
Encoded Vector Clock: Using Primes to Characterize
Causality in Distributed Systems

Ajay D. Kshemkalyani Ashfaq Khokhar Min Shen

University of Illinois at Chicago

ajay@uic.edu

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 1 / 24



Overview

1 Introduction

2 Encoded Vector Clock (EVC)
Operations on the EVC
Complexity of EVC

3 Operations on Cuts Using EVC
Timestamping a Cut
Common Past of Events on a Cut
Union and Intersection
Comparison of Cuts

4 Scalability of EVCs

5 Discussion and Conclusions

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 2 / 24



Introduction

Scalar clocks: e → f ⇒ C (e) < C (f )

Vector clocks: e → f ⇐⇒ V (e) < V (f )

Fundamental tool to characterize causality
To capture the partial order (E ,→), size of vector clock is the dimension of
the partial order, bounded by the size of the system, n
Not scalable!

Contribution
propose encoding of vector clocks using prime numbers to use a single number to
represent vector time

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 3 / 24



Vector Clock Operation at a Process Pi

1 Initialize V to the 0-vector.

2 Before an internal event happens at process Pi , V [i ] = V [i ] + 1 (local tick).

3 Before process Pi sends a message, it first executes V [i ] = V [i ] + 1 (local
tick), then it sends the message piggybacked with V .

4 When process Pi receives a message piggybacked with timestamp U, it
executes
∀k ∈ [1 . . . n],V [k] = max(V [k],U[k]) (merge);
V [i ] = V [i ] + 1 (local tick)
before delivering the message.

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 4 / 24



Encoded Vector Clock (EVC) and Operations

A vector clock V = 〈v1, v2, · · · , vn〉 can be encoded by n distinct prime
numbers, p1, p2, · · · , pn as:

Enc(V ) = pv11 ∗ p
v2
2 ∗ · · · ∗ p

vn
n

EVC operations: Tick, Merge, Compare

Tick at Pi : Enc(V ) = Enc(V ) ∗ pi

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 5 / 24



EVC Operations (contd.)

Merge: For V1 = 〈v1, v2, · · · , vn〉 and V2 = 〈v ′1, v ′2, · · · , v ′n〉, merging yields:

U = 〈u1, u2, · · · , un〉, where ui = max(vi , v
′
i )

The encodings of V1, V2, and U are:

Enc(V1) = pv11 ∗ p
v2
2 ∗ · · · ∗ p

vn
n

Enc(V2) = p
v ′
1

1 ∗ p
v ′
2

2 ∗ · · · ∗ p
v ′
n

n

Enc(U) =
n∏

i=1

p
max(vi ,v

′
i )

i

However, we show

Enc(U) = LCM(Enc(V1),Enc(V2)) =
Enc(V1) ∗ Enc(V2)

GCD(Enc(V1),Enc(V2))

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 6 / 24



EVC Operations (contd.)

Compare:

i) Enc(V1) ≺ Enc(V2) if Enc(V1) < Enc(V2) and

Enc(V2) mod Enc(V1) = 0

ii) Enc(V1)‖Enc(V2) if Enc(V1) 6≺ Enc(V2) and

Enc(V2) 6≺ Enc(V1)

Thus, to manipulate the EVC,

Each process needs to know only its own prime

Merging EVCs requires computing LCM

Use Euclid’s algorithm for GCD, which does not require factorization

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 7 / 24



Correspondence of Operations

Table: Correspondence between vector clocks and EVC.

Operation Vector Clock Encoded Vector Clock

Representing clock V = 〈v1, v2, · · · , vn〉 Enc(V ) = p
v1
1 ∗ p

v2
2 ∗ · · · ∗ p

vn
n

Local Tick V [i ] = V [i ] + 1 Enc(V ) = Enc(V ) ∗ pi
(at process Pi )
Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields

where V [j] = max(V1[j],V2[j]) Enc(V ) = LCM(Enc(V1), Enc(V2))
Compare V1 < V2: Enc(V1) ≺ Enc(V2):

∀j ∈ [1, n], V1[j] ≤ V2[j], Enc(V1) < Enc(V2),
and ∃j , V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 8 / 24



Operation of the Encoded Vector Clock

1 Initialize ti = 1.

2 Before an internal event happens at process Pi ,
ti = ti ∗ pi (local tick).

3 Before process Pi sends a message, it first executes ti = ti ∗ pi (local
tick), then it sends the message piggybacked with ti .

4 When process Pi receives a message piggybacked with timestamp s, it
executes
ti = LCM(s, ti ) (merge);
ti = ti ∗ pi (local tick)
before delivering the message.

Figure: Operation of EVC ti at process Pi .

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 9 / 24



Illustration of Using EVC

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

Cut A Cut B

3

[0,1,0]

Cut C

Figure: The vector timestamps and EVC timestamps are shown above and below each
timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 10 / 24



Complexity of Vector Clock and EVC

h: number of bits or digits in EVC value H

n: number of processes in the system

Table: Comparison of the time complexity of the three basic operations and the space
complexity, for vector clock and EVC.

