
POLITECNICO DI MILANO

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA INFORMATICA

DESIGN METHODOLOGIES FOR DYNAMIC
RECONFIGURABLE MULTI-FPGA SYSTEMS

Relatore: Prof. Donatella SCIUTO

Correlatore: Ing. Marco Domenico SANTAMBROGIO

Tesi di Laurea Specialistica di:

Alessandro Panella
Matricola n. 708496

ANNO ACCADEMICO 2008-2009

A mio nonno Felice,

maestro di vita.

When my blood stops

Someone else’s will not.

When my head rolls off

Someone else’s will turn.

And while I’m alive, I’ll make tiny changes to earth.

[...] You can mark my words, I’ll make changes to earth.

Frightened Rabbit, “Head Rolls Off”

Contents

1 Context and problem definition 13
1.1 Field Programmable Gate Arrays 14

1.2 Multi-FPGA systems . 17

1.2.1 Multi-FPGA architectural topologies 18

1.2.2 MFS applications . 23

1.3 Reconfigurable computing using FPGAs 24

1.3.1 DRESD and the Earendil flow 27

1.3.2 Multi-FPGA systems and dynamic reconfiguration 28

1.3.2.1 Rationale . 28

1.3.2.2 Possible scenarios 29

1.4 Thesis goals . 31

2 Background and related works 33
2.1 Multi-FPGA Systems design flow 33

2.1.1 General VLSI circuit partitioning 36

2.1.1.1 Iterative improvements methods 36

2.1.1.2 Iterative methods 38

2.1.1.3 Multilevel methods 41

2.1.1.4 Clustering . 43

2.1.2 MFS global layout . 44

2.1.2.1 Complete MFS design flows 45

iii

2.1.2.2 Partial MFS design flows 47

2.1.3 Comparison of existing approaches 50

2.2 Dynamic reconfigurable MFS’s 51

3 Methodology 55
3.1 Overview . 55

3.2 Design extraction . 58

3.2.1 Hierarchical circuit design 58

3.2.1.1 Definitions and scenarios 58

3.2.1.2 Advantages of hierarchical design 61

3.3 Global Layout . 62

3.3.1 Global layout tasks . 63

3.3.1.1 Combining hierarchy and global layout 66

3.3.2 High-level granularity and blocks features retrieval 68

4 Reuse and Dynamic Reconfigurability 71
4.1 Design blocks reuse . 72

4.1.1 Definitions . 72

4.1.2 Motivations . 73

4.1.3 Problem statement . 74

4.1.4 Architectural scenarios 76

4.2 Design blocks reuse methodology 78

4.2.1 Problem analysis . 78

4.2.2 Finding isomorphic clusters 80

4.2.3 Selecting the clusters to be reused 85

4.3 The reuse workflow . 88

5 Implementation 91
5.1 Design extraction . 91

5.1.1 VHDL structural design 92

5.1.2 Representing a hierarchical design 94

5.1.3 The extraction framework 96

5.1.3.1 VHDL preprocessing 97

5.1.3.2 VHDL structural parser 100

5.2 Static global layout algorithms 102

5.2.1 Data structures . 102

5.2.2 Integrated partitioning and placement 104

5.2.3 Sequential partitioning and placement 108

5.2.3.1 Bottom-up clustering 110

5.2.3.2 1-to-1 placement 115

5.3 Blocks reuse algorithms . 115

5.3.1 Finding isomorphic clusters 116

5.3.2 Extracting the horizontal cuts 119

5.3.3 ILP model for blocks reuse 120

6 Experimental results 123
6.1 Benchmarks description . 123

6.2 Design extraction . 124

6.3 Global layout . 125

6.3.1 Integrated partitioning and placement 126

6.3.2 Sequential partitioning and placement 130

6.3.3 Comparisons between integrated and sequential approach 137

6.4 Blocks reuse . 139

6.5 Case study: JPEG decoder . 142

6.5.1 JPEG decoder core . 142

6.5.2 Design extraction . 144

6.5.3 Global layout . 145

6.5.4 Blocks reuse . 148

7 Conclusion and future work 153

List of Figures

1.1 Integrated Circuit technology classification. 15

1.2 Basic structure of a FPGA. 16

1.3 Xilinx Virtex Configurable Logic Block schematic, from [2]. . . . 16

1.4 Mesh (a) and Crossbar (b) multi-FPGA topologies, adapted from

[5]. 20

1.5 Hierarchical crossbar multi-FPGA topology, adapted from [5]. . . 21

1.6 Multi-FPGA hybrid topologies: HTP (a), HCGP (b), and HWCP

(c). From [6]. 22

1.7 Internal vs. external reconfiguration. 25

1.8 Total vs. Partial reconfiguration. 26

1.9 DRESD project: the Earendil workflow. 28

2.1 Two similar flows for MFS design. (a) is from [5], (b) is from [6]. 34

2.2 Three phases of a multilevel partitioning algorithm. From [28]. . . 42

2.3 Example solution for a reconfigurable MFS with the approach

proposed in [40] . 52

2.4 Multi-FPGA environment on Raptor2000 architecture. From [8]. . 53

3.1 Outline of the proposed multi-FPGA design workflow. 57

3.2 Structural representation of a hierarchical circuit (a) and its hier-

archy tree (b). 60

vii

3.3 Cuts of the hierarchical tree and corresponding structural repre-

sentations of the circuit. 60

3.4 Example of separated (a) and integrated (b) partitioning and place-

ment. 66

4.1 Example of a structural circuit (a) and a possible implementation

which exploits reuse (b). 74

4.2 A dynamically-interconnected structure (a) and its possible im-

plementation on a crossbar multi-FPGA architecture. 77

4.3 Example of isomorphic clusters. 81

4.4 Some steps of the execution of the isomorphic clustering algo-

rithm on a sample hierarchy. 84

4.5 Example of extraction of horizontal cuts. 88

4.6 Workflow for the reuse of structural blocks. 90

5.1 Example of VHDL coding styles: dataflow (a), behavioral (b),

and structural (c). 93

5.2 Representation of a simple hierarchical structural design. 95

5.3 UML Class Diagram of the data structures for representing hier-

archical designs. 96

5.4 Extraction of the design hierarchy: the STRUCTGEN workflow. . . 97

5.5 Example of VHDL preprocessing. 99

5.6 Implementation of interface interconnections in a StructGraph. . . 101

5.7 Example of clusters’ record table produced by ISOMORPHIC-CLUSTERS

algorithm. 118

6.1 Hierarchical tree of the 3DES benchmark circuit. 126

6.2 Flattened circuit view of the 3DES benchmark circuit. 127

6.3 Plot of the annealing cost function for the FIR circuit partitioning. 129

6.4 Estimated reconfiguration time varying the dendrogram cut. 141

6.5 Schematic of the baseline process JPEG encoding algorithm (from

documentation at [61]). 143

6.6 Schematic of the JPEG decoding algorithm (adapted from docu-

mentation in [61]). 144

6.7 Graph representing the structure of the decoding unit. 146

6.8 Partitions resulting using the bottom-up clustering algorithm. . . . 148

6.9 Estimated reconfiguration time for different cuts of the dedrogram

obtained by the regularity-driven clustering. 150

6.10 Structure of one block which is suggested for reuse in order to

minimize the interconnections reconfiguration time. 150

Ringraziamenti

Prima di tutto ringrazio i miei genitori. Senza il loro aiuto niente di ciò che ha reso

possibile il raggiungimento di questo traguardo sarebbe stato possibile. Non solo:

il loro aiuto è stato condizione necessaria per cogliere ogni opportunità che mi si è

presentata durante il corso degli studi, prima di tutte la possibilità di intraprendere

un’esperienza di studio a Chicago che mi ha cambiato la vita. Grazie.

Un enorme grazie a Marco Santambrogio, colui che mi ha seguito e consi-

gliato in questo lavoro di tesi che, insieme ad altre esperienze, ha contribuito a

rafforzare una grande amicizia. Un sentito ringraziamento al relatore della tesi,

prof. Donatella Sciuto, per l’interesse e il tempo dedicatimi.

Ringrazio di cuore (“che cuore”) Massimo detto Panno, come amico e co-

me fratello, insostituibile per svariati motivi. Auguro a lui e a Daniela una vita

meravigliosa.

Un grande grazie al resto della mia famiglia, in particolare a mia zia Roma-

nella, per l’affetto che sempre dimostra nei miei confronti.

Un grazie romantico va a Gaëlle, per essere semplicemente meravigliosa, e

meravigliosa semplicemente. Ciò che ci lega è più forte della distanza.

Grazie a tutti i miei amici di San Lorenzo e dintorni. Non posso nominarvi tutti

perchè siete troppi e mi dimenticherei qualcuno. Siete una risorsa insostituibile,

mi avete dato “la ricarica” tutti i weekend, cene su cene su feste su feste su sbaitate

su sbirrate su cocavanate! Aggiungo che mi mancate molto, i soci son soci.

1

Grazie agli amici del Politecnico e dintorni. Anche qui siete troppi e nominarvi

tutti è impossibile. Grazie per evere condiviso con me esperienze di studio e

divertimento. Una menzione particolare per Matteo e Malex, con i quali ho vissuto

grandi momenti.

Grazie al mio rommate di Chicago, Alessandro detto Gugo, che ha intrapreso

la mia stessa avventura, e con il quale si è creata profonda amicizia e grande intesa.

Grazie a tutti gli amici in quel di Chicago, italiani e americani, che rendo-

no questa città ancora più splendida. Ringrazio in modo particolare Simone e

Silvano, per tutti i momenti di studio e di svago insieme.

Questa tesi è dedicata a mio nonno Felice, scomparso recentemente. Credo di

avere ereditato e imparato da lui ciò che maggiormente mi definisce come persona.

È stato e sarà sempre per me un modello di vita: persona saggia, equilibrata,

leale, benvoluta da tutti. Sono sicuro che vedermi al termine di questo cammino,

e all’inizio di un altro ancora più lungo, l’avrebbe riempito di orgoglio.

Un affettuoso pensiero va a mia nonna Bambina, e a tutti i ricordi che mi

legano a lei, che è stata un grande esempio di dedizione alla vita e all’amore

materno.

Con amore,

2

Alessandro

3

4

Sommario

L’utilizzo di Field Programmable Gate Array (FPGA) è al giorno d’oggi un ap-

proccio largamente diffuso nello sviluppo di sistemi VLSI, sia nell’ambiente in-

dustriale che in quello della ricerca accademica. La capacità di essere riprogram-

mati un numero indefinito di volte dopo la produzione, unitamente all’esistenza di

strumenti di sviluppo che automatizzano il processo implementativo, rende que-

sto tipo di circuiti integrati molto flessibili ed economici. Negli ultimi anni, l’e-

voluzione delle architetture FPGA ha reso possibile un ulteriore incremento nel

grado di flessibilità d’uso di tali chip. Questa innovazione è rappresentata dalla

possibilità di riconfigurare alcune parti della FPGA durante la fase di esecuzio-

ne, mantenendo le altre parti attive, in modo tale che l’intero sistema non smetta

mai completamente di operare. Questa tecnica è chiamata riconfigurazione dina-

mica parziale, e si affianca alla più comune riconfigurabilità statica, che viene

effettuata in fase di compilazione.

Il potere computazionale delle FPGA può essere incrementato attraverso la

creazione di cluster di chip, in modo da aumentare l’area disponibile e sfruttare

la possibilità di computazioni parallele. Queste architetture distribuite sono de-

nominate sistemi multi-FPGA (multi-FPGA systems), e vengono estensivamente

utilizzate nell’emulazione della logica di circuiti custom e applicazioni di super-

computing. Nonostante diverse soluzioni per lo sviluppo di sistemi multi-FPGA

sono state proposte in letteratura, la possiblità di incrementare ulteriormente il

potenziale di queste piattaforme attraverso la riconfigurabilità dinamica non è

5

praticamente mai stata esplorata.

L’obiettivo di questo lavoro di tesi è lo sviluppo di un flusso per il progetto per

sistemi multi-FPGA che abbia capacità aggiuntive rispetto a quelli esistenti. Due

sono i contributi principali allo stato dell’arte. Il primo è uno sfruttamento reale

della gerarchia di progetto durante il flusso di sviluppo. La ragione alla base di

questa innovazione è che tale gerarchia è considerata una fonte di informazione

molto importante, che può facilitare il processo di sviluppo e migliorare la qualità

delle soluzioni fornite. Il secondo contributo è l’estensione del flusso di proget-

to oltre i limiti imposti dalle risorse fisiche disponibili: quando un’applicazione

necessita di area maggiore rispetto a quella disponibile, il riuso di alcuni dei suoi

componenti sfruttando la riconfigurabilità dinamica permette di ridurre l’area ne-

cessaria alla sua implementazione. Ciò causa inevitabilmente alcuni ritardi in fase

di esecuzione, quindi è necessaria una soluzione per minimizzare questi tempi

extra.

Il flusso di sviluppo per sistemi multi-FPGA proposto in questa tesi parte dal-

l’estrazione automatica della struttura e gerarchia del progetto design dalla sua

descrizione in VHDL. Le informazioni sono raccolte in una struttura dati apposi-

tamente creata, così che esse possano essere usate nelle fasi successive. A questo

punto, una fase di layout globale tenta una implementazione statica dell’applica-

zione su una determinata architettura FPGA. Per quanto riguarda i passi di par-

tizionamento e placement richiesti da questa fase, la tesi propone due soluzioni

distinte. La prima proposta consiste in un algoritmo iterativo di tipo simulated an-

nealing che effettua i due passi contemporaneamente. La seconda è un algoritmo

di clustering di tipo bottom-up che sfrutta le regolarità presenti nell’applicazione

da implementare, che vengono estratte dalla gerarchia di progetto, che viene poi

seguito da un algoritmo di placement 1-a-1 sempre basato su simulated annealing.

A causa di vincoli di area e input/output, questo tentativo può fallire. In tal ca-

so, un ulteriore algoritmo esplora l’albero gerarchico per l’identificazione di strut-

ture isomorfe, ossia occorrenze ripetute di uno stesso pattern di blocchi di design.

