
Efficient Dispersion of Mobile Robots on Graphs

Ajay D. Kshemkalyani Faizan Ali

University of Illinois at Chicago

ajay@uic.edu

Kshemkalyani, Ali (UIC) Dispersion on Graphs 1 / 14



Roadmap

1 Introduction

2 System Model

3 Overview of Results

4 Algorithms
Helping-Sync and Helping-Async
Independent-Async
Independent-Bounded-Async
Tree-Switching-Async

5 Discussion and Conclusions

Kshemkalyani, Ali (UIC) Dispersion on Graphs 2 / 14



Dispersion on Graphs

Problem Definition
k robots placed arbitrarily at the n nodes of an anonymous graph, where k ≤ n,
to coordinate with each other to reach a final configuration in which each robot is
at a distinct node of the graph.

Related to graph exploration by mobile robots, scattering on a graph, and
load balancing on a graph.

App: relocation of self-driven electric cars (robots) to recharge stations
(nodes).

App: minimize the total cost of k agents sharing n resources, located at
various places, subject to the constraint that the cost of moving an agent to
a different resource is much smaller than the cost of multiple agents sharing a
resource

Contribution
Five deterministic algorithms, for the sync and async models, to solve dispersion
on graphs

Kshemkalyani, Ali (UIC) Dispersion on Graphs 3 / 14



Related Work

Dispersion in 2-D plane well-studied

Dispersion on graphs introduced by Augustine and Moses Jr. [ICDCN’18]

Ω(D) time, Ω(log n) bits/robot
Dispersion algorithms for synchronous systems for

paths, rings, trees, rooted trees, rooted graphs
General graphs: O(log n) bits/robot and O(∆D) time Log-N algorithm
General graphs: O(n log n) bits/robot and O(m) time N-Log-N algorithm

We claim Log-N and N-Log-N algorithm are incorrect (trapped in cycles while
backtracking and fail to search entire graph) due to:

do not correctly coordinate concurrent searches which interfere
backtracking strategy not consistent with forward exploration
while backtracking, robot uses parent pointer of docked robot

Related to graph exploration by mobile robots, scattering on a graph, and
load balancing on a graph.

Kshemkalyani, Ali (UIC) Dispersion on Graphs 4 / 14



System Model

1 Robots have no visibility, are deterministic and distinguishable

2 Robots can only communicate with co-located robots

3 Undirected graph: m edges, n nodes, diameter D, degree ∆, node degree δ

4 Graph is anonymous, i.e., nodes have no labels

5 Nodes have no memory but the ports at a node have locally unique labels

6 Robots do not know graph parameters

Kshemkalyani, Ali (UIC) Dispersion on Graphs 5 / 14



Overview of Results

Table: Comparison of the proposed algorithms for dispersion on graphs.

Algorithm Model Memory Requirement Time Features
at Each Robot (in bits) Complexity

Log-N [AM18] Sync. O(log n) O(∆D ) WRONG
N-Log-N [AM18] Sync. O(n log n) O(m) WRONG

Helping-Sync Sync. O(k log ∆) O(m) steps need to know m
for termination

Helping-Async Async. O(k log ∆) O(m) steps no termination
Independent-Async Async. O(k log ∆) O(m) steps no termination

Indep.-Bounded-Async Async. O(D log ∆) O(∆D ) steps termination
Tree-Switching-Async Async. O(max(log k, log ∆)) O((m − n)k) steps no termination

Kshemkalyani, Ali (UIC) Dispersion on Graphs 6 / 14



Helping-Sync and Helping-Async

A docked robot maintains data structures on behalf of visiting robots

port entered and parent ptr : O(log ∆) bits
state ∈ {explore, backtrack, settled}: 2 bits
seen: 1 bit
round : O(log n) bits
visited [1, k] of type boolean: k bits
entry port[1, k] of type port: O(k log ∆) bits

Theorem

Algorithm Helping-Sync achieves dispersion in a synchronous system in O(m)
rounds with O(k log ∆) bits at each robot.

Theorem

AlgorithmHelping-Async achieves dispersion (without termination) in an
asynchronous system in O(m) steps with O(k log ∆) bits at each robot.