Vector Clock Encoded Vector Clock Encoded Vector Clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Local Tick O(1) O(h) O(1)

Merge O(n) O(h(log2 h)(log log h)) O(1)
Compare O(n) O(h(log h)(log log h)) O(1)
Storage O(n) O(h) O(1) + O(d) (with resetting)

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 11 / 24



EVC Timestamps of Cuts

Cut: is an execution prefix

State after the events of a cut represents a global state

↓ e = {f | f → e ∧ f ∈ E}
⋃
{e} (causal history of e)

S(cut): set that contains the last event of cut at each process

ĉut: smallest consistent cut larger than or equal to cut

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 12 / 24



EVC Timestamp of a Cut

Timestamp of a cut, cut:

∀k ∈ [1, n],V (cut)[k] = V (ek)[k], for ek ∈ S(ĉut)

= max
ei∈S(cut)

V (ei )[k]

For ei ∈ S(cut), let V (ei ) = 〈v i
1, v

i
2, · · · v i

n〉.
For êi ∈ ĉut, let V (êi ) = 〈v̂ i

1, v̂
i
2, · · · v̂ i

n〉.
EVC of a cut, cut:

Enc(V (cut)) =
n∏

i=1

p
v̂ i
i

i

=
n∏

i=1

p
max(v1

i ,v
2
i ,··· ,v

n
i )

i

However, we show that

Enc(V (cut)) = LCM(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en))).

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 13 / 24



Example: EVC Timestamp of a Cut

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

Cut A Cut B

3

[0,1,0]

Cut C

Figure: The vector timestamps and EVC timestamps are shown above and below each
timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

For events ei ∈ S(CutA):
We have Enc(V (e1)) = 20, Enc(V (e2)) = 54, and Enc(V (e3)) = 5.
Enc(V (CutA)) = LCM(Enc(V (e1)), Enc(V (e2)), Enc(V (e3))) =
LCM(20, 54, 5) = 540.

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 14 / 24



EVC Timestamp of Common Past

Common Past CP(cut) =
⋂

ei∈S(cut) ↓ ei is the execution prefix in the causal

history of each event in S(cut)

Vector timestamp of common past of cut:

∀k ∈ [1, n],V (CP(cut))[k] = min
ei∈S(cut)

V (ei )[k]

For ei ∈ S(cut), V (ei ) = 〈v i
1, v

i
2, · · · v i

n〉.
We observe that

Enc(V (CP(cut))) =
n∏

i=1

p
min(v1

i ,v
2
i ,··· ,v

n
i )

i

We show that

Enc(V (CP(cut))) = GCD(Enc(V (e1)),Enc(V (e2)), · · · ,Enc(V (en))).

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 15 / 24



Example: EVC Timestamp of Common Past

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

Cut A Cut B

3

[0,1,0]

Cut C

Figure: The vector timestamps and EVC timestamps are shown above and below each
timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

For events ei ∈ S(CutB):
We have Enc(V (e1)) = 40, Enc(V (e2)) = 3240, and Enc(V (e3)) = 1350.
Enc(V (CP(CutB))) = GCD(Enc(V (e1)), Enc(V (e2)), Enc(V (e3))) =
GCD(40, 3240, 1350) = 10.

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 16 / 24



EVC Timestamp of Union and Intersection Cuts

Let V (cut1) = 〈v1, v2, · · · , vn〉 and V (cut2) = 〈v ′
1, v

′
2, · · · , v ′

n〉
We have that

V (cut1
⋂

cut2) = 〈u1, u2, · · · , un〉, where ui = min(vi , v
′
i )

V (cut1
⋃

cut2) = 〈u1, u2, · · · , un〉, where ui = max(vi , v
′
i )

The encodings of V (cut1), V (cut2), V (cut1
⋂

cut2), V (cut1
⋃

cut2) are:

Enc(V (cut1)) = pv1
1 ∗ p

v2
2 ∗ · · · ∗ p

vn
n ;

Enc(V (cut2)) = p
v′1
1 ∗ p

v′2
2 ∗ · · · ∗ p

v′n
n

Enc(V (cut1
⋂

cut2)) =
n∏

i=1

p
min(vi ,v

′
i )

i

Enc(V (cut1
⋃

cut2)) =
n∏

i=1

p
max(vi ,v

′
i )

i

We show that

Enc(V (cut1
⋂

cut2)) = GCD(Enc(V (cut1)),Enc(V (cut2)))

Enc(V (cut1
⋃

cut2)) = LCM(Enc(V (cut1)),Enc(V (cut2)))

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 17 / 24



Example: EVC Timestamp of Union and Intersection Cuts

3240

P

P

P
1

2

3

2

3

5

prime
number

[1,0,0] [2,0,1] [3,0,1]

[1,2,0] [1,3,0]

[0,0,1] [1,3,2]

[3,4,1]

2 20 40

18 54

5 1350

Cut A Cut B

3

[0,1,0]

Cut C

Figure: The vector timestamps and EVC timestamps are shown above and below each
timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

Enc(V (CutA)) = LCM(20, 54, 5) = 540 and Enc(V (CutC)) = LCM(2, 54, 1350) = 1350.

