Encoded Vector Clock: Using Primes to Characterize Causality in Distributed Systems

Ajay D. Kshemkalyani Ashfaq Khokhar Min Shen
University of Illinois at Chicago
ajay@uic.edu

Overview

(1) Introduction
(2) Encoded Vector Clock (EVC)

- Operations on the EVC
- Complexity of EVC
(3) Operations on Cuts Using EVC
- Timestamping a Cut
- Common Past of Events on a Cut
- Union and Intersection
- Comparison of Cuts
(4) Scalability of EVCs
(5) Discussion and Conclusions

Introduction

- Scalar clocks: $e \rightarrow f \Rightarrow C(e)<C(f)$
- Vector clocks: $e \rightarrow f \Longleftrightarrow V(e)<V(f)$
- Fundamental tool to characterize causality
- To capture the partial order (E, \rightarrow), size of vector clock is the dimension of the partial order, bounded by the size of the system, n
- Not scalable!

Contribution

propose encoding of vector clocks using prime numbers to use a single number to represent vector time

Vector Clock Operation at a Process P_{i}

(1) Initialize V to the 0 -vector.
(2) Before an internal event happens at process $P_{i}, V[i]=V[i]+1$ (local tick).
(3) Before process P_{i} sends a message, it first executes $V[i]=V[i]+1$ (local tick), then it sends the message piggybacked with V.
(1) When process P_{i} receives a message piggybacked with timestamp U, it executes
$\forall k \in[1 \ldots n], V[k]=\max (V[k], U[k])$ (merge); $V[i]=V[i]+1$ (local tick) before delivering the message.

Encoded Vector Clock (EVC) and Operations

- A vector clock $V=\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ can be encoded by n distinct prime numbers, $p_{1}, p_{2}, \cdots, p_{n}$ as:

$$
\operatorname{Enc}(V)=p_{1}^{v_{1}} * p_{2}^{v_{2}} * \cdots * p_{n}^{v_{n}}
$$

- EVC operations: Tick, Merge, Compare
- Tick at $P_{i}: \operatorname{Enc}(V)=\operatorname{Enc}(V) * p_{i}$

EVC Operations (contd.)

- Merge: For $V_{1}=\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ and $V_{2}=\left\langle v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n}^{\prime}\right\rangle$, merging yields:

$$
U=\left\langle u_{1}, u_{2}, \cdots, u_{n}\right\rangle, \text { where } u_{i}=\max \left(v_{i}, v_{i}^{\prime}\right)
$$

The encodings of V_{1}, V_{2}, and U are:

$$
\begin{aligned}
\operatorname{Enc}\left(V_{1}\right) & =p_{1}^{v_{1}} * p_{2}^{v_{2}} * \cdots * p_{n}^{v_{n}} \\
\operatorname{Enc}\left(V_{2}\right) & =p_{1}^{v_{1}^{\prime}} * p_{2}^{v_{2}^{\prime}} * \cdots * p_{n}^{v_{n}^{\prime}} \\
\operatorname{Enc}(U) & =\prod_{i=1}^{n} p_{i}^{\max \left(v_{i}, v_{i}^{\prime}\right)}
\end{aligned}
$$

However, we show

$$
\operatorname{Enc}(U)=\operatorname{LCM}\left(\operatorname{Enc}\left(V_{1}\right), \operatorname{Enc}\left(V_{2}\right)\right)=\frac{\operatorname{Enc}\left(V_{1}\right) * \operatorname{Enc}\left(V_{2}\right)}{\operatorname{GCD}\left(\operatorname{Enc}\left(V_{1}\right), \operatorname{Enc}\left(V_{2}\right)\right)}
$$

EVC Operations (contd.)

- Compare:

$$
\begin{array}{r}
\text { i) } \operatorname{Enc}\left(V_{1}\right) \prec \operatorname{Enc}\left(V_{2}\right) \text { if } \operatorname{Enc}\left(V_{1}\right)<\operatorname{Enc}\left(V_{2}\right) \text { and } \\
\operatorname{Enc}\left(V_{2}\right) \bmod \operatorname{Enc}\left(V_{1}\right)=0 \\
\text { ii) } \operatorname{Enc}\left(V_{1}\right) \| \operatorname{Enc}\left(V_{2}\right) \text { if } \operatorname{Enc}\left(V_{1}\right) \nprec \operatorname{Enc}\left(V_{2}\right) \text { and } \\
\operatorname{Enc}\left(V_{2}\right) \nprec \operatorname{Enc}\left(V_{1}\right)
\end{array}
$$

Thus, to manipulate the EVC,

- Each process needs to know only its own prime
- Merging EVCs requires computing LCM
- Use Euclid's algorithm for GCD, which does not require factorization

Correspondence of Operations

Table: Correspondence between vector clocks and EVC.

