
On the Growth of the Prime Numbers Based Encoded
Vector Clock

Ajay D. Kshemkalyani Bhargav Voleti

University of Illinois at Chicago

ajay@uic.edu

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 1 / 22

Overview

1 Introduction

2 Encoded Vector Clock (EVC)
Operations on the EVC

3 Simulations
Number of Events until EVC size exceeds 32n
Size of EVC as a function of Number of Events
Number of Events until Overflow 32n bits (function of Event Types)

4 Scalability of EVCs

5 Case Study

6 Discussion and Conclusions

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 2 / 22

Introduction

Scalar clocks: e → f ⇒ C (e) < C (f)

Vector clocks: e → f ⇐⇒ V (e) < V (f)

Fundamental tool to characterize causality
To capture the partial order (E ,→), size of vector clock is the dimension of
the partial order, bounded by the size of the system, n
Not scalable!

encoding of vector clocks (EVC) using prime numbers to use a single number
to represent vector time

big integer EVC grows fast, eventually exceeds size of vector clock

Contribution
Evaluate and analyze the growth rate of EVC using simulations

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 3 / 22

Vector Clock Operation at a Process Pi

1 Initialize V to the 0-vector.

2 Before an internal event happens at process Pi , V [i] = V [i] + 1 (local tick).

3 Before process Pi sends a message, it first executes V [i] = V [i] + 1 (local
tick), then it sends the message piggybacked with V .

4 When process Pi receives a message piggybacked with timestamp U, it
executes
∀k ∈ [1 . . . n],V [k] = max(V [k],U[k]) (merge);
V [i] = V [i] + 1 (local tick)
before delivering the message.

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 4 / 22

Encoded Vector Clock (EVC) and Operations

A vector clock V = 〈v1, v2, · · · , vn〉 can be encoded by n distinct prime
numbers, p1, p2, · · · , pn as:

Enc(V) = pv1
1 ∗ p

v2
2 ∗ · · · ∗ p

vn
n

EVC operations: Tick, Merge, Compare

Tick at Pi : Enc(V) = Enc(V) ∗ pi

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 5 / 22

EVC Operations (contd.)

Merge: For V1 = 〈v1, v2, · · · , vn〉 and V2 = 〈v ′1, v ′2, · · · , v ′n〉, merging yields:

U = 〈u1, u2, · · · , un〉, where ui = max(vi , v
′
i)

The encodings of V1, V2, and U are:

Enc(V1) = pv1
1 ∗ p

v2
2 ∗ · · · ∗ p

vn
n

Enc(V2) = p
v ′

1
1 ∗ p

v ′
2

2 ∗ · · · ∗ p
v ′
n

n

Enc(U) =
n∏

i=1

p
max(vi ,v

′
i)

i

However,

Enc(U) = LCM(Enc(V1),Enc(V2)) =
Enc(V1) ∗ Enc(V2)

GCD(Enc(V1),Enc(V2))

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 6 / 22

EVC Operations (contd.)

Compare:

i) Enc(V1) ≺ Enc(V2) if Enc(V1) < Enc(V2) and

Enc(V2) mod Enc(V1) = 0

ii) Enc(V1)‖Enc(V2) if Enc(V1) 6≺ Enc(V2) and

Enc(V2) 6≺ Enc(V1)

Thus, to manipulate the EVC,

Each process needs to know only its own prime

Merging EVCs requires computing LCM

Use Euclid’s algorithm for GCD, which does not require factorization

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 7 / 22

Correspondence of Operations

Table: Correspondence between vector clocks and EVC.

Operation Vector Clock Encoded Vector Clock

Representing clock V = 〈v1, v2, · · · , vn〉 Enc(V) = p
v1
1 ∗ p

v2
2 ∗ · · · ∗ p

vn
n

Local Tick V [i] = V [i] + 1 Enc(V) = Enc(V) ∗ pi
(at process Pi)
Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields

where V [j] = max(V1[j],V2[j]) Enc(V) = LCM(Enc(V1), Enc(V2))
Compare V1 < V2: Enc(V1) ≺ Enc(V2):

∀j ∈ [1, n], V1[j] ≤ V2[j], Enc(V1) < Enc(V2),
and ∃j , V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 8 / 22

Operation of the Encoded Vector Clock

1 Initialize ti = 1.

2 Before an internal event happens at process Pi ,
ti = ti ∗ pi (local tick).

3 Before process Pi sends a message, it first executes ti = ti ∗ pi (local
tick), then it sends the message piggybacked with ti .

4 When process Pi receives a message piggybacked with timestamp s, it
executes
ti = LCM(s, ti) (merge);
ti = ti ∗ pi (local tick)
before delivering the message.

Figure: Operation of EVC ti at process Pi .

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 9 / 22

Illustration of Using EVC

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

3

[0,1,0]

Figure: The vector timestamps and EVC timestamps are shown above and below each
timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 10 / 22

Simulation Assumptions

Simulated distributed executions with a random communication pattern

prs : probability of a send (versus internal) event

Used first n primes for the n processes

Overflow process: that process which is earliest to have its EVC size exceed
32n bits

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 11 / 22

Number of Events until EVC Size exceeds 32n bits

Figure: Average of 10 runs. prs= 0.6.