Kshemkalyani, Ali (UIC) Dispersion on Graphs 7 / 14



Independent-Async

Each robot maintains its own data structures

port entered : O(log ∆) bits
state ∈ {explore, backtrack, settled}: 2 bits
visited [1, k] of type boolean: k bits
stack of type port: O(k log ∆) bits

allows backtracking correctly

Theorem

Algorithm Independent-Async achieves dispersion (without termination) in an
asynchronous system in O(m) steps with O(k log ∆) bits at each robot.

Kshemkalyani, Ali (UIC) Dispersion on Graphs 8 / 14



Independent-Bounded-Async

Each robot maintains its own data structures to do a depth-bounded DFS

port entered : O(log ∆) bits
state ∈ {explore, backtrack, settled}: 2 bits
stack of type port: O(D log ∆) bits

allows backtracking correctly

depth, depth bound : O(logD) bits

Guaranteed to terminate

Theorem

Algorithm Independent-Bounded-Async achieves dispersion in an asynchronous
system in O(∆D) steps with O(D log ∆) bits at each robot.

Kshemkalyani, Ali (UIC) Dispersion on Graphs 9 / 14



Tree-Switching-Async

Previous algos: each robot performed a separate DFS;

docked robot stored up to k − 1 parent ptrs for k − 1 DFSs, or
traversing robot tracked up to k − 1 parent ptrs for its own DFS

O(k log ∆) bits/robot

We are allowed O(max(log k , log ∆)) bits/robot

Robots must coordinate in associating with a DFS tree and its parent ptrs

virtual id (of type robot identifier) tracks DFS tree instance robot is
associated with currently

Strict (total) priority order defined on virtual ids
When two robots meet, their DFS trees intersect

lower priority robot abandons its partially computed DFS tree and switches to
higher priority DFS tree

Robot makes at most k − 1 tree switches

Kshemkalyani, Ali (UIC) Dispersion on Graphs 10 / 14



Tree-Switching-Async

Each robot maintains its own data structures; interacts with docked robot
port entered , parent ptr (at docked robot): O(log ∆) bits
state ∈ {explore, backtrack, settled}: 2 bits
virtual id of type identifier: O(log k) bits

allows backtracking correctly

depth: O(log k) bits
associated with virtual id

lower priority robot switches to higher priority DFS tree

Lemma

For any value of virtual id, an undocked robot docks or switches to a higher
priority virtual id within 4m − 2n + 2 steps.

Theorem

Algorithm Tree-Switching-Async achieves dispersion (without termination) in an
asynchronous system in O((m− n)k) steps with O(max(log k, log ∆)) bits at each
robot.

Kshemkalyani, Ali (UIC) Dispersion on Graphs 11 / 14



Tree-Switching-Async

In doing a switch, the lower priority robot
1 updates its virtual id to the higher priority
2 updates its depth variable to the new depth in the higher priority tree, and
3 updates its parent ptr (if docked) to port entered of the traversing robot or

its port entered (if traversing) to parent ptr of the docked robot

If the traversing robot (whether in explore or backtrack state) does the
switch, it continues the DFS in the newly-switched-to tree as if it had just
entered that node where the switch occurs in explore state for the first time

Multiple robots may be executing the same tree instance possibly in different
parts of the graph if they share the same virtual id .

Kshemkalyani, Ali (UIC) Dispersion on Graphs 12 / 14



Discussion and Conclusions

Five algorithms for dispersion on graphs

Formulate ongoing dispersion problem

Rather than a one-shot dispersion, a robot, after docking and recharging,
moves again on the graph and after some time, finds itself at some node from
where it wants to search for an unoccupied node to dock again. Every time a
docked robot moves, it creates a free node. This cycle repeats.

Open problem: to analyze our proposed algorithms and design new
algorithms for ongoing dispersion

Kshemkalyani, Ali (UIC) Dispersion on Graphs 13 / 14



Thank You!

Kshemkalyani, Ali (UIC) Dispersion on Graphs 14 / 14


	Introduction
	System Model
	Overview of Results
	Algorithms
	Helping-Sync and Helping-Async
	Independent-Async
	Independent-Bounded-Async
	Tree-Switching-Async

	Discussion and Conclusions