Operation	Vector Clock	Encoded Vector Clock
Representing clock	$V=\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$	$\operatorname{Enc}(V)=p_{1}^{v_{1}} * p_{2}^{v_{2}} * \cdots * p_{n}^{V_{n}}$
Local Tick	$V[i]=V[i]+1$	$\operatorname{Enc}(V)=\operatorname{Enc}(V) * p_{i}$
(at process $\left.P_{i}\right)$		
Merge	Merge V_{1} and V_{2} yields V	Merge Enc $\left(V_{1}\right)$ and Enc $\left(V_{2}\right)$ yields
	where $V[j]=\max \left(V_{1}[j], V_{2}[j]\right)$	$\operatorname{Enc}(V)=\operatorname{LCM}\left(\operatorname{Enc}\left(V_{1}\right), \operatorname{Enc}\left(V_{2}\right)\right)$
Compare	$V_{1}<V_{2}:$	$\operatorname{Enc}\left(V_{1}\right) \prec \operatorname{Enc}\left(V_{2}\right):$
	$\forall j \in[1, n], V_{1}[j] \leq V_{2}[j]$,	$\operatorname{Enc}\left(V_{1}\right)<\operatorname{Enc}\left(V_{2}\right)$,
	and $\exists j, V_{1}[j]<V_{2}[j]$	and $\operatorname{Enc}\left(V_{2}\right) \bmod \operatorname{Enc}\left(V_{1}\right)=0$

Operation of the Encoded Vector Clock

(1) Initialize $t_{i}=1$.
(2) Before an internal event happens at process P_{i}, $t_{i}=t_{i} * p_{i}$ (local tick).
(0) Before process P_{i} sends a message, it first executes $t_{i}=t_{i} * p_{i}$ (local tick), then it sends the message piggybacked with t_{i}.
(1) When process P_{i} receives a message piggybacked with timestamp s, it executes
$t_{i}=L C M\left(s, t_{i}\right)$ (merge);
$t_{i}=t_{i} * p_{i}$ (local tick)
before delivering the message.

Figure: Operation of EVC t_{i} at process P_{i}.

Illustration of Using EVC

Figure: The vector timestamps and EVC timestamps are shown above and below each timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

Complexity of Vector Clock and EVC

- h: number of bits or digits in EVC value H
- n : number of processes in the system

Table: Comparison of the time complexity of the three basic operations and the space complexity, for vector clock and EVC.

	Vector Clock (bounded storage) (uniform cost model)	Encoded Vector Clock (unbounded storage) (logarithmic cost model)	Encoded Vector Clock (bounded storage) (uniform cost model)
Local Tick	$O(1)$	$O(h)$	$O(1)$
Merge	$O(n)$	$O\left(h\left(\log ^{2} h\right)(\log \log h)\right)$	$O(1)$
Compare	$O(n)$	$O(h(\log h)(\log \log h))$	$O(1)$
Storage	$O(n)$	$O(h)$	$O(1)+O(d)$ (with resetting)

EVC Timestamps of Cuts

- Cut: is an execution prefix
- State after the events of a cut represents a global state
- $\downarrow e=\{f \mid f \rightarrow e \wedge f \in E\} \bigcup\{e\}$ (causal history of e)
- S(cut): set that contains the last event of cut at each process
- $\widehat{c u t}$: smallest consistent cut larger than or equal to cut

EVC Timestamp of a Cut

- Timestamp of a cut, cut:

$$
\begin{aligned}
\forall k \in[1, n], V(c u t)[k] & =V\left(e_{k}\right)[k], \text { for } e_{k} \in S(\widehat{c u t}) \\
& =\max _{e_{i} \in S(c u t)} V\left(e_{i}\right)[k]
\end{aligned}
$$