6

Tali strutture possono essere riutilizzate nell’applicazione in modo da risparmare

area. Siccome il riutilizzo di parti del design richiede del tempo aggiuntivo per

la riconfigurazione parziale dei blocchi di interconnessione, l’uso di un model-

lo ILP permette di trovare la soluzione di riutilizzo delle parti che minimizza il

tempo di esecuzione, effettuando scelte come la selezione di pattern ricorrenti da

riutilizzare.

Di seguito viene descritta l’organizzazione della presente tesi.

Il capitolo 1 introduce le definizioni e i concetti basilari che costituiscono

il contesto di questo lavoro di tesi. Viene descritta la tecnologia FPGA, e ven-

gono presentate architetture e applicazioni per sistemi multi-FPGA. Successiva-

mente, il concetto di riconfigurabilità dinamica viene introdotto, per conclude-

re con le motivazioni e possibili scenari implementativi per sistemi multi-FPGA

dinamicamente riconfigurabili.

Il capitolo 2 costituisce un breve compendio di alcuni lavori relativi ai sistemi

multi-FPGA che si trovano in letteratura. Vengono descritti e analizzati diiversi

algoritmi di partizionamento e flussi di sviluppo. Due di questi ultimi costitui-

scono dei flussi completi, mentre altri approcci forniscono solo una soluzione a

una o più fasi dello sviluppo. Alla fine del capitolo, le soluzioni discusse vengono

confrontate tra loro.

Il capitolo 3 descrive il flusso di progetto di sistemi multi-FPGA proposto in

questa tesi e le prime due fasi che lo compongono. Dapprima, vengono spiegati

i principi del progetto gerarchico e la fase di estrazione del progetto. Successiva-

mente, viene descritta la fase di layout globale e vengono proposti due approcci

per questo problema.

Il capitolo 4 è dedicato alla descrizione della nuova metodologia per il riuti-

lizzo di blocchi del progetto proposta da questo lavoro. Dapprima vengono intro-

dotte le motivazioni e definizioni basilari, e il problema affrontato viene definito

formalmente. Dopo una descrizione dei possibili scenari architetturali, si intro-

7

duce la metodologia proposta, separandola in due fasi: il riconoscimento delle

strutture isomorfe e l’effettuazione delle scelte di riuso.

Il capitolo 5 spiega come le soluzioni esposte nei due precedenti capitoli sono

state implementate. L’esposizione è strutturata seguendo il flusso metodologico:

dapprima viene descritto il framework per l’estrazione del design, seguito dalla

implementazione della fase di layout globale. Successivamente sono presentati

gli algoritmi per il riuso di parti dell’applicazione.

Il capitolo 6 descrive l’attività di verifica sperimentale che è stata svolta e for-

nisce i risultati ottenuti. Dapprima, sono presentati i risultati relativi all’estrazione

del design. Successivamente, i due approcci al layout globale vengono confron-

tati, per poi fornire i risultati relativi alla fase di riuso dei blocchi. Infine, il fun-

zionamento del flusso di sviluppo proposto viene esemplificato tramite un caso di

studio.

Il capitolo 7 conclude la tesi e traccia la strada per future espansioni e miglio-

ramenti del presente lavoro.

8

Summary

The use of Field Programmable Gate Arrays (FPGAs) is nowadays widely spread

both in VLSI industry and academic research. The capability of being repro-

grammed an indefinite number of times after having been produced, together with

the existence of design frameworks that automate the implementation process,

makes such type of integrated circuits very flexible and cheap. In recent years,

the evolution of FPGA architectures has made it possible to further increase the

degree of flexibility in the use of such chips. This innovation is represented by

the possibility of having parts of the FPGA reconfigured at run-time, while others

are still running, so that the execution of the whole system is never stopped. Such

technique is called partial dynamic reconfigurability, as opposed to the standard

static reconfigurability, which is applied at compile time.

The computational power of FPGAs can be increased by the creation of clus-

ters of chips, in order to augment the available silicon area and exploiting par-

allel computation. Such distributed architectures are referred to as multi-FPGA

systems, and are largely used in logic emulation of custom circuits and super-

computing applications. Although several solutions to cope with the design of

multi-FPGA systems have been proposed in literature, the possibility of further

increase the potential of these platforms through dynamic reconfigurability has

never been explored.

The aim of the present thesis work is to develop a multi-FPGA design flow

with expanded capabilities with respect to the existing ones. There are two main

9

contributions to the current state of the art. The first one is the strong exploitation

of the design hierarchy throughout the design flow. The rationale behind this is

that the design hierarchy is considered a very useful source of important infor-

mation, that can ease the design process and improve the quality of the solutions.

The second one is the extension of the multi-FPGA design workflow beyond the

limit imposed by the available physical resources: when an application does not

statically fit in a given multi-FPGA architecture, the reuse of hardware compo-

nents through dynamic reconfigurability is exploited to reduce the area necessary

to implement the application. This inevitably introduces some extra time delays

in the execution, therefore a solution to minimize such time is provided.

The proposed multi-FPGA design workflow starts from the automatic extrac-

tion of the design structure and hierarchy out of the VHDL description of the

application. The retrieved information is captured by a specifically designed data

structure, in order to be used by the subsequent phases. Then, a global layout

phase attempts a static implementation of the application on a given multi-FPGA

architecture. Two solutions are proposed and evaluated for the partitioning and

placement tasks. The first one is a simulated annealing algorithm which simulta-

neously performs the two tasks. The second one is a bottom-up clustering algo-

rithm that exploits the regularities in the application which are retrieved from the

design hierarchy, followed by an annealing-based 1-to-1 placement.

Due to area and I/O pin constraints, this attempt may fail. In this case, an

algorithm explores the hierarchical tree for the identification of isomorphic struc-

tures, that are repeated occurrences of the same pattern of design blocks, which

can be therefore reused in the application in order to save area. Since the reuse of

portions of the application requires some extra time for dynamically reconfigur-

ing the interconnections between blocks, an ILP model is used to find the blocks

reuse solution which minimizes the execution time of the application, by operating

choices such as the selection of the recurrent patterns which may be reused.

10

In the following, the organization of the present document is described.

Chapter 1 introduces the basic definitions and concepts which constitute the

context of this thesis work. The FPGA technology is described, and multi-FPGA

architectures and applications are presented. Then, the dynamic reconfigurability

of FPGAs is described, before providing the rationale and possible scenarios for

multi-FPGA dynamic reconfigurable systems.

Chapter 2 constitutes a brief survey of some of the works related to multi-

FPGA systems that can be found in literature. Different partitioning techniques

are described, and multi-FPGA flows are analyzed. Two of them constitute com-

plete flows, while other approaches only provide the solution to one or more

phases of the design. In the end of the chapter, a comparison of the discussed

solutions is carried out.

Chapter 3 describes the multi-FPGA design workflow proposed in this thesis

and the first two phases that compose it. First, the hierarchical design principles

and the design extraction phase are explained. Then, the global layout phase is

described and two approaches are proposed, the first one based on simulated an-

nealing and the second one based on bottom-up clustering.

Chapter 4 is dedicated to the description of the novel design blocks reuse

methodology proposed in this thesis work. Definitions and motivations are pro-

vided, and the addressed problem is formally defined. After the description of

the architectural scenarios, the methodology for coping with the stated problem

is introduced by splitting it in two blocks: finding the isomorphic structures and

carrying out the reuse choices.

Chapter 5 explains how the solutions proposed in the two previous chapters

have been implemented. The description is structured according to the method-

ological workflow. Therefore, first the design extraction framework is described,

11

followed by the implementation of the global layout tasks. Then, the blocks reuse

algorithms are presented.

Chapter 6 describes the experimental verification activity that has been car-

ried out and provides the obtained results. Evaluations and comparisons are pro-

vided as well. First, the results provided by the design extraction are presented.

Then, the results for the two proposed global layout approaches are shown and

compared. Subsequently, the results relative to the blocks reuse algorithms are

provided. In the end of the chapter, a case study provides an example of use of the

design flow in a practical scenario.

Chapter 7 concludes the work and provides ideas for future extensions and

improvements.

12

Chapter 1

Context and problem definition

This preliminary chapter is an introduction to the work presented in this thesis.

Since the addressed problem can be considered as a part of a complex context,

this introduction is divided in several sections, each one dealing with a differ-

ent but related sub-field. First, Section 1.1 presents the device that constitutes

the physical ground for every solution taken into account successively, which is

the Field Programmable Gate Array (FPGA). Then, Section 1.2 introduces multi-

FPGA systems, in which more than one such devices are used together. FPGAs

represent the most common technology to realize reconfigurable hardware sys-

tems. Since the notion of reconfigurability is central to this work, it is introduced

in Section 1.3, along with an explanation of different types of reconfigurability us-

ing Xilinx FPGAs. Particular attention is paid to dynamic reconfigurability, which

is the field where this thesis project takes place. In Section 1.4, the problem ad-

dressed by this work, which deals with dynamic reconfiguration of multi-FPGA

systems, is stated. The chapter ends with a brief description of the organization of

the present document.

13

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

1.1 Field Programmable Gate Arrays

The last two decades of VLSI design have seen a continue growth in the use of

programmable devices. Among them, Field Programmable Gate Arrays (FPGAs)

have shown to be the most promising technology for a large variety of applica-

tions. In particular, FPGAs are usually preferable to Programmable Logic Devices

(PLDs) because they can implement multi-level logic. With respect to Mask Pro-

grammable Gate Arrays (MPGAs), FPGAs do not have to be custom fabricated,

thus significantly lowering costs and times for low-volume circuit productions [1].

The peculiarity of FPGAs rises from the fact that they are reprogrammed by

the user, a potentially infinite number of times. On the contrary, MPGAs have

to be programmed - once and for all - at the end of the production process, still

in-factory. FPGAs can be seen as occupying the rightmost place on an ideal classi-

fication which goes from full-custom technology to full-reprogrammable technol-

ogy, presented in Figure 1.1. Obviously, the aforementioned advantages come at

the expenses of speed and area occupation. As a matter of fact, the speed and the

integration density of the realized circuits decreas going from left to right in our

graphical taxonomy. However, only very few applications are worth the efforts

of creating a specific custom solution. This derives from a simple observation:

custom designs have extremely high NRE (nonrecurrent engineering) costs. This

implies that a custom implementation is worth only for very large volumes of

production.

The basic structure of a FPGA chip is conceptually simple: it is constituted

by a matrix of reconfigurable blocks and a routing architecture that permits arbi-

trarily point-to-point communication. Moreover, it has a set of configurable I/O

blocks along its perimeter. This basic structure is showed in Figure 1.2. FPGA

technology was introduced in 1984 by Xilinx, Inc., which is currently the main

producer and vendor. The structure of Xilinx FPGAs is briefly exposed in the

following, taking as example the Xilinx Virtex FPGA family [2]. The smallest

14

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

Semi-custom

Cell-based Array-based
Fully

custom
Standard

cell Macro cell MPGA FPGA

Figure 1.1: Integrated Circuit technology classification.

building unit is constituted by the Reconfigurable Logic Block (CLB). In Xilinx

FPGAs, CLBs are constituted by two identical slices, each containing two Logic

Cells (LC). A Look-Up Table (LUT), along with a multiplexer and a flip-flip, is

contained in each LC. Depending on the model of the FPGA, LUTs can have four

inputs or more. LUTs allow arbitrary combinatorial functions of their inputs to

be created. The scheme of the Xilinx Virtex CLB is showed in Figure 1.3. Be-

sides this common basic structure, different FPGAs can have different features: to

give an example, Xilinx Virtex-2 Pro FPGAs embed an hard IBM PowerPC 405

general purpose processor.

The chip is programmed by changing the function carried out by reconfig-

urable blocks. The programming process makes use of a bitstream, which is a

sequence of bit containing the information about how to configure the chip. Ob-

viously, the user does not need to manually program each CLB: several design

tools exist, which take as input a description of the system to be implemented at

different levels of abstraction - from low-level circuit netlists to high-level HDL

descriptions -, synthesize it and produce the configuration bitstreams. Xilinx ISE

(Integrated Software Environment) is an example of such tools [3].

FPGAs are used for a large variety of applications. VLSI industries exploit

them for realizing prototypes of custom ASIC circuits, as they provide a solid,

cheap, and reliable instrument for testing and emulating circuits. Besides being

used as a step in the design flow, they can constitute a high-performance hardware

15

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

I/O blocks

Communication
matrix

Logic
block

Figure 1.2: Basic structure of a FPGA.

Figure 1.3: Xilinx Virtex Configurable Logic Block schematic, from [2].

16

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

platform by themselves: this is the case of big FPGAs clusters for large parallel

computations. Another use of FPGAs is targeted to the final user, who can imple-

ment on his own a real hardware system for his needs. Besides all this variety of

uses, a relatively new field in which FPGAs are suitable to be adopted is embed-

ded systems, where they can be used to implement application specific hardware

components.

It is possible to distinguish two main classes of FPGA usage: solutions where

one or more FPGAs are used as application specific coprocessors, to which a

general purpose CPU demands some particular tasks, and solutions in which the

FPGAs themselves constitute complete System-on-Chips. A further distinction is

between FPGA systems which implement an entire application and ones in which

FPGAs performs only some of the tasks, while the others are carried out using

software that runs on a general purpose processor. In this latter case we speak of

Hardware/Software codesign, that frequently represents the best methodology to

obtain good cost-quality trade-offs.

