocks are detected (in Theorem 4).

In the proof of correctness, we show that the corrected
algorithm eventually detects all deadlocks, and never detects
a phantom (nonexistent) deadlock. The basic idea is to show
that Invariants 11 and 12 are preserved by the algorithm, and
that these invariants guarantee the correctness conditions (C'1)
and (C2) \(C?').

B. Proof of “Detection of All Existing Deadlocks”

Let C{R.(k)), henceforth referred to as C' in the con-
text of the algorithm, be a deadlock cycle, and 7} be the
highest priority transaction in the cycle. Observe that the
probe (T, junior) initiated by the data manager, where T
is waiting, is the only one that could possibly circulate around
C, because probes initiated on behalf of other transactions
in C will face at least one antagonistic conflict (and will be
blocked). Thus the probe which is initiated on behalf of T in
the deadlock cycle C should not be prevented from traversing
the edges of TWFG. (Otherwise, a failure to detect existing
deadlocks will result.)

We now show that Invariant I1 is indeed preserved by
the algorithm. We enumerate the three rules that govern the
propagation of probes:

Observation 3: When an active transaction receives an
(antagonistic) probe, it stores the probe in its Probe_Q (sce
Section III-D.2.2).

Observation 4: When a transaction blocks, it forwards a
copy of all the probes in its Probe_Q (see Section I1I-A.2).

Observation 5: When a blocked transaction receives an
(antagonistic) probe, a copy of the probe is forwarded imme-
diately to the data manager on which the transaction is waiting
(see Section III-D.2.1).

Corollary 1: If probes are propagated for deadlock detec-
tion without performing any cleaning for deadlock resolution,
then Invariant I1 holds.

Proof: For a path T; 2 T;, the data manager on
which T; waits initiates the probe (T}, junior). The probe
will be forwarded by each transaction along T; 22 T; (by

Observations 3-5) and by each data manager along T; 27 T;
(see Section I11-D.3). The maximum number of message hops
from the time the path forms is n, the number of transactions
and data objects along the path. O

However, to resolve any deadlock C’, the Probe_Q’s of
all transactions in C’ are cleaned. Certain probes need to be
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(@)

Ty DM
®)

Fig. 4. Cases I(a) and I(b) in Lemma 1.

retransmitted to rebuild the cleaned Probe_Q’s if the paths
represented by the probes still exist after the victim of deadlock
C' aborts. The biggest threat to the orderly flow of a probe
(T;, junior) through the edges of TWFG is the cleaning of a
Probe_Q containing the probe (T;,junior) at a transaction
in a deadlock cycle C’ which is being resolved. It must
be shown that the probe (T, junior) will propagate along
all antagonistic paths from Tj, even though clean messages
may be purging the Probe_Q’s of transactions. (We are not
concerned with a transaction that discards its Probe_Q after the
first phase of the two-phase locking protocol (i.e., after lock-
point), because it will not deadlock during the second phase).

Lemma 1: After T;’s Probe_Q has been cleaned due to the
participation of T; in a deadlock C’, the algorithm ensures
that all the probes which still represent an antagonistic path to
T; after the victim of C’ aborts are forwarded to T;.

Proof:

Suppose T; received the probe (T;, junior) from trans-
action Ty. When 7} cleans its Probe_Q, the following two
cases arise:

I T is not a part of the resolved deadlock C’,
or '
II T} is a part of the resolved deadlock C’.

We will prove these cases separately. Case II breaks down
into the following two subcases:

ILA T is the victim chosen to resolve the
deadlock C’, or

ILB T} is not the victim chosen to resolve the
deadlock C'.

Case I: Since the last time T} forwarded the probe
(T, junior) to T;, T, has not received a clean message by
Observation 2. So its Probe_Q contains the probe (T, junior).
Fig. 4 shows two possibilities for Case I: (a) T is connected

DM Ty=T,

Fig. 5. Case I: B:l in Lemma 1.

to T; through a nondeadlocked data manager DM,. T, will
send this probe to T} in response to the rebroadcast message
from T; to DM; (see Sections III-E.3 and E.4). (b) Ty, is
connected to T; through a deadlocked data manager DM,.
DM; will request T}, to retransmit Probe.Qr (see Section
I11-E.2.3). Therefore the probe will be retransmitted by T to
T; in both possibilities if path T; =5 Ty — T; still exists.