- For $e_{i} \in S(c u t)$, let $V\left(e_{i}\right)=\left\langle v_{1}^{i}, v_{2}^{i}, \cdots v_{n}^{i}\right\rangle$.
- For $\hat{e}_{i} \in \widehat{c u t}$, let $V\left(\hat{e}_{i}\right)=\left\langle\hat{v}_{1}^{i}, \hat{v}_{2}^{i}, \cdots \hat{v}_{n}^{i}\right\rangle$.
- EVC of a cut, cut:

$$
\begin{aligned}
\operatorname{Enc}(V(c u t)) & =\prod_{i=1}^{n} p_{i}^{v_{i}^{i}} \\
& =\prod_{i=1}^{n} p_{i}^{\max \left(v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{n}\right)}
\end{aligned}
$$

- However, we show that

$$
\operatorname{Enc}(V(c u t))=\operatorname{LCM}\left(\operatorname{Enc}\left(V\left(e_{1}\right)\right), \operatorname{Enc}\left(V\left(e_{2}\right)\right), \cdots, \operatorname{Enc}\left(V\left(e_{n}\right)\right)\right)
$$

Example: EVC Timestamp of a Cut

Figure: The vector timestamps and EVC timestamps are shown above and below each timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

- For events $e_{i} \in S($ CutA):
- We have $\operatorname{Enc}\left(V\left(e_{1}\right)\right)=20, \operatorname{Enc}\left(V\left(e_{2}\right)\right)=54$, and $\operatorname{Enc}\left(V\left(e_{3}\right)\right)=5$.
- $\operatorname{Enc}(V(\operatorname{CutA}))=\operatorname{LCM}\left(\operatorname{Enc}\left(V\left(e_{1}\right)\right), \operatorname{Enc}\left(V\left(e_{2}\right)\right), \operatorname{Enc}\left(V\left(e_{3}\right)\right)\right)=$ $\operatorname{LCM}(20,54,5)=540$.

EVC Timestamp of Common Past

- Common Past $C P(c u t)=\bigcap_{e_{i} \in S(c u t)} \downarrow e_{i}$ is the execution prefix in the causal history of each event in $S(c u t)$
- Vector timestamp of common past of cut:

$$
\forall k \in[1, n], V(C P(c u t))[k]=\min _{e_{i} \in S(c u t)} V\left(e_{i}\right)[k]
$$

- For $e_{i} \in S(c u t), V\left(e_{i}\right)=\left\langle v_{1}^{i}, v_{2}^{i}, \cdots v_{n}^{i}\right\rangle$.
- We observe that

$$
\operatorname{Enc}(V(C P(c u t)))=\prod_{i=1}^{n} p_{i}^{\min \left(v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{n}\right)}
$$

- We show that

$$
\operatorname{Enc}(V(C P(c u t)))=G C D\left(E n c\left(V\left(e_{1}\right)\right), E n c\left(V\left(e_{2}\right)\right), \cdots, \operatorname{Enc}\left(V\left(e_{n}\right)\right)\right)
$$

Example: EVC Timestamp of Common Past

Figure: The vector timestamps and EVC timestamps are shown above and below each timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

- For events $e_{i} \in S(\operatorname{CutB})$:
- We have $\operatorname{Enc}\left(V\left(e_{1}\right)\right)=40, \operatorname{Enc}\left(V\left(e_{2}\right)\right)=3240$, and $\operatorname{Enc}\left(V\left(e_{3}\right)\right)=1350$.
- $\operatorname{Enc}(V(C P(C u t B)))=G C D\left(E n c\left(V\left(e_{1}\right)\right), E n c\left(V\left(e_{2}\right)\right), E n c\left(V\left(e_{3}\right)\right)\right)=$ $G C D(40,3240,1350)=10$.

EVC Timestamp of Union and Intersection Cuts

- Let $V($ cut 1$)=\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ and $V(c u t 2)=\left\langle v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n}^{\prime}\right\rangle$
- We have that

$$
\begin{aligned}
V(\text { cut } 1 \bigcap c u t 2) & =\left\langle u_{1}, u_{2}, \cdots, u_{n}\right\rangle, \text { where } u_{i}=\min \left(v_{i}, v_{i}^{\prime}\right) \\
V(\text { cut } 1 \bigcup \text { cut } 2) & =\left\langle u_{1}, u_{2}, \cdots, u_{n}\right\rangle, \text { where } u_{i}=\max \left(v_{i}, v_{i}^{\prime}\right)
\end{aligned}
$$