1.2 Multi-FPGA systems

The incessantly growing demand of computational power has been traditionally

addressed by increasing the operating frequency of processors and by exploiting

parallelism at the instruction level. This has led to the creation of very powerful

stand-alone computing units, mainly general purpose processors, which have been

able to offer satisfiable performance for almost all applications. However, these

methods have been being abandoned by the semiconductor community, mainly

due to their design complexity and effectiveness-cost trade-offs [4]. A new ap-

proach, inherited by supercomputing applications, is becoming the dominating

design paradigm. The key feature is to exploit a coarser-grain level of parallelism,

by splitting applications in a number of concurrent tasks to be assigned to several

computational units. These can be either general purpose CPUs, usually situated

17

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

on the same chip, or application specific hardware components. FPGAs represent

a suitable means to implement this latter solutions: such an ensembles of chips is

called Multi-FPGA System (MFS). The main advantage is the same as the single

FPGA case: a specific custom solution is usually not worth, and reprogrammable

logic provides sufficient computational speed with low design costs. Several re-

search works have investigated the potential of multi-FPGA systems, and tens of

specific multi-FPGA architectures have been designed in the last 15 years; a brief

review of some solutions can be found in [1]. In order not to generate ambiguities

in the remainder of this work, the physical cluster of FPGAs will be referred to

as the architecture, while the conjunction of the architecture and the application

which is implemented on it will be indicated as a multi-FPGA system.

1.2.1 Multi-FPGA architectural topologies

One of the main features which distinguishes different kinds of multi-FPGA ar-

chitectures is the topology, meant as the way the different FPGAs are connected

one each other. The first considered distinction is between hard-wired and pro-

grammable connections.

As the name suggests, hard-wired connections are fixed wires that link the I/O

pins of two FPGAs, and are usually implemented as physical tracks on a multi-

FPGA board. Several topologies adopts hard-wired connections. In a complete-

graph topology, each FPGA is connected to each other. Despite this topology

offers a direct connection between any pair of FPGAs (i.e. without using inter-

mediate devices), it has the following simple but crucial drawback: as the number

of chips increases, the width of each connection decreases (since the number of

available pins on each FPGA is finite and fixed). Moreover, a complete graph

topology is generally not planar, which means that some of the interconnecting

tracks are incident one each other, imposing remarkable limits to the circuit prac-

tical realization. It is clear that it is impossible to implement architectures with a

18

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

high number of chips completely interconnected. The most widely adopted hard-

wired topology is the mesh. In a mesh, the chips are disposed on a grid, and are

connected in a nearest-neighbor pattern. We further distinguish between 4-way

meshes, in which the wires connect only horizontal and vertical neighbors, and 8-

way meshes, where each FPGA is connected also to its diagonal neighbors. When

the FPGAs on two opposite boundaries of the grid are connected in a circular

fashion, the topology is named torus. A mesh is usually specified through the di-

mensions of the grid: in a n x m mesh, n∗m FPGAs are disposed in a n x m matrix.

When one dimension is equal to one, we speak about linear arrays. An example

of 4-way mesh is depicted in Figure 1.4(a). The advantage of the mesh topology is

the inherent expandability of the architecture, due to the use of local connections.

As a matter of fact, adding an FPGA to an existing architecture means creating

some local connections without any other constraint. The disadvantages are due

to the fact that there is no a fixed-length path between every pair of FPGAs. This

causes different delays in signal transmission and the need to use some area to

implement communication logic in intermediate chips.

Programmable connections consist of wires connected to reprogrammable com-

ponents. Such components can be programmed in order to implement a particu-

lar connection among the incident wires. The most used topology using pro-

grammable connections is the crossbar. In this topology, chips are divided in two

classes on the basis of their functionality. Logic bearing FPGAs contain the logic

functions and perform computations (the lower ones in Figure 1.4(b)), while rout-

ing chips provide the connections between logic chips (the upper ones in Figure

1.4(b)). The idea is that communication between any pair of logic FPGAs requires

exactly one extra routing hop, such that communication delays are all equal. When

only one chip is used to provide the interconnections, the crossbar is said to be to-

tal. When several chips are used, the topology is named partial crossbar. Due to

the cost of producing a big routing chip, partial crossbar is usually preferred. The

routing chips can be either standard FPGAs or cheaper reprogrammable devices,

19

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

D

BA

C A

1

B DC

2 3 4

(a) (b)

Figure 1.4: Mesh (a) and Crossbar (b) multi-FPGA topologies, adapted from [5].

such as FPIDs (Field Programmable Interconnection Devices), otherwise called

FPICs (Field Programmable Interconnections Chips). Crossbar architectures have

the drawback that they are not expandable, since the connections are implemented

over a global communication infrastructure. A crossbar topology variation topol-

ogy attempts at solving this problem: in hierarchical crossbar (Figure 1.5) cross-

bars are organized in levels so that the architecture is easily expandable. However,

this last solution implies varying - even if easily computable - delays.

Specific topologies used in real multi-FPGA architectures are often the result

of variations and combinations of these two basic approaches. In [6], Khalid pro-

poses three types of such hybrid architectures. These modifications of the basic

partial crossbar aim at taking advantage of the locality of inter-FPGA connections.

The Hybrid Torus Partial-Crossbar (HTP) architecture consists of a set of FP-

GAs which are connected both through hard-wires in a 4-way torus topology and

through a partial crossbar (Figure 1.6(a)). Some of the FPGA pins are assigned

to hard-wired connections, while others are used mapped on programmable con-

nections. In the Hybrid Complete-Graph Partial-Crossbar (HCGP) the FPGAs

are connected through a partial crossbar and by means of a complete-graph hard-

20

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

A

5

B DC

6 7 8

E

9

F HG

10 11 12

1 2 3 4

Figure 1.5: Hierarchical crossbar multi-FPGA topology, adapted from [5].

wired interconnection structure (Figure 1.6(b)). In the Hardwired-Clusters Partial

Crossbar the FPGAs are divided in clusters. Within each cluster, FPGAs are con-

nected through a complete-graph topology. Clusters in turn connected one each

other using partial-crossbar programmable connections (Figure 1.6(c)).

The topologies presented so far have a common trait: they are all implemented

over dedicated wires, in the sense that once a physical (hard or reprogrammable)

wire is assigned to a particular logic net, its use is reserved only to that net. Even

if few approaches take it into account, another possibility is to used shared wires.

In this case, more than one net can be mapped on a single physical wire. Vir-

tual Wires [7] represents an interesting methodology for sharing physical wires:

multiple logical I/O ports are mapped on a single physical FPGA I/O pin. The

usage of such pin is controlled on a time-sharing basis: a schedule which works

at the highest possible FPGA clock frequency determines when a physical pin is

actually assigned to a given logical I/O port. Shared wires can be utilized also

through address mapping: a simple example is a bus topology. In this case, each

21

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

[a]

[c]

[b](a) (b)

(c)

Figure 1.6: Multi-FPGA hybrid topologies: HTP (a), HCGP (b), and HWCP (c). From

[6].

FPGA connected to a common bus and is provided with a communication in-

frastructure, able to handle buffers and all the features required by the particular

bus. Every FPGA is assigned to an address range, and the I/O ports of the logic

modules contained in each FPGA are associated with a particular address value.

Another similar solution is the use of point-to-point shared connections: wires of

fixed width connect pairs of FPGAs, using a communication protocol which al-

lows the different I/O ports to use the unique communication channel. Although

being undeniably slower than dedicated connections, these methodologies offer

a high flexibility, in particular allowing modules to be dynamically added to and

removed from the system. An example of a multi-FPGA bus topology is found in

[8] and will be discussed in Section 2.2.

22

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

1.2.2 MFS applications

In this section some interesting applications of MFS’s are briefly reported. It has

been already mentioned that, in supercomputers, clusters of application specific

circuits perform better than general purpose CPUs, since they are fitted on the

specific computations that must be executed. However, the high design costs usu-

ally forbid the development of custom ASICs. For this reason FPGAs constitute a

good trade-off between costs and performance.

Another field in which MFS’s s have been extensively adopted is logic emu-

lation in the testing of custom circuits. The circuit to be tested is implemented

on a multi-FPGA architecture and is debugged and validated through many dif-

ferent runs which must cover all the possible faults1. Reprogrammable hardware

provides a middle-ground between software simulation and prototyping, mitigat-

ing the drawbacks of both approaches. With respect to software simulation, it is

faster by some orders of magnitude. Like simulation, emulation allows to isolate

and easily correct possible bugs. Since the realization of hardware prototypes is

really expensive, emulation offers a cheaper approach. However, emulation is not

suitable for delay testing, since the timing of the MFS is different from the final

circuit’s one. Therefore, a common approach is to adopt logic emulation for fault

testing, and successively prototyping for timing debugging.

MFS’s have been recently used to implement neural networks: the repro-

grammability of such architectures offers a suitable means to implement learning

processes. Evolvable systems like neural networks can exploit the capability of

FPGAs of having some circuit functionalities modified over time without inter-

rupting the overall execution.

1Notice that we are referring to design testing and not circuit production testing.

23

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

1.3 Reconfigurable computing using FPGAs

So far FPGA technology and multi-FPGA systems have been presented. In this

section, the focus shifts from the architectural to the methodological domain: the

notion of reconfigurability applied to FPGAs is introduced and investigated, both

in the single- and multi-FPGA cases.

The notion of a reconfigurable computer has been introduced in the 1960s,

when Herald Estrin conceptualized a machine composed by a standard processor

and an array of reconfigurable hardware elements [9]. The idea was to have these

elements configured for the execution of a particular task, and then reconfigured

when a new task has to be executed. It is possible to define reconfiguration as

the process of altering the location or the functionality of a system element, as a

response to faults, changes in the environment or explicit application needs.

FPGA technology is nowadays the most suitable way to implement hard-

ware reconfiguration. As a matter of fact, their programmability can be naturally

viewed as the physical counterpart of the operational definition of reconfiguration

given above. Therefore, from this point on we will intend reconfiguration as a

process which involves one or more FPGAs, that constitute the architecture which

is reconfigured. There exist several types of reconfiguration; in the following, a

classification of reconfiguration methods is provided, as described in [10].

• Who controls the reconfiguration and where the reconfigurator is located.

When the reconfiguration controller and the reconfigurator are inside the

boundaries of the FPGA, the reconfiguration is said to be internal (Figure

1.7(a)). On the contrary, when the reconfiguration is handled from a PC

or any processor outside the FPGA, the reconfiguration is external (Figure

1.7(b)). Even if the distinction is clear in the case of a single FPGA, more

attention has to be paid to the multi-FPGA case. In this situation, if one or

more FPGA chips contain the reconfiguration units, the reconfiguration is

internal for that chips, external for the other ones and internal if we consider

24

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

FPGA FPGA

FPGA FPGA

FPGA

FPGA FPGA

FPGA

(a) (b)

(d)(c)

= Reconfiguration controller / Reconfigurator

Figure 1.7: Internal vs. external reconfiguration.

the whole MFS (Figure 1.7(c)). The reconfiguration is truly external when

it is handled by a unit outside the MFS (Figure 1.7(d)).

• When the configurations are generated. Three scenarios are possible: in

the first case, all the possible configuration of the whole system at a given

moment are generated at design time (static way). The second method is

run-time placement of previously created modules: the modules which take

part in the reconfiguration process are generated at design time, but the

decision about when and where to insert them into the system is taken at

run time. The fully dynamic case is intended as the synthesis of modules at

run-time. Although this would be the most flexible solution, it is unfeasible

because of the time needed for the modules’ synthesis.

• Which is the granularity of the reconfiguration. The first distinction is be-

tween complete and partial reconfiguration. In the first case, the FPGA is

entirely reconfigured (Figure 1.8(a)). In the second case, only a portion of

25

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

FPGA

FPGA FPGA

(a) (b)

(c)

= Reconfigurable module

FPGA

FPGA FPGA

FPGA

(d)

FPGA

Figure 1.8: Total vs. Partial reconfiguration.

the chip is take part in a reconfiguration (Figure 1.8(b)). This latter case can

be further subdivided: on Xilinx FPGA, two partial reconfiguration method-

ologies are possible [11]. Small-bit manipulation is the reconfiguration of

very small portions of the system (single CLBs). On the other hand, module-

based reconfiguration involves hardware blocks, called modules. Even this

case needs a disambiguation in a multi-FPGA scenario. Reconfiguration

can be total for a single chip but partial if considering the whole MFS (Fig-

ure 1.8(c)). In case it is partial for a single FPGA it is necessary partial for

the entire MFS, too (Figure 1.8(d)).

From what has been said so far, it is possible to see that FPGAs are really flexible

devices, suitable for implementing a large variety of systems and applications. In

recent years, a further degree of flexibility has come to light: the possibility of

having a portion of the chip reconfigured, while the other part does not interrupt

its execution. The implementation of this new scenario is achievable on a single

FPGA chip only if the reconfiguration is partial. Therefore, we speak about partial

26

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

dynamic (or run-time) reconfiguration. There are many possible applications for

this new reconfiguration paradigm. To cite some, it is suitable for implementing

applications which require more space than the area available on a FPGA, even

if there are some functional units which are not active at the same time. These

units can occupy the same place on the chip at different instants of time, through

partial dynamic reconfiguration. Another possible application is in presence of

changing requirements: suppose to have a small device which is asked to carry

out many different tasks in a short time (this could be the case, for instance, of a

modern mobile phone). On the basis of what is asked at a given moment of time,

the hardware can be reconfigured to accomplish a specific task in a small amount

of time.

1.3.1 DRESD and the Earendil flow

DRESD (Dynamic Reconfigurability in Embedded System Design) is an active

research project in the Electronic and Information Department at Politecnico di

Milano. Its global aim is to provide a complete and flexible design flow for

dynamic reconfigurable systems, paying particular attention towards embedded

applications. It is composed by several subprojects and branches. The general

workflow currently under development is called Earendil, which is depicted in

Figure 1.9.

Earendil is a complete specification-to-bitstreams HW/SW codesign workflow

which possibly uses third-party software. The target architecture, whichever the

physical device is (e.g. a single particular FPGA, a cluster of FPGAs, etc.), will

be composed by a static part and a dynamic part. The static pars contains some

modules which are not reconfigured, such as a hard or soft general purpose pro-

cessor and the reconfiguration controller. The dynamic part is the reconfigurable

area, in which blocks can be added and removed. The Earendil workflow is com-

posed of three main phases. The first one is called High Level Reconfiguration

27

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

HLR VALERIE Caronte

HLR

partitioning

scheduling

CSI

architectures DB

target
application simulation

debug

SyCERS

BAnMaT

compilation

compilation

synthesis

synthesis

solution graph
+ architecture final solution graph

+ architecture
sw modules

OS

hw modules

architecture

executables

executable

bistreams

bitstream

Figure 1.9: DRESD project: the Earendil workflow.