Case ILA: T} 22 Ty — T is no longer an (antagonistic)
path when the victim T} aborts.

If i = k, the victim 7; < Tj;. T;’s probe would never
have been forwarded to 7, (see Section III-D.1) and the data
manager where T; is waiting will never reinitiate the probe
(T, junior) (see Section III-E.2.2).

If i # k, then from the instant T; (the victim) sends out
the clean message until it gets back the clean message and
aborts, it does not forward any probes (see Section III-E.1).
Therefore T; will not receive the probe (I3, juntor) again
unless another transaction completes a path from T; to Tj
and propagates the probe (T, junior) to it.

The path T} 2, T; through T, does not exist after the
victim aborts, and the probe (T}, junior) is not forwarded to
Tj by Tk.

Case ILB: Fig. 5 shows one scenario for this case. Tk is
a direct predecessor of T; in the deadlock cycle, and so
Probe_Q;, is also cleaned.

(Case II: B:1) If T;, = T;, as shown in Fig. S, then DM,
on which T}, is waiting reinitiates probe (T3, junior) when it
handles the clean message (see Section III-E.2.2).

(CaseII: B:2)If Ty, # T;, then by Observations 3-5, if Tk
again receives the probe (T, junior) and Ty — T} holds, the
probe will be propagated to T;. Therefore we need only show
that T}, is again sent the probe (T}, junior) if the path T; 2
T, exists after the deadlock victim aborts. This is, however,
merely a recursive application of this lemma. The recursion
terminates when: (i) T}, does not lie on C' (Case I), (i) Tk
is the victim (Case II: A), or (iii) T = T; (Case II: B:1).

Therefore either by recursive application or direct reinitia-
tion, T; is again sent the probe (T3, junior) by Ty if the
recursion termination case is (i) or (iii) above. In both (i)
and (iii), the path T,-EQT]- through T} may exist after the
victim of C’ aborts. However, for (ii) above, the path TiﬁvTj
through T}, does not exist after the victim aborts and T} does
not forward the probe (T3, junior) to T;. Thus Probe Q; is
rebuilt per Lemma 1. O

Corollary 2:  (VT)(VTy) = T, 25 T; = (3n,0O™(
(T:, junior) € Probe.Q; \/ ~(Ti 25 T))). (Invariant I1)
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Proof: By Lemma 1 and Corollary 1, the Probe_Q of
T; will contain the probe on behalf of T; in a finite number
of steps after the formation of EE’T]' (since all message
transmission delays are finite). |

Theorem 3: The algorithm detects all deadlocks.

Proof: We show that the algorithm satisfies (C1), which
is the necessary and sufficient condition to detect all deadlocks.
We first restate (C1):

(C1): (Tt :i € C(R.(k)) =
C(Re(k)) = OICRLRD! (probe (i, f,(i — i)
at node i)).

Let T}, be the highest-priority transaction in C(Rc(k)),
and consider the antagonistic path T 22 T. On applying
invariant (I1) to such a path, within a finite number n of
hops, the probe initiated on behalf of Tj, will reach T} (it
will actually reach only the DM in C(R.(k)), where T}, is
the holder because of the distinction the algorithm makes
between transaction and data managers), since Thm T
persists (Remark 1). By Observations 3-5 and the fact that the
probe on behalf of T}, is not cleaned/discarded at any node
in C(R.(k)) after the cycle is formed and before the cycle
is detected, we infer: (a) the number of message hops n is
bounded by |C(R.(k))|, and (b) the probe has never retraced
its path and has been forwarded by each node along hZ5 k.
Hence the probe function f, has been computed over the path
h— h.

Thus the consequence of (C1) is satisfied. O

C. Proof of “Absence of Phantom Deadlocks”

A phantom deadlock is a deadlock which does not exist in
reality. To show that the algorithm does not detect phantom
deadlocks, we must show that any deadlock detected by the
algorithm indeed exists. To do this, we show that any deadlock
detected by the algorithm is detected without the use of
irrelevant probes, defined next.