- The encodings of $V(c u t 1), V(c u t 2), V(c u t 1 \bigcap c u t 2), V(c u t 1 \bigcup c u t 2)$ are:

$$
\begin{aligned}
\operatorname{Enc}(V(c u t 1)) & =p_{1}^{v_{1}} * p_{2}^{v_{2}} * \cdots * p_{n}^{v_{n}} ; \\
\operatorname{Enc}(V(c u t 2)) & =p_{1}^{v_{1}^{\prime}} * p_{2}^{v_{2}^{\prime}} * \cdots * p_{n}^{v_{n}^{\prime}} \\
\operatorname{Enc}(V(c u t 1 \bigcap c u t 2)) & =\prod_{i=1}^{n} p_{i}^{\min \left(v_{i}, v_{i}^{\prime}\right)} \\
\operatorname{Enc}(V(c u t 1 \bigcup c u t 2)) & =\prod_{i=1}^{n} p_{i}^{\max \left(v_{i}, v_{i}^{\prime}\right)}
\end{aligned}
$$

- We show that

$$
\begin{aligned}
& \operatorname{Enc}(V(c u t 1 \bigcap c u t 2))=G C D(E n c(V(c u t 1)), \operatorname{Enc}(V(c u t 2))) \\
& \operatorname{Enc}(V(c u t 1 \bigcup c u t 2))=\operatorname{LCM}(\operatorname{Enc}(V(\operatorname{cut} 1)), \operatorname{Enc}(V(\operatorname{cut} 2)))
\end{aligned}
$$

Example: EVC Timestamp of Union and Intersection Cuts

Figure: The vector timestamps and EVC timestamps are shown above and below each timeline, respectively. In real scenarios, only the EVC is stored and transmitted.

- $\operatorname{Enc}(V(\operatorname{Cut} A))=\operatorname{LCM}(20,54,5)=540$ and $\operatorname{Enc}(V(C u t C))=\operatorname{LCM}(2,54,1350)=1350$.
- $\operatorname{Enc}(V(\operatorname{Cut} A \bigcap \operatorname{Cut} C))=G C D(E n c(V(\operatorname{Cut} A)), \operatorname{Enc}(V(C u t C)))=G C D(540,1350)=270$.
- Enc $(V(\operatorname{Cut} A \cup C u t C))=\operatorname{LCM}(E n c(V(\operatorname{Cut} A)), \operatorname{Enc}(V(\operatorname{Cut} C)))$ $=\operatorname{LCM}(540,1350)=2700$.

Comparison of Cuts

- Comparing cut1 and cut2:
i) cut $1 \subset$ cut 2 (or symmetrically, cut $2 \subset$ cut 1), or ii) cut1 $\not \subset$ cut2 and cut2 $\not \subset$ cut 1 , i.e., cut $1 \|$ cut 2 .
- We show:
i) $\operatorname{Enc}(V(c u t 1)) \prec \operatorname{Enc}(V($ cut 2$))$ if $\operatorname{Enc}(V(c u t 1))<\operatorname{Enc}(V(c u t 2))$ and $\operatorname{Enc}(V(c u t 2)) \bmod \operatorname{Enc}(V(c u t 1))=0$
ii) $\operatorname{Enc}(V(\operatorname{cut} 1)) \| \operatorname{Enc}(V(\operatorname{cut} 2))$ if $\operatorname{Enc}(V(c u t 1)) \nprec \operatorname{Enc}(V(c u t 2))$ and $\operatorname{Enc}(V(c u t 2)) \nprec \operatorname{Enc}(V(c u t 1))$

Correspondence between Operations on Cuts

Table: Correspondence between operations on cuts using vector clocks and EVC.