Typically, 21-25 events/process before EVC size exceeded 32n
Kshemkalyani, Voleti (UIC) Encoded Vector Clock 12 / 22

Strawman Analysis

prs = 0.6 implies every third event is a receive event.

Consider n = 60. 60 lowest prime numbers needs 8 bit representation.

At each event, EVC size increases by 8 bits (local tick)

At a receive event, (every 3rd event), size of EVC doubles due to LCM

Worst-case progression of size of EVC in bits approx. as:

8, 16, 32 and 40 (event e3
i), 48, 56, 112 and 120 (event e6

i),

128, 136, 272 and 280 (event e9
i), 288, 296, 592 and 600 (event e12

i),

608, 616, 1232 and 1240 (event e15
i), 1248, 1256, 2512 and 2520 (event e18

i)

At the 18th event at Pi , the EVC size exceeds 60× 32 = 1920 bits

As per simulation, overflow happens at the 1250/60th event, or the 21st
event, at the overflow process

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 13 / 22

Size of EVC as a Function of Number of Events

Figure: prs= 0.5.

About 900 events until EVC size reached 960 (= 30× 32) bits at overflow
process
Kshemkalyani, Voleti (UIC) Encoded Vector Clock 14 / 22

Size of EVC as a Function of Number of Events

Figure: prs= 0.5.

About 1800 events until EVC size reached 1920 (= 60× 32) bits at overflow
process
Kshemkalyani, Voleti (UIC) Encoded Vector Clock 15 / 22

Size of EVC as a Function of Number of Events

Figure: prs= 0.5.

About 3000 events until EVC size reached 3200 (= 100× 32) bits at overflow
process
Kshemkalyani, Voleti (UIC) Encoded Vector Clock 16 / 22

Number of Events until Overflow 32n bits (function of
Event Types)

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 e

ve
nt

s
un

til
 E

V
C

 s
iz

e
is

 3
2n

 b
its

The percentage of internal events

n = 10
n = 40
n = 60
n = 80

Figure: Varied percentage of internal events (out of internal, send, and receive events)

Receive events cause EVC to grow very fast due to LCM

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 17 / 22

Strawman Analysis

Consider n = 60, and prob(int. event) = 0.9, prob(receive event) = 0.05

For n = 60, 60 lowest prime numbers needs 8 bit representation.

At each event, EVC size increases by 8 bits (local tick)

At a receive event, (every 20th event), size of EVC doubles due to LCM

Worst-case progression of size of EVC in bits approx. as:

8, · · · 152, 304 and 312 (event e20
i),

320, · · · 464, 928 and 936 (event e40
i),

944, · · · 1088, 2176 and 2184 (event e60
i)

At the 60th event at Pi , or 3600th event in execution, the EVC size exceeds
60× 32 = 1920 bits

As per simulation, overflow happens at the 6000th event. Apply correction:

In the initial window before steady state, more than 20 non-receive events per
receive event

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 18 / 22

Scalability of EVCs

EVC timestamps grow very fast. To alleviate this problem:
1 Tick only at relevant events, e.g., when the variables alter the truth value of

a predicate

On social platforms, e.g., Twitter and Facebook, max length of any chain of
messages is usually small

2 Application requiring a vector clock is confined to a subset of processes

3 Reset the EVC at a strongly consistent (i.e., transitless) global state
4 Use logarithms to store and transmit EVCs

Local tick: single addition
Merge and Compare: Take anti-logs and then logs,

complexity is subsumed by that of GCD computation
extra space is only scratch space

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 19 / 22

Case Study

Detecting memory consistency errors in MPI one-sided applications using EVC in
the MC-CChecker tool

Relevant events were the synchronization events; only these were
timestamped

Each concurrent region in the code was a unit of computation; boundary
between two concurrent regions corresponded to a global transitless state

MC-CChecker safely reset EVCs at the start of each concurrent region

Execution time and memory usage using EVC in MC-CChecker were much
lower than using traditional vector clocks

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 20 / 22

Conclusions

Studied the encoding of vector clocks using prime numbers, to use a single
number to represent vector time

Simulations show that the single integer EVCs grow fast

Analyzed the growth rate
Receive events cause EVCs to grow much faster due to LCM
Proposed several solutions to deal with this problem

Tick at relevant events; detection regions; reset EVC at transitless global state;
use logs of EVCs

Case study: Detecting memory consistency errors in MPI one-sided
applications

Using EVCs far more memory- and time-efficient than using traditional vector
clocks

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 21 / 22

Thank You!

Kshemkalyani, Voleti (UIC) Encoded Vector Clock 22 / 22

	Introduction
	Encoded Vector Clock (EVC)
	Operations on the EVC

	Simulations
	Number of Events until EVC size exceeds 32n
	Size of EVC as a function of Number of Events
	Number of Events until Overflow 32n bits (function of Event Types)

	Scalability of EVCs
	Case Study
	Discussion and Conclusions