Definition 3:  An irrelevant probe (T, junior) at T; is
a probe that has been propagated by or initiated on behalf of a
transaction 7 which is now active or aborted. Alternatively,
an irrelevant probe is one that violates Invariant I2. The
probe is irrelevant to deadlock detection because the path
of waiting transactions through which it traversed no longer
exists. :

Lemma 2: (VDM)(NT;) == T; € RequestQ; =
(T; — DM;). (No Request_Q contains the id of a transaction
that is not waiting on it.)

Proof: A transaction T; is placed in Request (); of
a data manager DM; only when it begins to wait on DM;.
We must show that T; cannot become active or abort until
after its id has been removed from Request_Q;. For T; to
become active, it must have become the newholder of X;.
When DM; grants T}’s lock request, it removes T};’s entry
from Request-Q; (see Section III-D.1.2). Therefore before
T; becomes active, its id must have been removed from
Request_Q;.

When transaction 7; aborts, it withdraws its pending
request (see Section III-E.1.2). Withdrawal of a pending re-
quest causes DM, to remove the corresponding entry from
Request_Q;. Thus before T} aborts, its entry is removed from
Request_Q;. g

Lemma 3: No data manager initiates or reinitiates an
irrelevant probe.

Proof: A data manager initiates a probe on behalf of a
transaction only when it forces that transaction to wait (on an
antagonistic conflict) (see Sections III-D.1.1 and D.1.2). A data
manager reinitiates probes on behalf of only the transactions in
its Request_Q (that face an antagonistic conflict) (see Sections
I1-E.2.2 and E.4). By Lemma 2, all of these transactions must
be waiting on the holder of this data, and thus the probes are
relevant. O

Lemma 4:  (NT;)(VT;) :: (T;, junior) € Probe Q; =
TiﬁTj (the Probe_Q of a transaction never contains an
irrelevant probe). (Invariant [2)

Proof: Consider a transaction T; which is in the first
phase of the two-phase locking protocol. (Otherwise, the proof
is trivial because T} discards its Probe_Q in the second phase.)
From Lemma 3 we know that if a data manager initiates probe
(T;, junior), the probe is relevant. A transaction manager/data
manager propagates probes along its outward dependency. A
probe (T}, junior) is placed in Probe(); after T; has
received it from a data manager where it is the holder. The
probe received indicates that T; was waiting antagonistically
on T; either directly or transitively. In the latter case, each
intermediate transaction was waiting on the subsequent one.
Consider such an intermediate transaction T} that forwarded
probe (T, junior) to T;. We must show that if T} aborts or
becomes active after forwarding the probe (T;, junior) to Tj,
the probe (T}, junior) representing the path Tiﬁ‘»Tj through
T, will never be in Probe_@); after Ty aborts or becomes
active. Without loss of generality, let T} be the first such
transaction to abort/become active.

Case 1 (T} aborts): T) belongs to a deadlock C' and all 7}
such that Tx——T; belong to C by Observations 1 and 2. T}
belongs to C because no transaction that has forwarded the
probe from T} to T; has yet become active or aborted. For
Ty to abort, it must first propagate a clean message through
the cycle C (see Section III-E.1). When the transactions in the
cycle (including Tj) receive this clean message, they purge
their Probe_Q’s (see Section III-E.3). When T rebuilds its
Probe_Q, the Probe_Q will never contain probe (T}, junior)
representing the path EZ":T]‘ through T} by an application
of Lemma 1 for which recursion terminates in Case ILA.

Case 2 (Tx becomes active): T must have become the
holder of the data item for which it was waiting. This can hap-
pen only after the previous holder of the data item aborts or be-
comes active and releases the data item—both contradictions,
because Tj is the first intermediate transaction to become
active/abort after forwarding the probe (T, junior) to Tj.