(HLR): during this phase the input specification is partitioned into modules (both

hardware and software ones) and scheduled. The result is passed to a Validation

(VAL) phase, which has the aim of validating the proposed solution through a

simulation. The output of this phase is taken as input by the Low Level Recon-

figuration (LLR) step, which has the goal of synthesizing the architecture and the

hardware reconfigurable modules, along with software components and possibly

adding an Operating System support.

1.3.2 Multi-FPGA systems and dynamic reconfiguration

In Sections 1.2 and 1.3 MFS’s and dynamic reconfigurability have been treated as

two separated topics. In this section the two concepts are merged, by motivating

our interest in such solutions and outlining some possible scenarios of dynamic

reconfigurable MFS’s.

1.3.2.1 Rationale

The reason why dynamic reconfiguration is by itself an interesting and promis-

ing field lays essentially in two arguments. First, it represents a method to cope

with the large demand of computational resources on small devices: a temporal

scheduling and partitioning of the application to be implemented, possibly along

28

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

with HW/SW codesign techniques, causes the virtual area to be more than the ac-

tual one. Second, it embodies a solution to evolving and mutable specifications:

a dynamic reconfigurable chip is able to react to even frequent changes in the

application needs.

The use of multi-FPGA apparently addresses the first of these issues. Never-

theless, the available area, even if large, could not be anyhow enough to fit big

applications. For this reason, dynamic reconfiguration applied to MFS provides

even more computational area. This fact can be considered also from another

point of view: even if the application to be implemented would fit in a reasonable

number of FPGAs, by exploiting dynamic reconfiguration it would be possible to

optimize the number of chips, and therefore produce cheaper systems. The sec-

ond point, regarding changes in requirements, continue to have the same validity

in the MFS case as in the single FPGA one.

1.3.2.2 Possible scenarios

In Section 1.3 it has been stated that, in order to be performed at run-time, recon-

figuration must be partial in the single-FPGA case. On the other hand, several

scenarios can be outlined in the multi-FPGA case, because “partial” has multi-

ple meanings. We do not pretend to provide an exhaustive taxonomy of dynamic

reconfigurable MFS’s; the intent is just to provide some guidelines for classify-

ing these systems and consequently develop methodologies to cope with different

situations.

First, it is possible to identify two basic kinds of reconfiguration in MFS’s: one

is when the reconfiguration is applied to logic chips, while the second is when it

is applied to routing chips. Clearly, this latter solution can be considered only for

MFS topologies with programmable interconnections (Section 1.2.1). As a matter

of fact, it is possible in such architectures to dynamically reconfigure the routing

channels among the components of the systems, thus permitting the reuse of a

single module by different components. This possibility will be further explored

29

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

in Chapter 5. Clearly, both kinds of reconfiguration can be simultaneously applied

on the same MFS; although this latter option seems complex, it is clear that it

provides a very high flexibility of the system, which becomes entirely modifiable.

Moreover, it is possible to make distinctions on the basis of the granularity and

the location of the reconfiguration controller, as explained in the following:

• The simplest scenario is the use of an external CPU which controls the

reconfiguration of the multiple FPGAs. The dynamic reconfiguration can be

either total or partial with respect to each single FPGA: as a matter of fact,

one FPGA could be totally reconfigured while the others are still operating,

thus never stopping the execution flow.

• The second scenario taken into account is reconfiguration internal with re-

spect to the MFS. In such case, two situations are possible, described in the

following.

– One FPGA acts as a master and controls the reconfiguration - either

total or partial - of the other chips. The master FPGA manages the

reconfiguration by handling bitstreams to reprogram the other chips.

– The control of the reconfiguration is distributed over the multiple FP-

GAs. This case implies partial reconfiguration of each chip and in-

volves more communication and coordination issues than the previous

case.

The borders between these categories are surely not neat, as many hybrid and com-

plex solutions are not captured by this scheme. However, this classification helps

in providing an idea on how a dynamic reconfigurable MFS can be implemented

in practice.

30

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

1.4 Thesis goals

In the previous sections the notion of dynamically reconfigurable multi-FPGA

system has been gradually introduced. Since this is a relatively new research

branch and therefore lacks of real effective design approaches, we propose in

this work new solutions for the development of such systems. It may be evident

that dynamic reconfigurability represents a sort of expansion to the capabilities

of static MFS’s. Hence, we first address the problem of providing a workflow

for traditional MFS’s, which is asked to offer a suitable basis for an expansion

towards dynamic reconfigurability. Once this design flow has been shaped, we

introduce novel methodologies that permits the dynamic reconfiguration applied

to MFS in several forms.

31

CHAPTER 1. CONTEXT AND PROBLEM DEFINITION

32

Chapter 2

Background and related works

This chapter describes the existing approaches to problems that are related to the

one considered in this thesis. First, in Section 2.1 the general design flow for

MFS’s is described. Some previous general approaches to the challenging parti-

tioning problem are presented and some existing MFS design tools are introduced.

Section 2.2 describes the few existing methodologies to the specific problem we

address in this work, that is the design of dynamic reconfigurable multi-FPGA

systems.

2.1 Multi-FPGA Systems design flow

The design and use of multi-FPGA systems has been being widely investigated for

more than a decade. For this reason, different MFS CAD tools and architectures

can be found in literature. Intuitively, the differences between the design flow

of single-FPGA systems and MFS’s lays in the fact that the latter requires an

additional global layout synthesis phase. A general MFS synthesis flow can be

thought as composed of two main macro-steps. First, the design need to be split

into several parts, each of one assigned to a particular FPGA: this is the global

layout synthesis. After that, each part must be implemented onto the assigned

33

CHAPTER 2. BACKGROUND AND RELATED WORKS

(a) (b)

Figure 2.1: Two similar flows for MFS design. (a) is from [5], (b) is from [6].

FPGA; this phase, which we call local layout synthesis, is identical to the single

FPGA case.

In [5] and [6] the problem of MFS design is faced extensively. Although the

two works have different aims, they both propose a similar design flow. Hauck’s

work [5, 1] has the goal of innovating MFS CAD tools by proposing novel algo-

rithms at different stages of the design flow. Additionally, his work represents a

bird’s eye view on the state of MFS research at the time it was written, thus pro-

viding a solid background in the field. On the other hand, Kahlid [6, 12] developed

a MFS synthesis chain in order to provide support to the exploration and compar-

ison of different multi-FPGA architectural topologies. As previously hinted, the

two flows share almost all aspects, with the only remarkable difference being that

Kahlid’s design takes into account the possibility of having high-level languages

input specifications. The two flows are depicted in Figure 2.1.

One concern raises from the presence of an early technology mapping step. As

defined in [13], technology mapping is the transformation of a gate-level netlist

using components of the target device’s library, usually referred to as cells. In the

case of FPGAs, there is only one cell, that is the LUT. This is a non-trivial task,

34

CHAPTER 2. BACKGROUND AND RELATED WORKS

which strongly depends on the particular hardware adopted, and tools to cope

with it are usually provided by chip vendors. As pointed out by Khalid in [6], an

alternative is to perform FPGA technology mapping later in the flow, obtaining

the advantage of speeding up the process since it can be performed - possibly

in parallel - independently for each chip. However, the author claims that such

choice forbids to carry out proper timing-driven layout synthesis, because of the

lack of accurate implementation information. This issue will be briefly dealt with

in Chapter 3.

However, it is obvious that in every MFS design chain a global layout phase

must precede chip-by-chip local synthesis. This is accomplished by means of

three steps: global partitioning, placement, and routing. Partitioning has the goal

of dividing a circuit into the minimum number of parts, each one corresponding

to a FPGA, such that the total number of connections between these parts (called

cutsize) is minimized. Partitioning over multiple FPGAs is subject to dimension

and pin limit constraints: each sub-circuit must fit in one FPGA and it must be

possible to address the I/O requirements of each part using the pins available on

each chip. Placement is the task of assigning each part to a specific FPGA of the

architecture as to minimize the distance between closely connected sub-circuits.

Routing deals with choosing the shortest minimum path for implementing each

connection between FPGAs, as to minimize the total wire length. Due to fixed

topologies and resource limits, all these steps must carefully take into account the

nature of the architecture in which the application is being mapped.

The fact that these three tasks are all required does not mean that they have

to be performed in three consequent phases. It is not infrequent in literature to

find approaches where partitioning and placement are carried out in a single step

[14, 15]. Other methodologies, on the other hand, merge placement and routing

in a unique phase [16].

We believe that partitioning is the most challenging and crucial task in MFS

design, because of its high complexity and the fact that good partitioning solutions

35

CHAPTER 2. BACKGROUND AND RELATED WORKS

make subsequent steps more effective and easier to be carried out. As a matter of

fact, a partitioning with the lowest possible amount of interconnections between

sub-circuits makes the constraints which placement and routing have to deal with

easier to be met. MFS is only one of the several scenarios in which partitioning

is encountered in VLSI CAD: each design flow, even for single-chip systems,

include a partitioning step. Unfortunately, partitioning is a NP-complete problem;

this means that finding an optimal solution requires exponential time. With the

current circuit sizes, this is absolutely unfeasible. Nevertheless, a lot of efforts

have been spent in order to develop partitioning heuristics which produce very

good results in acceptable run time. Due to its importance in the design flow and

in order to provide a solid background, in the next Subsection it is provided a brief

review of what we may call general VLSI partitioning algorithms, referring to the

fact that they are not specifically designed for multi-FPGA applications.

2.1.1 General VLSI circuit partitioning

This section is divided on the basis of the nature of partitioning approaches. First,

in Subsection 2.1.1.1 the iterative improvement methods, such as the Kernighan-

Lin and the Fiduccia-Mattheyses heuristics are discussed. Subsection 2.1.1.2 de-

scribes two randomized iterative methods, namely Simulated Annealing and Ge-

netic Algorithm. Subsection 2.1.1.3 provides an explanation of multilevel par-

titioning approaches, focusing on the Metis partitioning framework. Subsection

2.1.1.4 describes the clustering methodology for partitioning.

2.1.1.1 Iterative improvements methods

The distinguishing feature of the algorithms belonging to this class is that they

start from an initial partitioning, and successively improve it through several iden-

tical steps. These steps are performed using a metric value which evaluates the

quality of a “move” before it is executed. These approaches were introduced by

36

CHAPTER 2. BACKGROUND AND RELATED WORKS

Kernighan and Lin in 1970 [17]. Fiduccia and Mattheyses gave a major contri-

bution by expanding Kernighan and Lin’s work in order to accept as input hyper-

graph descriptions [18]. Although these algorithms cope with the partitioning of

a graph - or hypergraph - in two parts (bipartitioning), they can be applied re-

cursively to produce k-way partitionings. Several research works tried to further

improve these early works, sometimes providing noticeable enhancements.

The Kernighan-Lin (KL) algorithm [17] computes balanced bipartitionings

of graphs, aiming at minimizing the cutsize. The algorithm is invoked after the

creation of an initial balanced partitioning. It has a two nested loop structure,

where the inner loop selects a pair of vertices belonging to different partitions

such that its swap gives the largest gain or the smallest increase in cutsize. These

vertices are then swapped, marked as locked (i.e. they are not allowed to move

again during that iteration), and the gain for each pair of vertices is updated. This

continue until no unlocked pair of vertices exists. After that, the index of the

greatest partial sum above the performed swaps (i.e. the first k swaps that give the

maximum gain) is computed in the outer loop. If this maximum gain is greater

than zero, the correspondent swaps are actually executed, all the nodes return to

be unlocked, and a new iteration of the outer loop is performed. If the maximum

gain is less or equal than zero, the algorithm ends. In the inner loop the algorithm

accepts also moves that temporarily worsen the cutsize, in order to provide the

algorithm with the crucial capability of climbing out of local minima.

Under the reasonable assumption that the number of steps of any KL execution

is constant (2 to 5 times), the complexity of the algorithm is O(n3) where n is the

number of vertices in the graph. Using suitable data structures and a proper vertex-

pair scanning methods, the complexity can be lowered to O(n2 logn). Several

works propose implementation alternatives that improve the algorithm execution

time. In particular, Dutt [19] proposes a method which has a worse case execution

time of O(e logn) where e is the number of edges.

The Fiduccia-Mattheyses (FM) hypergraph bipartitioning [18] was proposed

37

CHAPTER 2. BACKGROUND AND RELATED WORKS

in 1982 and constitutes one of the most influent seminal works for subsequent re-

search. The FM algorithm is similar to KL, and deals with hypergraphs instead of

graphs. Each vertex v is associated with a gain, which is the reduction in cutsize

obtained by moving v to the other partition. The vertex with the largest gain is

selected and, if it satisfy a given balance constraint, it is moved to the other par-

tition and tagged as locked, until no unlocked vertex remains. After each move,

the cutsize gains associated with each vertex needs to be updated. Then the gain

highest partial sum and its index are computed as in KL, and the vertices are ac-

tually moved until that index, while the remaining vertices are not moved. This

process is repeated until the gain highest partial sum is negative. The surprising

result is that the complexity of the FM algorithm is linear in the size of the net-

work, expressed in term of pin count P, which is the sum of the nets each vertex

is connected to. This result is obtained using a bucket-list structure for storing the

gains of the vertices and fast gain computation expressions.

Several modifications to the FM algorithms have been proposed to cope with

different partitioning problems, as k-way hypergraph partitioning [20]. Other ap-

proaches aim at performance improvements, usually relying on more effective

gain calculation techniques: an example is the work by Dutt and Deng [21], who

noticed that one of the drawbacks of the FM algorithm is to compute the gain

using local information only.