Operation	Vector Clock	Encoded Vector Clock
Cut	$\forall k \in[1, n], V(c u t)[k]=$ $\max _{e_{i} \in S(c u t)} V\left(e_{i}\right)[k]$ (cut may not be consistent) $\forall k \in[1, n], V(c u t)[k]=$ $V\left(e_{k}\right)[k]$ for $e_{k} \in S(c u t)$ (cut is consistent)	$\begin{aligned} & \operatorname{Enc}(V(c u t))= \\ & \operatorname{LCM}\left(\operatorname{Enc}\left(V\left(e_{1}\right)\right), \cdots, \operatorname{Enc}\left(V\left(e_{n}\right)\right)\right) \\ & \text { where } e_{i} \in S(c u t) \end{aligned}$
Common past	$\begin{aligned} & \forall k \in[1, n], V(C P(c u t))[k]= \\ & \min _{e_{i} \in S(c u t)} V\left(e_{i}\right)[k] \end{aligned}$	$\begin{aligned} & \operatorname{Enc}(V(c u t))= \\ & G C D\left(\operatorname{Enc}\left(V\left(e_{1}\right)\right), \cdots, \operatorname{Enc}\left(V\left(e_{n}\right)\right)\right) \text {, } \\ & \text { where } e_{i} \in S(c u t) \end{aligned}$
Intersection Union	$\begin{aligned} & \text { If } V(\text { cut } 1)[j]=v_{j} \text { and } V(c u t 2)[j]=v_{j}^{\prime}, \\ & V(\text { cut } 1 \bigcap \text { cut } 2)[j]=\min \left(v_{j}, v_{j}^{\prime}\right) \\ & V(\text { cut } 1 \bigcup \text { cut } 2)[j]=\max \left(v_{j}, v_{j}^{\prime}\right) \end{aligned}$	Merge Enc(V(cut1)) and Enc(V(cut2)) yields $\operatorname{Enc}(V)=G C D(E n c(V(c u t 1)), E n c(V(c u t 2)))$ $\operatorname{Enc}(V)=\operatorname{LCM}(E n c(V(c u t 1)), \operatorname{Enc}(V(c u t 2)))$
Compare	$\begin{aligned} & V(\text { cut } 1)<V(\text { cut } 2): \\ & \forall j \in[1, n], V(\text { cut } 1)[j] \leq V(\text { cut } 2)[j], \\ & \text { and } \exists j, V(\text { cut } 1)[j]<V(c u t 2)[j] \end{aligned}$	$\begin{aligned} & \operatorname{Enc}(V(c u t 1)) \prec \operatorname{Enc}(V(c u t 2)): \\ & \operatorname{Enc}(V(c u t 1))<\operatorname{Enc}(V(\operatorname{cut} 2)), \\ & \text { and } \operatorname{Enc}(V(\text { cut } 2)) \bmod \operatorname{Enc}(V(c u t 1))=0 \end{aligned}$

Complexity of Operations on Cuts

Table: Comparison of the time complexity of the operations on cuts using vector clocks and EVC.

	Vector Clock (bounded storage) (uniform cost model)	Encoded Vector Clock (unbounded storage) (logarithmic cost model)	Encoded Vector Clock (bounded storage) (uniform cost model)
Computing timestamp	$O\left(n^{2}\right)($ cut may not be consistent) $O(n)($ cut is consistent)	$O\left(n h\left(\log ^{2} h\right)(\log \log h)\right)$	$O(n)$
Computing common past	$O\left(n^{2}\right)$	$O\left(n h\left(\log ^{2} h\right)(\log \log h)\right)$	$O(n)$
Intersection and union	$O(n)$	$O\left(h\left(\log ^{2} h\right)(\log \log h)\right)$	$O(1)$
Compare	$O(n)$	$O(h(\log h)(\log \log h))$	$O(1)$

Scalability of EVCs

EVC timestamps grow very fast. To alleviate this problem:
(1) Tick only at relevant events, e.g., when the variables alter the truth value of a predicate

- On social platforms, e.g., Twitter and Facebook, max length of any chain of messages is usually small
(2) Application requiring a vector clock is confined to a subset of processes
(3) Reset the EVC at a strongly consistent (i.e., transitless) global state
- Use logarithms to store and transmit EVCs
- Local tick: single addition
- Merge and Compare: Take anti-logs and then logs,
- complexity is subsumed by that of GCD computation
- extra space is only scratch space

Conclusions

- Proposed the encoding of vector clocks using prime numbers, to use a single number to represent vector time
- To manipulate the EVC:
- each process needs to know only its own prime
- Merging EVCs can be done by finding LCM; does not require factorization!
- EVC provides savings in space over vector clocks
- Time complexity of EVC operations performed using two models
- Bounded storage (uniform cost model): better than vector clocks
- Unbounded storage (logarithmic cost model)
- EVCs grow very fast
- Proposed several solutions to deal with this problem

Thank You!