Thus a probe (T;, junior) at T; indicates a path TiE’Tj.

ad

Theorem 4: The algorithm does not detect any false dead-
locks.
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Proof: We show that the algorithm satisfies (C2) and
(C2'), which are the necessary and sufficient conditions to not
detect any false deadlocks. We first restate (C2) and (C2'):

(C2): (Vi) :i € RG) Vi € Re(j) — C(R.()) s
probe(initiator, ) at i = tnitiator # i), and
(C2): (Vi) :i € C(R.(j)) :: probe(i, N) at i =
(i =i Afp(i i) =N)

Consider node i,¢ € R(j) Vi € (R.(j) — C(R:(4)));
which receives a probe (initiator,junior). On applying
invariant (I2) to T;, we conclude the existence of Tinitiator
2% T, (consequence of (12)). However, since T; is nondead-
locked, T; /== T;. Thus Tinisiator # T; and the consequence
of (C2) holds.

Consider node i,4 € C(R.(j)), which receives a probe
(i, ). On applying (12) to T;, we conclude the existence of
Tii:Ti. From Observations 3—5 and noting that a probe never
retraces its path, we conclude that for the probe (77, A) at node
Ty, M= junior) = fp(T; 2% T;), the consequence of (C2').

a

V. CONCLUDING REMARKS

In this paper we have fixed two deficiencies of the deadlock
detection/resolution algorithm of Choudhary et al. [3] (viz,,
inadequate generation of probes after cleaning of Probe_Q’s
and propagation of messages after sending out a “clean”
message by a victim) and have presented a correct priority-
based deadlock detection/resolution algorithm.

The paper identified the correctness conditions of a probe-
based deadlock detection algorithm by proving the necessary
and sufficient conditions to detect all deadlocks and to not
detect false deadlocks. A major contribution of the paper is
that we have given a formal proof of the correctness of the
modified algorithm. (Note that many deadlock detection and
resolution algorithms are incorrect because their authors have
used informal or intuitive reasoning to prove their correctness.)
A novel feature of the correctness proof is that it abstracts
the operation of the algorithm by invariants, and uses the
invariants to prove the desired properties of the algorithm.
This is the first attempt at a formal proof of the correctness
of a deadlock detection/resolution algorithm. Invariants are a
powerful abstraction of the algorithm behavior and provide us
with a good handle on the correctness proof, despite the highly
complex nature of the algorithm. Invariants enable us to isolate
the essence of the properties of an algorithm, and thus allow
us to obtain elegant correctness proofs. Although we have
illustrated how to use invariants in the correctness proof for a
specific algorithm, the invariant-based technique can be used
to prove the correctness of other deadlock detection/resolution
algorithms, as well as other distributed algorithms.

This paper dealt with the single request model and ruled
out spontaneous aborts of transactions. Thus deadlock was a
stable property until detected and resolved. If either multiple
requests or spontaneous aborts are permitted, then deadlock is
no longer a stable property of a distributed system. When a site
declares a deadlock there is no guarantee that the deadlock still

exists, because a deadlocked process might have spontaneously
aborted or might have been aborted to resolve an adjoining
deadlock. (Note that in the multiple request model, a process
can belong to several deadlocks concurrently.) Due to the lack
of the current global state of the system, a site can never assert
whether a detected deadlock currently exists in the system.
Hence a big problem which is faced when multiple requests or
spontaneous aborts are allowed is that the distinction between
the detection of a false deadlock by an incorrect algorithm
and the detection of a deadlock which is concurrently resolved
becomes blurred [8]. However, the invariant-based technique
has been found to be effective in the correctness proof of a
deadlock detection/resolution algorithm in a multiple request,
spontaneous abort model [8].

APPENDIX
STATE TRANSITION RULES FOR TWFG

In this appendix we describe changes in the TWFG due to
various actions in the system using state transitions. This helps
us to understand the formation and resolution of a distributed
deadlock.