2.1.1.2 Iterative methods

Iterative methods include those algorithms which are based on random moves and

an evaluation function which captures the quality of a given solution. Conversely

to iterative improvement methods, these algorithms use a metric function which

returns a global quality measure of the solution after a random move is performed;

on the other hand, iterative improvement algorithms evaluate a local quality metric

and choose the move to be performed on this basis. Usually, iterative algorithms

are suitable for any combinatorial optimization problems, and are particularly fit-

38

CHAPTER 2. BACKGROUND AND RELATED WORKS

ted to cope with VLSI CAD problems, such as partitioning and placement.

A genetic algorithm starts by randomly generating a set of initial solutions

called population. In each generation (i.e. iteration of the algorithm), each single

chromosome (i.e. possible solution) in the population is evaluated through a fit-

ness function. In the following selection phase two of the above chromosomes are

selected from the population: the individuals having higher fitness values are more

likely to be selected. After that, different operators act on the selected individu-

als in order to generate new individuals called offsprings. This genetic operators

are crossover (applied to a pair of individuals) and mutation (applied to a single

individual). Different sequences of application of such genetic operators cause

different trends in new generations: to give an example, a heavy use of mutation

causes the offsprings to be memory-less, but also increase the ability to climb out

local minima.

The algorithms proposed in [22, 23] cope with multi-objective partitioning

problems. In particular, the proposed methodology looks for a good trade-off

among cutsize, time delay, power consumption and balance. This trade-off is

achieved using a fuzzy logic cost function that takes into account all the mentioned

objectives, which is used as the fitness function.

Simulated Annealing is an iterative algorithm which derives from statistical

mechanics, and its use in circuit design was proposed in 1983 by Kirkpatrick et al.

[24]. The authors noticed that a well known randomized Monte Carlo algorithm

for simulating physical microscopic processes (called Metropolis algorithm) was

suitable to be used for combinatorial optimization problems. The pseudocode

of the algorithm for partitioning problems, as described in [25], is provided in

Algorithm 1.

An initial candidate solution is randomly generated, and the algorithm starts at

high temperature T0. The gain function is crucial in determining the performance

of the algorithm. Usually it takes into account both the cutsize and the balance of

the partitioning, thus resulting in a two-objective optimization. The gain function

39

CHAPTER 2. BACKGROUND AND RELATED WORKS

Algorithm 1 Pseudocode of Simulated Annealing algorithm. From [25].
T = T0
CurrentGain = CalculateGain()
while tstop > 0 do

AcceptMove = FALSE
for i = 1 to M do

randomly select vertex V to move from one partition to another
NewGain = CalculateGain()
if AcceptGainChange(∆Gain,T) then

CurrentGain = NewGain
AcceptMove = TRUE

else
return V to original partition

end if
end for
if AcceptMove then

tstop = ts
else

tstop = ts−1
end if
T = T ∗α

end while

proposed in [25] is Gain = cutsize
|A|∗|B| , where |A| and |B| are the numbers of vertices

in partitions A and B, respectively. It is straightforward to extend this function to

k-way partitioning problems. M is the number of move states per iteration. When

a random vertex is selected for moving from its original partition to another, the

move is accepted according to the following rule. If a move will result in an

unbalanced partition, it is always rejected. If the balance is preserved and the

resulting solution is improved, the move is accepted. Otherwise, the move is

accepted with probability e−
∆Gain

T . After each iteration, T is scaled by a cooling

factor α, 0 < α < 1. The algorithm stops if there have not been accepted moves

after ts iterations.

40

CHAPTER 2. BACKGROUND AND RELATED WORKS

2.1.1.3 Multilevel methods

The multilevel partitioning technique was successfully introduced in the middle

1990s, and represents the best known partitioning methodology for large graphs

or hypergraphs up to date. The main idea behind multilevel partitioning is to

split the partitioning process into three main phases. First, the original problem

instance is reduced by iteratively clustering and collapsing each cluster into a

new vertex. This process is repeated until the size of the instance is suitable for

applying an efficient and effective partitioning algorithm. Once an initial solution

is computed on the smallest graph, it is projected to the upper levels and it is

iteratively refined. One of the first works to introduce the idea of a partitioning

algorithm based on clustering and unclustering was [26]. Alpert [27] and Karypis

[28, 29] extensively explored new efficient multilevel solutions simultaneously.

The approach described in [28, 29], which is called Metis, is presented. This

algorithms computes a k-way partitioning of a graph G = (V,E) in O(|E|) time.

As mentioned in the previous paragraph, a multilevel partitioning algorithm is

composed of three sequential phases, intuitively depicted in Figure 2.2.

During the coarsening phase, a sequence of smaller graphs Gi = (Vi,Ei) is

constructed from the original graph G0 = (V0,E0) such that|Vi|< |Vi−1|. In order

for a partitioning of a coarser graph to be good with respect to the original graph,

the weight of a vertex must be equal to the sum of weight of the vertices of the

original graph that were collapsed to form it. Also, the edges of the new vertex

are the unions of the vertices that were collapsed. This rules ensure two important

properties: (i) the cutsize of a given partitioning in a coarser graph is equal to

the cutsize in the finer graph and (ii) a balanced partitioning of the coarser graph

results in a balanced partitioning of the finer graph. This coarsening can be for-

mally defined in terms of matchings. A matching is a set of edges, no two of which

are incident on the same vertex. The coarser graph is constructed by collapsing

couple of matching nodes of the original graph, obtained through different choice

policies.

41

CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.2: Three phases of a multilevel partitioning algorithm. From [28].

The initial partitioning phase aims at computing a k-way partitioning of the

coarsest graph such that each partition contains roughly |V0|/k vertex weight of the

original graph. The authors describe two ways to produce such initial partitioning.

The first is to keep coarsening the graph until it has only k vertices left, but it rises

two problems. First, the reduction in graph size becomes very small after some

coarsening steps, making it too expensive to continue with the coarsening process.

Second, the weight of the obtained vertices are likely to be quite different, making

the initial partitioning highly unbalanced. Another way is to recursively use a

bisection algorithm, such as FM, which produces good initial partitionings and

requires small amount of time.

During the uncoarsening phase, the partitioning of the coarsest graph is pro-

jected back to the original graph, by going through all the intermediate graphs. it

is important to note that, even if the partitioning of a coarser graph is at a local

minimum, its projection to the finer graph may not be at a local minimum, since

42

CHAPTER 2. BACKGROUND AND RELATED WORKS

it has more degree of freedom. Hence, it may be possible to improve the pro-

jected partitioning at each level. KL-FM heuristics tends to produce very good

results when used as refinement algorithm. The developed refinement approaches

are Greedy Refinement, which is very efficient but lacks the capability of climb-

ing out of local minima, and Global Kernighan-Lin Refinement, which provides

hill-climbing features to the greedy approach.

The Metis methodology has been extended by the same authors to deal with

hypergraphs, and has been called hMetis [30, 31]. Despite some effective op-

timizations have been introduced both in the coarsening and in the refinement

phases, it is beyond the aim of this work to describe extensively this hypergraph

partitioning approach, since it is methodologically very similar to the already de-

scribed Metis algorithm.

2.1.1.4 Clustering

Generally speaking, partitioning and clustering are synonyms, and practically it

is impossible to rigorously differentiate between clustering and multi-way parti-

tioning [32]. Nevertheless, it is common use to refer to clustering in VLSI by

intending a bottom-up method, which starts from single atomic components and

iteratively groups them on the basis of some given metrics, as opposed to top-

down recursive bipartitioning algorithm or “flat” iterative methods. Clustering is

sometimes used as a preprocessing step to reduce the problem size for the sub-

sequent application of others partitioning algorithms: the coarsening phase of a

multilevel algorithm, seen in section 2.1.1.3, is actually a clustering which eases

the subsequent partitioning. Nevertheless, clustering can be used as a partitioning

algorithm by itself.

In its simplest form, a clustering algorithm starts by considering all the nodes

of the graph which need to be partitioned, and selects a group of them (usually a

pair of nodes) which maximizes a given metric function. This group of nodes is

then collapsed in a single node, and the algorithm restarts considering the obtained

43

CHAPTER 2. BACKGROUND AND RELATED WORKS

graph. There are several policies for stopping the algorithm: one example is to

fix a maximum dimension of the clusters and stop when it is impossible to form

a new cluster which fulfill such size requirement. Otherwise, one can choose

to keep on clustering the graph until only one node remains, and then cut the

“clustering hierarchy” at any arbitrary level, thus obtaining clusterings at different

granularities.

Previous works on clustering can be grouped into approaches that use local or

global information. Intuitively, using metrics which capture global circuit features

is better, but it requires much more computation time than using local metrics.

Many different metrics can therefore be adopted in guiding a clustering al-

gorithm: in the following, we briefly report three closeness metrics which have

been classically adopted for circuit clustering, and are considered in [26]. Clus-

ter Density is defined as follows: given a cluster of c nodes, it is equal to E
Mc

,

where Mc =
(c

2

)
and E is the total weight of edges entirely contained in the clus-

ter. Clusters having a higher density are supposed to be of higher quality. The

k− l connectedness metric (no relations with the KL algorithm) claims that two

nodes shall be clustered if there exist k edge-disjoint paths connecting them such

that each path has length at most l. It is not trivial to determine the values of k

and l. According to the degree/separation metric, two nodes with a higher d/s

ratio are of higher quality, where d is the average number of nets incident to each

component in the cluster, and s is the average length of a shortest path between

two nodes in the cluster. Even if this is a robust measurement, it suffers of high

computational requirements. Several other metrics have been proposed; some of

them will be investigated later in this work.

2.1.2 MFS global layout

As pointed out at the beginning of this chapter, the global layout phase is com-

posed by partitioning, placement and routing. It is not usual to find in literature

44

CHAPTER 2. BACKGROUND AND RELATED WORKS

approaches that address all these problem thus providing a complete design flow.

Usually only one or two of these tasks are addressed at a time. In this section, a

review of some of these approaches is provided, organized on the basis of their

completeness and methodology.

2.1.2.1 Complete MFS design flows

In the following, the descriptions of two existent complete multi-FPGA design

workflows are provided. Subsection 2.1.2.1 presents the work made by Scott

Hauck ([5, 33]), while Subsection 2.1.2.1 explains the approach due to Muham-

mad Khalid [6].

Hauck’s approach The aforementioned work by Hauck [5, 33] provides algo-

rithms which deal with all the three basic tasks. Partitioning is carried out through

recursive bisections. Each bisection is computed using a methodology that resem-

bles the multilevel approach described in section 2.1.1.3. First, clustering based

on a connectivity threshold metric is executed, until no new cluster is formed.

Then an initial random bipartitioning is produced. At this point, an unclustering

phase iteratively performs a slightly modified version of the FM algorithm and

uncluster to the next finer grained level, until no cluster remains. The uncluster-

ing phase is run ten times, and the best result is returned. These bisections are

executed recursively in order to obtain a partitioning into an arbitrary number of

sets. This recursive bisection process actually embeds placement: the topology

of the multi-FPGA architecture is considered. An algorithm determines the par-

tition orderings, that are the portions of the architecture to which the recursively

computed bipartitions are assigned. This can be thought as a partitioning problem

per se: it is better to assign the first two obtained partitions to the least connected

portions of the topology, the algorithm must indeed find what are the main bottle-

necks in the topology. The proposed algorithm is complex, and it is beyond our

scope to provide an accurate description. At the end of this process, each of the

45

CHAPTER 2. BACKGROUND AND RELATED WORKS

obtained sub-circuits is assigned to a specific FPGA. What is not underlined in the

analyzed work is that this process implies a fixed routing solution: the inter-FPGA

wires will pass through the architectural cuts extracted by the partition ordering

algorithm, in a hierarchical fashion. This work also deals with pin assignment and

intra-FPGA routing - which are strictly related - and carries out this task using a

force-directed algorithm.

Khalid’s approach As previously said, Khalid [6] developed a multi-FPGA

tool chain to provide support for comparing different architectural topologies. The

proposed algorithms are simpler than Hauck’s ones. The partitioning approach is

basically a simple implementation of recursive bisection: the circuit is iteratively

split using FM until all partitions fits into a single FPGA, considering both area

and pin count. The recursion is handled by using a stack structure: non-fitting

sub-circuits are placed on the top in order to be further subdivided. Placement is

managed through several algorithms, depending on the architecture topology. For

mesh topologies, a force directed approach is proposed: the sub-circuits are seen

as masses and the connections as springs, whose elasticity is proportional to the

connection width. The optimum ideal placement would be an equilibrium config-

uration of the masses with respect to all the elastic forces. Simplifying the thing,

each module is tried to be placed in its ideal position: if it overlaps with another

module, the algorithm places it in the nearest vacant place. For partial crossbar

topologies, placement is trivial since all pairs of FPGAs have the same distance.

Placement in the Hard-Wired Cluster Architecture (described in Section 1.2.1),

is performed by exploiting the hierarchy created by the recursive bipartitioning:

sibling sub-circuits are tried to be placed in the same clusters.

To cope with the routing problem, Khalid first proposes a topology-independent

global router, which transforms a given architecture topology into a graph and

execute an algorithm based on maze routing [34]. Since this generic approach

does not show encouraging result, the author proposes ad-hoc routing algorithms

46

CHAPTER 2. BACKGROUND AND RELATED WORKS

for specific topologies. For routing mesh architectures, an algorithm is proposed

which, for each net, enumerates all the possible shortest paths and chooses one

of them on the basis of the generated congestion. Clearly this approach is hardly

scalable to large size meshes. The algorithm for the partial crossbar routes the

nets in decreasing order of fan-out. If the routing attempt fails, the routing restart

and the net which caused the failure is mapped first. The cost function used to

select the FPID used to route a net attempts at guaranteeing a balanced usage of

the FPIDs. The approach for hybrid architectures is similar: first, all the possible

two-terminal nets are routed on the hardwired connections. Then, the remaining

nets in decreasing order of fan-out are mapped on the FPIDs.