Enc(V (CutA
⋂

CutC)) = GCD(Enc(V (CutA)),Enc(V (CutC))) = GCD(540, 1350) = 270.

Enc(V (CutA
⋃

CutC)) = LCM(Enc(V (CutA)),Enc(V (CutC)))
= LCM(540, 1350) = 2700.

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 18 / 24



Comparison of Cuts

Comparing cut1 and cut2:
i) cut1 ⊂ cut2 (or symmetrically, cut2 ⊂ cut1),
or ii) cut1 6⊂ cut2 and cut2 6⊂ cut1, i.e., cut1‖cut2.

We show:

i) Enc(V (cut1)) ≺ Enc(V (cut2)) if Enc(V (cut1)) < Enc(V (cut2)) and

Enc(V (cut2)) mod Enc(V (cut1)) = 0

ii) Enc(V (cut1))‖Enc(V (cut2)) if Enc(V (cut1)) 6≺ Enc(V (cut2)) and

Enc(V (cut2)) 6≺ Enc(V (cut1))

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 19 / 24



Correspondence between Operations on Cuts

Table: Correspondence between operations on cuts using vector clocks and EVC.

Operation Vector Clock Encoded Vector Clock
Cut ∀k ∈ [1, n],V (cut)[k] = Enc(V (cut)) =

maxei∈S(cut) V (ei )[k] LCM(Enc(V (e1)), · · · , Enc(V (en))),
(cut may not be consistent) where ei ∈ S(cut)
∀k ∈ [1, n],V (cut)[k] =
V (ek )[k] for ek ∈ S(cut)
(cut is consistent)

Common ∀k ∈ [1, n],V (CP(cut))[k] = Enc(V (cut)) =
past minei∈S(cut) V (ei )[k] GCD(Enc(V (e1)), · · · , Enc(V (en))),

where ei ∈ S(cut)
If V (cut1)[j] = vj and V (cut2)[j] = v ′

j , Merge Enc(V (cut1)) and Enc(V (cut2)) yields
Intersection V (cut1

⋂
cut2)[j] = min(vj , v

′
j ) Enc(V ) = GCD(Enc(V (cut1)), Enc(V (cut2)))

Union V (cut1
⋃

cut2)[j] = max(vj , v
′
j ) Enc(V ) = LCM(Enc(V (cut1)), Enc(V (cut2)))

Compare V (cut1) < V (cut2): Enc(V (cut1)) ≺ Enc(V (cut2)):
∀j ∈ [1, n], V (cut1)[j] ≤ V (cut2)[j], Enc(V (cut1)) < Enc(V (cut2)),
and ∃j , V (cut1)[j] < V (cut2)[j] and Enc(V (cut2)) mod Enc(V (cut1)) = 0

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 20 / 24



Complexity of Operations on Cuts

Table: Comparison of the time complexity of the operations on cuts using vector clocks
and EVC.

Vector Clock Encoded Vector Clock Encoded Vector Clock
(bounded storage) (unbounded storage) (bounded storage)
(uniform cost model) (logarithmic cost model) (uniform cost model)

Computing O(n2) (cut may not be consistent) O(nh(log2 h)(log log h)) O(n)
timestamp O(n) (cut is consistent)

Computing O(n2) O(nh(log2 h)(log log h)) O(n)
common past

Intersection O(n) O(h(log2 h)(log log h)) O(1)
and union
Compare O(n) O(h(log h)(log log h)) O(1)

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 21 / 24



Scalability of EVCs

EVC timestamps grow very fast. To alleviate this problem:
1 Tick only at relevant events, e.g., when the variables alter the truth value of

a predicate

On social platforms, e.g., Twitter and Facebook, max length of any chain of
messages is usually small

2 Application requiring a vector clock is confined to a subset of processes

3 Reset the EVC at a strongly consistent (i.e., transitless) global state
4 Use logarithms to store and transmit EVCs

Local tick: single addition
Merge and Compare: Take anti-logs and then logs,

complexity is subsumed by that of GCD computation
extra space is only scratch space

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 22 / 24



Conclusions

Proposed the encoding of vector clocks using prime numbers, to use a single
number to represent vector time

To manipulate the EVC:

each process needs to know only its own prime
Merging EVCs can be done by finding LCM; does not require factorization!

EVC provides savings in space over vector clocks

Time complexity of EVC operations performed using two models

Bounded storage (uniform cost model): better than vector clocks
Unbounded storage (logarithmic cost model)

EVCs grow very fast

Proposed several solutions to deal with this problem

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 23 / 24



Thank You!

Kshemkalyani, Khokhar, Shen (UIC) Encoded Vector Clock 24 / 24


	Introduction
	Encoded Vector Clock (EVC)
	Operations on the EVC
	Complexity of EVC

	Operations on Cuts Using EVC
	Timestamping a Cut
	Common Past of Events on a Cut
	Union and Intersection
	Comparison of Cuts

	Scalability of EVCs
	Discussion and Conclusions