Let R(i) and R.(¢) denote a tree and a nontree, respec-
tively, as defined in Section IV-A. Let 7 be the set of all trees
in the system. Let 7. be the set of all nontrees in the system.
Define the state of the TWFG to be the tuple (7, 7. ). The
initial system state is { {{¢}|¢ isanode}, &). We enumerate
five rules (R1)—(R5) that when executed atomically describe
changes to the TWFG due to various actions. These rules are
derived by noting that state transitions can be triggered only
by roots of trees and aborting nodes. (It can be shown that the
set of rules is consistent and complete.) State transitions occur
whenever an edge forms from the root of a tree R(i) : (a) to
a node in another tree R(k), (b) to a node in another nontree
R.(k), or (c) to a node in the same tree R(). In addition, a
transition occurs whenever: (d) the root of R(i) releases a
data item, which is then assigned to another node which was
waiting on node 3. Lastly, a transition occurs when: (¢) a node
in a nontree aborts and releases the data items it held. Edge (i,
§) forms when node 7 blocks on node j (specifically, when
the data manager on which ¢ blocks determines that j is the
holder), and the edge is removed when node j replies to node
i (specifically, when the data manager freed by j determines
that ¢ is the newholder) or node j aborts.

In the notation used for specifying the rules, “—” indicates
a state transition. Since a state transition is specified by a
sequence of actions and a rule may contain several state
transitions, the final state f for each rule is indicated by
OUTPUT(f). In a sequence of actions, “«” indicates an
assignment, “z;y” indicates sequential execution of z and y,
where z and y are actions, “—” is used with a CSP guard,
and “x” is the CSP repeat command.

R1:(T,T.) —
(T «— T —{R@®} - {R(k)}; R(k) — R(k) UR();
OUTPUT(T U {R(k)}), OUTPUT(T.))

(j € R(k),k # i when edge (i,7) forms.)
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Rule R1 specifies the growth of a tree R(k) when the root of

another tree R(¢) begins waiting on a node j in R(k).

R2:(7T,7.) —

(OUTPUT(T - {R(:)}),

Re(i) « R(i); OUTPUT(T. U {R.(:)}))
(j € R(k),k =i when edge (z,j) forms.)

Rule R2 specifies the conversion of a tree R(¢) into a nontree
R.(7); this happens when node ¢ begins waiting on a node

within R(z).

R3:(T,7.) —
(OUTPUT(T - {R(3)}),
7. « T. — R(k); Rc(k) « Rc(k) U R(:);
OUTPUT(T. U {R.(k)}))

(j € R.(k) when edge (i, ) forms.)

Rule R3 specifies the growth of a nontree R.(k) when the

root of a tree R(i) begins waiting on a node j in R.(k)
RA: (T, T.) —
(T =T —-{R(»)}

R(Z) - R(l) - R(]) - Uke Samedata(] R(’l) )R(k)’

R(j) = B(J) Yic sumedata(j R(i) ) B(k);
OUTPUT(T U {R(:)} U {R()}),
OUTPUT(T.))

(77 € R(4) edge (j1) is removed.)

Rule R4 specifies the transition when the root of a tree
releases a data item which is allocated to node j
waiting on it. Function Samedata(jj,arri) takes inputs j
and R(¢) and returns the set Samedata(jj, arri) of other
was.
Then, all kkinSamedata(jj,arri) begin waiting on 7 for
the same data item, ie., edges (k, j) are formed for all

R(3)

nodes waiting on ¢ for the same data item as j

kkinSamedata(jj, arri). :

R5:(7T,7.) —
((R(v) « R.(k);T —T U{R(v)},
T. «— 1. —{R:(k)}) —
(output of rule(R4) where i = v and

J receives the deadlocked data) —

* [(|R(v)] # 1 — output of (R4) where i = v)] —

(OUTPUT(T — {R(v)}),OUTPUT(T.)))
(Deadlocked edge (j,v) is removed when v aborts.)

Rule RS specifies how a nontree breaks up into one or more
trees when a node in the nontree aborts, using four state
transitions described in the following steps: (i) Non-tree R.(k)
involving the deadlock is converted to tree R(v) when the
victim v € R.(k) withdraws its request, (ii) the victim v
releases the deadlocked data item to j, by rule R4, (iii)

the victim releases all nondeadlocked data items it holds by
repeatedly using rule R4, and (iv) the victim is eliminated
from the set of trees.
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