2.1.2.2 Partial MFS design flows

Iterative approaches Iterative methods (section 2.1.1.2) have been widely ap-

plied to multi-FPGA global layout synthesis. Usually partitioning and placement

are treated with such techniques, but some routing solutions have been developed

as well. In [14] the authors propose a genetic algorithm for partitioning and place-

ment targeted to 4-mesh topologies. The fitness function is implemented through a

fuzzy technique which takes into account FPGA logic capacity and pin utilization.

The algorithm is designed in such a way that the circuit being mapped is fairly dis-

tributed on each FPGA composing the mesh. This sounds like an over-demanding

requirement, since it is likely that the imposition of using all the available FPGAs

forces the algorithm to introduce inter-FPGA connections which could be avoided

by using less chips. In [35] the authors show a faster parallel implementation for

the same algorithm.

Other approaches apply simulated annealing to MFS global layout. In [15] the

authors describe an approach which is claimed to deal with N-way intra-chip and

inter-chip partitioning and placement. It is evident that the method is applicable

only to mesh topologies. Each chip is divided into a number of bins disposed as a

matrix: the nodes of the graph to be partitioned are assigned to these bins instead

47

CHAPTER 2. BACKGROUND AND RELATED WORKS

that entire chips, such that the method performs also a kind of local placement.

This is an arguable point, since one can wonder whether it is worth to perform lo-

cal placement simultaneously with global layout. However, the approach appears

smart in the application of the move acceptance function in the simulated anneal-

ing algorithm, adopting both single element moves and pairwise exchanges. The

described tool also performs pin assignment, even if the correspondent routing al-

gorithm is only hinted. Furthermore, the input circuit undergoes a preprocessing

clustering stage in order to reduce the size of the problem and make the subsequent

simulated annealing more effective.

Another MFS mapping tool for mesh topologies based on simulated anneal-

ing is proposed in [16]. The authors call their methodology Placement&Routing-

based Partitioning (PRP). They propose a solution to two similar problems: Fixed

Mesh and Adapted Mesh. The first is the usual multi-FPGA global layout prob-

lem, in which a given circuit must be mapped on a given architecture. The latter

problem is to construct the minimum size multi-FPGA model that can house a

given circuit. The process is carried out using a structure similar to the approach

described in [15] and presented above: the multi-FPGA system is modeled as a

large single FPGA where the borders among neighboring chips are described as a

superimposed template. A noticeable feature used in the simulated annealing cost

function is that the cutsize is computed using an approximation of the Rectilinear

Steiner Minimum Tree routing algorithm. An evident weakness that these last two

presented approaches share is that they lack any generality in the MFS topology:

they indeed address solely mesh architectures.

Hierarchical approaches During recent years, some innovative approaches have

tried to go beyond classical partitioning schemes, which deal with large, flat

netlists. As a matter of fact, several researchers noticed that the the conversion

of a design into a flattened hypergraph involves the loss of much information

[32, 36, 37]. To deal with the ever increasing complexity of logic circuits, VLSI

48

CHAPTER 2. BACKGROUND AND RELATED WORKS

developers adopts nowadays hierarchical design styles. In other words, we can

refer to design hierarchy as a way to handle design complexity [32]. Despite de-

sign hierarchy provides a natural way to decrease the complexity of CAD design

problems, most current approaches totally ignore such precious information by

using large flat hypergraphs.

The work reported in [32] was one of the first approaches to suggest the ex-

ploitation of design hierarchy in MFS synthesis. The mentioned paper only ad-

dresses the partitioning problem. The objectives are to minimize the number of

used devices and the interconnections among them. The approach is quite elab-

orated: the hierarchy is visited and the elements which fit in a single FPGA are

added to different partitions; unfeasible elements are therefore “split” and non-leaf

sub-modules belonging to the same parent are tried to be placed in the same par-

tition. The remaining leaves, usually of small dimension, are inserted in already

existent partitions or are partitioned using a FM k-way algorithm. Moreover, non-

leaf modules which do not fit into a single device because of slightly margins -

either of dimension or I/O pins - are not split: instead, the smallest element whose

elimination causes the module to fit is extracted and treated separately. Eventually,

a final merging step combines small partitions to larger ones.

Another approach to partitioning, presented in [38, 39], introduces an impor-

tant feature: it includes an early HDL synthesis step. As a matter of fact, the

described tool is able to take as input a Verilog description of the design and turn

it into a hierarchical tree. One point of weakness of this synthesis approach is

that it extract a hierarchical tree made of four levels, namely top, modules, pro-

cesses and functions. It does not take into account hierarchical information that

goes beyond this fixed layered tree. When the tree is created, it is treated as a

hierarchical connected graph, and a top-down set-covering procedure is applied

to generate the partitions. The algorithm method starts the covering from the top

level nodes (modules). If no more feasible covers can be found at that level and the

hierarchical hypergraph is not entirely covered, the set-covering process continues

49

CHAPTER 2. BACKGROUND AND RELATED WORKS

Table 2.1: Summary of the main MFS design approaches.

 HAUCK KHALID HIDALGO ET AL. ROY ET AL. HERMIDA ET AL. BEHRENS ET AL. FANG ET AL.

TOPOLOGIES Mesh
Mesh, Crossbar,
Hybrid (HTP,
HCGP, HWCP)

Mesh Mesh Mesh - -

PARTITIONING Recursive
Bisection

Hierarchical
heuristic

Synthesis from
Verilog +
Hierarchical
hypergraph seet
covering

PLACEMENT

Force directed
(Mesh),
Partitioning
Hierarchy
Exlpoitation
(HWCP)

Genetic
Algorithm using
Fuzzy Logic

Simulated
Annealing

- -

ROUTING

Clustering + Rec.
Bisection +
Unclustering

Specific on the
topology - -

Simulated
Annealing (using
Approx. Steiner
Tree for wire
length estimation)

- -

on lower level nodes.

2.1.3 Comparison of existing approaches

Table 2.1 summarizes approaches to MFS design analyzed in the previous sec-

tions. The slash (’-’) contained in some cells means that the corresponding as-

pect of the workflow is not addressed by the considered approach. It is clear that

usually researchers focus only on some aspects of the design flow, providing al-

gorithms which address only some parts of the whole problem. The creation of a

complete workflow is usually hard, since it has to be bound to the particular input

and output specifications. Nevertheless, a methodological design flow is proposed

in this thesis, which, though fitted on specific input-output requirements, contains

core algorithms which are not necessarily bound to any input-output format.

So far in this section, the shape of a general MFS design flow has been traced,

and the state-of-the-art in this field has been described, together with some back-

ground and seminal methods in partitioning. In the next section, a review of

the few existing approaches to dynamic reconfigurable MFS’s, that constitute the

leading topic of this work, is provided.

50

CHAPTER 2. BACKGROUND AND RELATED WORKS

2.2 Dynamic reconfigurable MFS’s

In [40], the authors describe a partitioning and synthesis system for dynamically

reconfigurable MFS’s. The presented workflow takes as input a behavioral VHDL

specification of the application to be mapped onto the multi-FPGA architecture.

A high-level synthesis tool, called DSS (Distributed Synthesis System), trans-

forms the input specification into a directed task graph. This constitutes the input

for the MFS design workflow, which is based on two phases: temporal parti-

tioning and spacial partitioning. Intuitively, temporal partitioning carries out the

division of the input specification into time segments. Each of these segments is

then spatially partitioned over the FPGAs constituting the target architecture. The

temporal partitioner has an abstract view of the architecture resources, such as

the overall resource availability and memory size. The time partitioning process,

which inherently performs a list-based scheduling of the tasks, is based on a Bi-

nary Non-Linear Programming model: this model takes into account several con-

straints, such as the data dependencies between tasks, the overall available FPGA

resources, and the amount of memory which can be used during reconfiguration.

Practically, the time partitioner isolate portions of the scheduled task graph which

are estimated to fit onto the target architecture at a given instant. Then, a spa-

tial partitioning is performed for each temporal segment. This task is carried out

through a genetic algorithm, which takes into account the available resources of

each FPGA. From what has been said, it is evident that the application is split into

discrete time segments: once each segment is executed, a total reconfiguration of

the system takes place, with temporary results being stored in local memories.

For a better understanding, a graphical representation of this approach is pro-

vided for a simple task graph in Figure 2.3. It is clear that the reconfiguration of

the system is not dynamic in the sense we intended in Chapter 1. As a matter of

fact, each time a reconfiguration is performed, intermediate results are stored in

memory, the system halts, and the execution restarts once the reconfiguration has

51

CHAPTER 2. BACKGROUND AND RELATED WORKS

time

REC. REC.

[...]

1 3

2

5

4 7

6

8

MEM

MEMFPGA1

FPGA2

FPGA3

FPGA4

1

3

2

5

4

76

8

...

(a) (b)

Figure 2.3: Example solution for a reconfigurable MFS with the approach proposed in

[40]

been completed. Therefore, this approach is dynamic in the sense that an appli-

cation is executed automatically over time, even if it does not fit entirely on the

target architecture, but it is static if it is considered that the execution is stopped

during reconfiguration. Hence, this approach does not try to mask the time spent

by the reconfiguration processes, which constitutes the main source of time con-

sumption.

The work presented in [8] deals with the creation of a hardware/software

architecture which can host dynamically reconfigurable systems. Although it

does not address problems in the MFS design flow, it is an example of how dy-

namic reconfiguration can operationally be carried out in multi-FPGA architec-

tures. The approach is targeted to a specific hardware architecture, called Rap-

tor2000 (www.raptor2000.de). Such architecture consists of a motherboard and

up to six application specific extension modules (ASMs). These modules can

contain either programmable hardware chips or other devices, such as Ethernet

or USB ports. Basically, the motherboard provides the communication infrastruc-

ture between ASMs and connects the board to a host computer via the PCI bus.

The reconfiguration operations are managed through a light-weight Linux oper-

ating system, enhanced with support to dynamic reconfiguration of the devices,

52

CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.4: Multi-FPGA environment on Raptor2000 architecture. From [8].

that can be used to control the reconfiguration by means of simple function calls.

The OS runs on the PowerPC processor embedded in a Xilinx Virtex-2Pro FPGA,

which is plugged on one of the ASMs. The specific architecture tested in [8] is

depicted in Figure 2.4. In this figure, the leftmost ASM contains the static part of

the architecture, composed of the embedded PowerPC processor, the configura-

tion controller, the bus bridge, and a memory port. The other ASMs are provided

with a communication interface to the bus. The remaining part is the reconfig-

urable area, in which the reconfigurable modules (IP-Cores) can be placed. When

an IP-Core has to be plugged into the system, the corresponding driver is mounted

in the OS by means of a function call, and the IP-Core bitstream is loaded from

memory and downloaded onto one of the FPGA boards. This scheme also con-

tains a dynamic relocator tool, which, by manipulating precise portions of the

bitstream, is able to place the IP-Core in the desired position.

53

CHAPTER 2. BACKGROUND AND RELATED WORKS

54

Chapter 3

Methodology

This chapter provides a methodological description of the design workflow for

multi-FPGA systems that is the topic of this thesis. After providing a general

overview on the proposed methodology (Section 3.1), the chapter proceeds by de-

scribing the phases which constitute the design flow. Section 3.2 describes the

design extraction phase and the rationale of the choices that have been made. Sec-

tion 3.3 provides a methodological view of the global layout phase, which is in

charge of trying to find a feasible static solution. Due to the fact that it represents

the main innovation source of this thesis work, the description of the third part of

the workflow, which is the methodology to be applied in case a design does not

statically fit in the architecture, and deals with reuse and dynamic reconfigurabil-

ity, is demanded to Chapter 4.

3.1 Overview

The aim of this work is the development of a workflow for the design of dynam-

ically reconfigurable multi-FPGA systems. In order to achieve such a result, it

is necessary to define a methodology which copes with all the steps of the de-

sign flow. First, a distinction has to be stated, between the case in which the

55

CHAPTER 3. METHODOLOGY

input application fits on a given multi-FPGA architecture, and the case in which

novel solutions have to be adopted, in order to make the implementation of larger

over-requiring applications feasible on multi-FPGA architectures with bounded

resources. Such novel solutions imply the adoption of dynamic reconfiguration

techniques. A remarkable point is that dynamic reconfigurability is in this case

viewed as a feature which is not strictly desirable, because of the degrading of

performance it causes. Nevertheless, it becomes necessary in the case the applica-

tion does not statically fit on a given architecture. Therefore, a novel methodology

is needed to minimize the impact of this feature that the design flow is forced to

adopt.

From what has been said, the workflow should be composed of two main

phases. The first one is the attempt at finding a solution for statically implementing

the input application on a given multi-FPGA architecture. As it should be clear

from the definitions given in Section 1.3, this attempt may either succeed or fail.

In the first case, the flow ends. In the second case, the flow undertakes a branch

which has the goal of having the application implemented on the architecture,

even if it does not entirely fit into it. To achieve this result components reuse over

time and dynamic reconfigurability techniques are considered. The main phases

which compose the workflow are shown in Figure 3.1.

The workflow takes as input an application which has to be implemented on

the multi-FPGA architecture, specified as a VHDL description. This description

has to be parsed in order to build the intermediate representation to work on in the

following steps. Therefore, a preliminary design extraction phase has to be carried

out, which operates on the VHDL code provided as input. Along with the descrip-

tion of the application, the proposed design chain also needs the specification of

the architecture the application has to be plugged on, provided by a separate file.

Then the two-phase process described above is carried out. The outputs of the

workflow are the VHDL files which compose the multi-FPGA system and infor-

mation such as global routing and, if necessary, reconfiguration specifications.

56

CHAPTER 3. METHODOLOGY

Design
Extractor

VHDL

Application
Description

Multi-FPGA
Architecture
Description

Global Physical Layout

Feasible?

Reuse &
Dynamic

Reconfiguration

no

Output files

yes

Figure 3.1: Outline of the proposed multi-FPGA design workflow.

57

CHAPTER 3. METHODOLOGY

3.2 Design extraction

One of the goals of this work is to provide a workflow which handles high-level

specifications of hardware circuits. This choice allows the flow to work with

structures that can be manipulated and implemented in several ways, and are not

already subject to the design constraints typical of low-level netlists. This con-

cept will become clearer later in this chapter, when we will talk about reuse and

dynamic reconfigurability, in Section 4. VHDL has been chosen as the input hard-

ware description language for the workflow. Therefore, a design extraction phase

is needed, which takes as input the VHDL code of the application to be imple-

mented and produces as output the structures the subsequent steps of the design

chain work on. The output produced by this first phase is an intermediate rep-

resentation which provides information about the design structure and hierarchy.

Since this choice needs to be carefully explained and justified, in the next section

we provide an explanation of the concept of “hierarchy” in circuit design and its

main advantages.

3.2.1 Hierarchical circuit design

This section aims at introducing the concept of hierarchical circuit design. First, in

Section 3.2.1.1 some formal definition and design scenarios are provided. Then,

Section 3.2.1.2 describes some advantages of adopting hierarchy in the design of

logic circuits.

3.2.1.1 Definitions and scenarios

In this section some useful definitions are provided, which may ease the under-

standing of the forthcoming parts of the thesis.

Definition 3.1. A design block, or module, is a (portion of a) logic circuit with a

given list of inputs and outputs signals. A port is an element of such list.

58

CHAPTER 3. METHODOLOGY

Definition 3.2. A structural representation of a logic circuit, or simply structure,

is composed by design blocks interconnected by wires, usually called nets. The

blocks connected through a net are the net terminals. Generally, a net can have

more than two terminals.

This definition is almost identical to the definition of netlist, but this latter

name is usually used when referring to structures composed of low-level logic

components, such as logic gates.

Definition 3.3. A hierarchical circuit is a circuit in which some of the blocks con-

tained in the structural representation can be further split into sub-blocks. These

sub-blocks and their interconnections constitute a sub-structure. Design blocks

which cannot be split are called leaves. The least detailed structural representa-

tion of the circuit design is composed of a single block, correspondent to the whole

circuit. Such structural representation is called the top of the design. A sub-block

contained in a block is called child of the block, while the super-block containing

a block is called parent of the block. It is straightforward that leaves do not have

children and the top does not have a parent.

Intuitively, we can view the design hierarchy as a tree, where edges are the

parent-child relationships. An example of the structure of a hierarchical circuit

and the relative hierarchy tree is shown in Figure 3.2(a,b). Every cut of the

tree which makes the leaves to be all on the same side provides a complete non-

hierarchical structural representation of the design, i.e. the one containing solely

the blocks which are immediatly below the cut. An example is shown in Figure

3.3(a,b). The cut composed by all the edges which connect a leave to its parent

provides the finest granularity structural representation of the design, as shown in

Figure 3.3(c,d).

We can identify two scenarios for hierarchy in VLSI design. The first one

is when the circuit is explicitly designed in a hierarchical fashion, using suitable

tools and specification languages, such as VHDL. In such case, the hierarchy is

59

CHAPTER 3. METHODOLOGY

TOP

A

B C D

E F

G

H

I

TOP

A B C D

E F G H I

(a) (b)

Figure 3.2: Structural representation of a hierarchical circuit (a) and its hierarchy tree (b).

A

B C D

H

I

TOP

A B C D

E F G H I

(a) (b)

B C

E F

G

H

I

TOP

A B C D

E F G H I

(c) (d)

Figure 3.3: Cuts of the hierarchical tree and corresponding structural representations of

the circuit.

60

CHAPTER 3. METHODOLOGY

extracted by “reading” the circuit description. The other scenario is the case in

which the circuit has been designed in a standard way, usually as a flattened netlist.

In that case, a hierarchical structure may be identified as a step of the design chain,

usually using a clustering bottom-up approach. As a matter of fact, we explained

in Subsection 2.1.1.4 how clustering can be recursively applied until obtaining a

single node. That node is the top of the design hierarchy that is being extracted. It

is evident that different clustering metrics imply different hierarchies to be built.

In the remainder of this work, we assume that the circuits received as input have

a hierarchical nature.

3.2.1.2 Advantages of hierarchical design

Hierarchy offers to designers many advantages in the creation of logic circuits.

Hierarchical design is usually presented as a solution to handle the rapidly grow-

ing complexity of circuits [32, 38, 13]. The reasons lays in several considerations.

First, hierarchy offers to the designer a way to create pieces of the application

independently. To create a parallelism, this is somehow similar to object oriented

design of software applications: once the interface and the function that a com-

ponent has to carry out is defined, then the actual internal implementation of the

class which represents that object becomes a hidden detail. It is important to no-

tice that this advantage is crucial in both top-down and bottom-up approaches.

In a top-down design, the circuit can be divided recursively into smaller blocks,

which are possibly implemented independently. In a bottom up approach, smaller

components are implemented and then connected together to form bigger blocks,

until the overall design is formed. This is strongly related to the fact that hier-

archy implies abstraction1 [41]: designers can handle components as they were

high level functionalities and plug them into the circuit.

The other crucial advantage due to hierarchy and, in general, to structural

1In [41], abstraction is defined as “a method to replace an object by a simplified one that only

defines the interactions of the object with its environment”.

61

CHAPTER 3. METHODOLOGY

design, is the reuse of components. As a matter of fact, basic components can be

implemented once, and then reused every time they are needed. This advantage

is even more effective in case high level description languages (such as VHDL)

are adopted, since the specification of a component is not bounded to a particular

physical implementation, and the module can be reused in several contexts. The

reuse of modules, besides having the obvious advantage that different parts of the

circuit are designed only once, thus saving time, has also other advantages. To

give an example, in design testing, if the the functioning of a block is proved to be

correct, then all the blocks of the same kind that have been inserted in the circuit

are correct. The reuse of hardware blocks can be further extended to the case in

which IP-Cores (Intellectual Property Cores) are available. In this context, the

term IP-Core refers to hardware component that are ready to use, meaning that

they can be plugged directly into the description of a circuit. In that case, already

implemented and tested blocks can be picked from an existing library and plugged

into the application being created: it is straightforward that such a methodology

allows enormous time savings and improves the reliability of the circuit being

created.

In this subsection some of the advantages that the use of hierarchy involves in

the creation of a hardware design have been described. In Section 3.3 and 4, the

importance that hierarchy information have in the subsequent multi-FPGA phases

will further justify the choice of extracting hierarchical information from VHDL.

3.3 Global Layout

As previously said, the global layout phase deals with the search of a feasible im-

plementation of the input application on a given multi-FPGA architecture, while

attempting to optimize some objectives. The adjective “global” refers to the fact

that this phase is not concerned about the local internal layout of each FPGA,

which is carried out later. In our workflow, we let already existent third-party

62

CHAPTER 3. METHODOLOGY

CAD tools (such as Xilinx ISE [3]) to be in charge of internal layout.

The solution looked for during the global layout phase is statical, which means

that the algorithm tries to fit the entire application into the multi-FPGA architec-

ture. More precisely, what is pursued is a function which assigns a host FPGA

to each module of the input application and finds a route for each interconnec-

tion between two modules. This relation is required to minimize a cost function,

which is commonly the length of the interconnections between blocks belonging

to different FPGAs. The rationale behind this usual choice is that off-chip wires

are undesirable because of several reasons [42]. They cause a performance degra-

dation, since signals flows at a slower speed on external wires. They reduce the

reliability of the system, as printed wiring is more likely a source of troubles than

internal wires. Finally, the presence of off-chip wires increases the need of I/O

pins, which is known to be one of the crucial constraint of multi-chip design. In

the following subsection, it will be explained how global layout is carried out in

the proposed methodology.

3.3.1 Global layout tasks

As described in Section 2.1, the global layout phase is composed of three tasks -

partitioning, placement, and routing - which need to be aware of the features of the

target architecture. Therefore, besides taking as input the structures produced by

the design extraction stage, this phase receives a file which contains information

about the used multi-FPGA architecture. This file describes the topology of the

architecture and characterizes the used FPGAs in terms of available area and I/O

pins. Moreover, if a crossbar topology is chosen, the features of the routing chips

have to be provided as well.

There are many possible ways to find a solution to the global layout problem.

First of all, it has to be decided how to handle partitioning, placement and routing.

As a matter of fact, it has already been pointed out and shown (Section 3.3) that

63

CHAPTER 3. METHODOLOGY

these three tasks, though all necessary, are not required to be carried out sepa-

rately. In this work, two ways for finding a solution to the global layout problem

are considered. First, a methodology is taken into account in which partitioning

and placement are performed as a unique step, followed by routing. Second, an

approach in which the three steps are executed separately is considered.

The rationale behind the first of these two approaches it is that partitioning and

placement goals are strongly related. Placement has indeed the goal of minimizing

the estimated wire length, and this naturally implies the sub-goal of minimizing

the cutsize between partitions. Nevertheless, the complexity of the resulting prob-

lem is high, since the solution space is wider than the ones of the two problems

taken separately, due to the increased number of dimensions of the solution space.

Since iterative methods are known to operate better than others when the solu-

tion space has high dimensionality, a simulated annealing approach has been cho-

sen to cope with such combined problem, . Random moves and solutions global

evaluation functions, which are typical of such algorithms, allow the partitioning-

placement process to avoid considering all the variables involved in the problem,

such as finding the better move at a given point on the basis on the estimated max-

imum local gain. Another advantage of using an iterative technique lays in the fact

that it can be used for every multi-FPGA topology - once the notion of “distance”

between two FPGAs is provided - while other methods only address the problem

for particular topologies (see for example the force-directed placement for mesh

architectures proposed in [5]).

The second approach, that is to separately execute the three steps in sequence,

aims at exploiting the effectiveness of a partitioning algorithm specifically de-

signed for the task of reducing the cutsize. The idea is that a combined partitioning

and placement carried out using an iterative algorithm is feared to be less effective

for the precise goal of minimizing the cutsize than a specifically designed heuris-

tic. In this case, after partitioning is executed, the generated partitions are placed

on different FPGAs, during what we call a 1-to-1 placement process. The par-

64

CHAPTER 3. METHODOLOGY

titioning approach proposed in this scenario is a bottom-up clustering algorithm

based on different closeness metrics, executed taking into account the hierarchi-

cal nature of the design. The 1-to-1 placement is carried out using iterative tech-

niques, because of the several advantages explained above. The implementation

details of all these approaches are described in Chapter 5, while their evaluation

through experimental results is provided in Chapter 6.

In order to better understand the nature of the two partitioning and placement

scenarios, namely the one in which they are performed separately and the case in

which they are carried out as a single step, we introduce a very simple mathemat-

ical formulation. This formulation covers only some aspects of the problems, but

is anyhow useful to clarify the ideas. We define the following sets:

• A = {a1,a2, . . . ,an} is the set of the blocks of the application to be imple-

mented.

• P = {p1,p2, . . . , pm} is the set of partitions.

• Q = {q1,q2, . . . ,qm} is the set of the FPGAs that forms the target multi-

FPGA architecture. Notice that the cardinalities of P and C are equal.

At this point, a partitioning is defined as a function

fPART : A−→ P

Moreover, a (1-to-1) placement is defined as a function

fPLAC : P−→ Q

It follows than the partitioning and placement resulting from the sequential exe-

cution of the two processes is the composition of the two functions, hence:

fPART ◦ fPLAC : A−→ Q

65

CHAPTER 3. METHODOLOGY

a1

a2

a3

a4

a5

a6

a7

a8

a1

a2

a3

a4

a5

a6

a7

a8
p1

p2
p3

q2

q3

q1

p1 p2

p3

a1

a2

a3

a4

a5

a6

a7

a8

q2

q3

q1

a1

a2

a3a4

a5

a6

a7

a8

(a)

(b)

Figure 3.4: Example of separated (a) and integrated (b) partitioning and placement.

A partitioning and placement process performed as a single step is defined as

another function

fPART+PLAC : A−→ Q

which is in general different from fPART ◦ fPLAC.

Figure 3.4 shows graphically through the use of a simple example the two

different ways to cope with partitioning and placement described by the functions

above. The algorithms which in our case implements these functions are described

in Chapter 5.

The following subsection explains the reasons why information relative to the

design hierarchy are useful in placement and partitioning algorithms.

3.3.1.1 Combining hierarchy and global layout

In Section 3.2.1.2 the advantages of using hierarchy for the description of the

hardware application to be implemented have been described. The present section

66

CHAPTER 3. METHODOLOGY

explains what are the advantages of extracting and using hierarchy information

in the global layout phase. In other words, it is explained how algorithms can

exploit hierarchy to produce better results, in particular for partitioning and place-

ment. The exploitation of hierarchy provides two main advantages, described in

the following.

The first one is related to the same reasons that bring the designer to consider

a particular hierarchy in the design of a circuit. What is argued here is that if in

creating a circuit smaller modules are recursively aggregated to create larger ones,

thus generating a hierarchy, there must be a criterium that drives the designer in

such choices. Consider the following situation, in which there is a filter which

performs some data manipulations and a controller that handles such filter by

sending and receiving data. It is likely that this two components, which may

be in turn composed by several sub-modules, are aggregated by the designer in

a single module. The rationale behind this choice is that the two elements are

strongly interconnected. The one just described is a case of bottom-up design,

but the situation does substantially not change if the circuit is designed in a top-

down style. In such case the designer tends indeed to split the circuit by creating

sub-modules which are weakly connected among them. It is not difficult to see

that the criterium that drives the designer in this kind of choice is very similar

to the one which may be applied by a partitioning algorithm. This means that

hierarchy carries important information that can be used in solving the partitioning

problem, both when this is addressed singularly or is faced with an integrated

partitioning/placement approach. There are several ways in which hierarchical

information can be exploited. In a top-down set-covering of the design hierarchy,

for instance, the hierarchy itself represents the structure on which the algorithm

is applied. In a bottom-up clustering, on the other hand, the fact of belonging to

the same parent or to a common ancestor can be considered as a closeness metric

which is explicitly used to create clusters.

The second advantage of using hierarchy in global layout is related to the con-

67

CHAPTER 3. METHODOLOGY

cept of regularity. Regularity can be defined as the “repeated occurrence of com-

putational patterns” [43] and has been exploited in VLSI design in several ways.

To provide an example, the approach in [44] exploits the regularities of the circuit

in logic synthesis by applying similar transformations to the gates belonging to

the same regularity group. These regularity groups are extracted by an algorithm

through the use of “regularity signatures”. Although it is not our scope to describe

in depth the mechanism of such approach, it anyhow suggests how regularities can

be exploited to expand the scope of decisions that an algorithm takes on a local

basis. The big advantage is that hierarchy implicitly carries information about the

regularities of a design, that therefore do not need to be extracted by any particular

algorithm, as they are already provided by the hierarchy “for free”. As a matter

of fact, if the same component is used more than once in a circuit, it is evident

that its sub-blocks constitute regular patterns, identical one to each other. This

information can be effectively used in clustering: when a pair of nodes is chosen

for being collapsed on the basis of a given closeness metric, every occurrence of

the same pair of nodes in other blocks is detected and the nodes are clustered as

well. The methodological advantage of using this feature in a clustering algorithm

is that regularities represent a source of global information, which is usually hard

to be obtained in clustering due to the high computational requirements needed

for calculating global closeness metrics, as known from section 2.1.1.4.

3.3.2 High-level granularity and blocks features retrieval

One methodological issue to be addressed before designing the algorithms men-

tioned in the previous section is to decide the granularity they will work with.

Intuitively, the granularity of a circuit description can be defined as the abstraction

level of the modules it contains. Going from the physical level up to behavioral

modules, the granularity gets coarser and less implementation details are speci-

fied. In the case of a hierarchical design, it is evident that different levels of the

68

CHAPTER 3. METHODOLOGY

hierarchy provides the description of the same circuit, but at different levels of

granularity, as exemplified in Figure 3.3.

The main advantage of using lower-level structures in VLSI design problems

like partitioning and placement is that algorithms work on a more detailed rep-

resentation, which is supposed to lead to better results, because fine-grained op-

timization operations can be carried out. One evident drawback is the higher

execution time, because the size of the input is larger. On the other hand, higher-

level structures lead to faster algorithms, since they represent the same circuit

with a smaller number of blocks, hence the execution time is lower. Evidently,

using such high-level blocks does not allow low-level optimizations, thus pro-

viding sub-optimal results. Nonetheless, it is useful to further analyze this last

claim, taking into account the considerations made in Section 3.3.1.1 about the

advantages of hierarchy in partitioning. Since designers create hierarchical blocks

putting together sub-blocks which are strongly related, in the sense that they have

many interconnections, it is a good idea to exploit such information and use high-

level structures in partitioning and placement, in order to reach good results while

keeping the computational cost of algorithms low. Relying on these considera-

tions, the approaches proposed in this work deal with granularity at the process

level of VHDL descriptions, which means that every leaf of the extracted hierar-

chy is a VHDL process. Another argument that justifies the use of high-level -

and thus larger - blocks is that the proposed algorithms deal with global partition-

ing and placement in a multi-FPGA architecture, where the partitions correspond

to whole FPGAs. This implies that it is reasonable to deal with relatively large

blocks, and to delay the intra-chip layout to subsequent phases of the design flow.

Section 2.1 mentioned the issue of technology mapping in a multi-FPGA de-

sign flow. What is commonly stated is that it is better to perform technology map-

ping before the algorithms are executed, so that they essentially work on netlists of

CLBs, instead of netlists of logic gates [5, 6]. The main reason is that in this way

algorithms are provided with a real estimation of the area and the timing of the

69

CHAPTER 3. METHODOLOGY

blocks of the circuit that is being partitioned and placed. Since the algorithms pro-

posed in this work use high-level blocks, it is important to have good estimations

of the characteristics of such modules. In this case, though, technology mapping is

not enough, because high-level blocks also need to be synthesized. To address this

problem, the proposed framework uses the synthesis software tools provided by

the FPGA vendor, such as XST (Xilinx Synthesis Technology) [45]. The choice

of using third party software raises from the fact that designing from scratch a

complete and effective logic synthesizer is outside the scope of this thesis, and

it may take several years of work for a team of engineers. Moreover, innovation

and improvement of logic synthesis are not a goal of this thesis project. More

information about how synthesis software is used are provided in Chapter 5.

Although the choice of granularity and the subsequent issues belong theoret-

ically and functionally to the design extraction phase, they have been discussed

in this section because of the relation they have with partitioning and placement

algorithms.

70

Chapter 4

Reuse and Dynamic
Reconfigurability

As pointed out at the beginning of Chapter 3, an attempt to find a static imple-

mentation of an application on a given multi-FPGA architecture can fail, due to

strict area constraints. In such case, a blocks reuse technique is adopted in order

to make the implementation of the application feasible on the architecture. Since

the reuse of blocks - in some cases carried out through the dynamic reconfigu-

ration of the blocks interconnections - inevitably introduces some extra delays in

the execution of the application, a methodology which is in charge of minimizing

such extra time is needed, and constitutes the topic of the present chapter.

The chapter is organized as follows. First, Section 4.1 provides motivations

behind the introduction of hardware blocks reuse. Then, a methodology to deal

with reuse choices is described in Section 4.2. Section 4.3 outlines a workflow for

the design of circuits that exploit blocks reuse, which embeds the methodologies

explained in the previous subsections.

71

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

4.1 Design blocks reuse

In this section the concept of design blocks reuse is introduced. First, some pre-

cise definitions are provided in Subsection 4.1.1. Then, the arguments that justifies

the adoption of reuse in a multi-FPGA system are discussed in Subsection 4.1.2.

Subsection 4.1.3 defines the problem the proposed methodology deals with and

Subsection 4.1.4 briefly describes some architectural scenarios suitable to imple-

ment blocks reuse.

4.1.1 Definitions

First, the notion of block reuse has to be formally defined. Consider the structural

representation of a circuit resulting from any cut of the design hierarchy, as de-

scribed in Subsection 3.2.1.1. For defining precisely what reuse is, it is necessary

to enrich the definition of structural representation given before. What is needed

is to provide each net of the structure with the information of the ports of the ter-

minals which are actually connected. Therefore, we can think a net belonging to

a structure as a list of pairs 〈〈t1, p1〉,〈t2, p2〉, . . . ,〈tn, pn〉〉, where port pi belongs

to the interface of terminal ti, for any i between 1 and n (recall from Subsection

3.2.1.1 that a terminal of a net is a hardware block). The normal situation of a

static design is that each port of each block is connected to exactly one net. On

the other hand, it can be claimed that a design block is reused in a structure if

each of its ports is assigned to more than one net. This naturally generates one

big concern, since ports cannot normally be assigned to more than one net. To

solve this problem, time has to be introduced in the discussion. By seeing the

structure as an entity which evolves in time, we further enhance the previous def-

initions to capture the nature of designs where blocks are reused. The key idea

is to see nets as temporary connections, which can be added and deleted at any

given moment of time. A net with such feature is called dynamic net. To formally

indicate this feature, a time interval [tstart , t f inish] is assigned to each dynamic net.

72

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

At this point, the informal and incomplete definition given above can be corrected

by introducing the notion of dynamically-interconnected structure.

Definition 4.1. A dynamically-interconnected structure is a structure in which

nets have the capability of being added and deleted at any given moment of time.

Such nets are called dynamic nets. A port cannot be connected to more than one

dynamic net in the same moment.

Definition 4.2. A block of a dynamically-interconnected structure is reused if

at least one of its ports is connected to a different dynamic net in two different

instants of time.

From this point on, the following nomenclature is used: each block actually

present in a structural representation is called simply block or instance. Each

instance is the actual realization of a component. More than one instance of the

same component can be present at the same time in a structure. More concisely,

each block is an instance of a component.

4.1.2 Motivations

It is straightforward that the reuse of blocks in a dynamically-interconnected struc-

ture allows to reduce the area needed by the implementation of the input applica-

tion. As a matter of fact, once provided the circuit with the capability of dynami-

cally modify the interconnections between blocks, then it is evident that the same

implementation of the block can be used for several instances of the same compo-

nent in different instants of time. This effect may be desirable in many situations.

In our workflow, the primary reason for which blocks reuse is useful is to imple-

ment on a given multi-FPGA architecture an application which statically does not

fit into it. This is the situation this thesis work is mostly focused on, therefore the

following sections will deal with this scenario.

Nevertheless, other reasons could justify the adoption of blocks reuse. Imag-

ine the case in which a given logic circuit fits on an architecture, but the number of

73

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

A

B

D

C E2

E1

A

B

D

C

E

o1

o2

i1

i2

i3

o2 at time t1

i1

i2

i3

o1 at time t2

(a) (b)

oi

oi

oi

oi

oi

o
i1
i2

oi

oi

oi

oi

o
i1
i2

[t0,t1]

[t1+δ,t2]

Figure 4.1: Example of a structural circuit (a) and a possible implementation which ex-

ploits reuse (b).

FPGAs which are actually used is wanted to be minimized; blocks reuse represent

a technique to address such problem. Another scenario is the one in which two big

logic circuits have to be implemented on the same multi-FPGA architecture: in

such a case the problem would be to decide whether the sequential exclusive im-

plementation of the two circuits on the architecture provides higher performance

than a simultaneous one, in which the two applications could also share design

blocks through their reuse.

4.1.3 Problem statement

At this point, it is necessary to define the problem addressed in the next sections.

Informally speaking, the problem is to decide which instances of the input struc-

ture are mapped to which blocks at the implementation level. To provide a more

precise definition of the problem, the key idea is to view the structural representa-

tion of the logic circuit as an abstract functional representation. What is pursued

is the creation of a dynamically-interconnected structure, and of a mapping func-

tion between each design block of the input “abstract” circuit and a block of such

structure.

Figure 4.1 provides a simple example of a structural circuit and a dynamically-

74

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

interconnected structure which implements it. The blocks E1 and E2 of Figure

4.1(a) are two instances of the same component. A single module is used in to

implement both instances in Figure 4.1(b), with the net 〈〈C,o〉,〈E, i〉〉 present in

the time interval [t0, t1] and the net 〈〈D,o〉,〈E, i〉〉 present in the interval [t1 +

δ, t2], where δ is the time needed for dropping one net and adding the other.

The problem to be faced is somehow similar to the traditional resource-bounded

assignment and binding operations performed to map a data-flow graph applica-

tion onto a hardware architecture with a finite number of resources of each given

type, such as adders, multipliers and so on. The main difference depends on

the fact that in the problem addressed requires the decision of which are the “re-

sources”. From a slightly different point of view, the problem can be defined as

composed of two points:

• Which blocks of the input representation should be reused?

• How many instances of such blocks may be present in the dynamically-

interconnected structure being created?

The second of these questions takes into account the fact that it is not mandatory

to implement exactly one instance of the blocks which are reused. To give an

example, if four instance of a component are present in the input structure, it could

be the case that the ideal solution is to use two of such blocks in the dynamically-

interconnected structure being created, each one reused twice. This evidently

implies a wider solution space to be explored by the algorithm.

The above questions have to be addressed under some constraints and with the

goal of optimizing a cost function. The constraints are naturally represented by

the features of the target architecture. The considered cost function is the total

execution time of the system.

75

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

4.1.4 Architectural scenarios

This subsection aims at defining what are the types of multi-FPGA architectures

which are potentially able to host a multi-FPGA system which adopts blocks

reuse. The complete design of such architecture is beyond the aim of this work,

and the goal of this section is to concisely show that the realization of dynamically-

reconfigurable multi-FPGA systems is fully possible.

At first glance, it is evident that hard-wired topologies are not suitable for im-

plementing a dynamically-interconnected structure. Actually, one solution would

be to look at the architecture as a network of hops, and perform information trans-

mission in a packet-switching fashion. Each packet of data would carry the infor-

mation about its target block, and therefore dynamic interconnections would be

fairly easy to be implemented. Such solution implies that each hop (FPGA) in the

network is provided with some logic to handle the routing of packets. Due to the

delays in handling the packets and the dimension of packets headers that would

probably be larger than the useful data, this solution seems not practicable. For

this reasons, hard-wired topologies are not a good solution to implement dynamic

interconnections.

On the other hand, crossbar and partial crossbar topologies seem to provide

the needed flexibility: the reprogrammability of routing chips can be exploited

to implement the changes in interconnections. In particular, we want these inter-

connections to be dynamically modified, meaning that they are asked to change

while the system is running. Since a methodology for dynamic reconfigurability

on FPIDs is beyond the scope of the present work, FPGAs are considered as rout-

ing chips. An approach for the dynamic reconfiguration of portions of FPGAs has

already been briefly described in Section 1.3.1. Since this approach deals with

module-based reconfiguration (Section 1.3), the following solution is considered:

the routing FPGAs contains several modules, each one implementing a switch-

box, which essentially provides an arbitrary pattern of interconnections between

any of its its I/O ports. Each switch-box can be reconfigured while the others

76

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

A

B

D

C

E o2 at time t1

i1

i2

i3

o1 at time t2

oi

oi

oi

oi

o
i1
i2

[t0,t1]

[t1+δ,t2]

Ai1 oi

Bi2 oi

Ci3 oi

D o
i1
i2

E oi

[t0,t1][t1+δ,t2]

FPGA1

FPGA2

FPGA3

FPGA4

(a) (b)

o2 at time t1
o1 at time t2

Figure 4.2: A dynamically-interconnected structure (a) and its possible implementation

on a crossbar multi-FPGA architecture.

continue to provide the implemented interconnections. Therefore, each time a net

has to be removed and a new one has to be added the relative switch-box is recon-

figured. Figure 4.1 takes the example shown in Figure 4.1 and show one possible

implementation on a crossbar multi-FPGA architecture.

A bus topology allows mutable interconnections between blocks to be natu-

rally implemented, even more easily than the crossbar or partial crossbar topolo-

gies. As a matter of fact, if the FPGAs that constitute the architecture are con-

nected one each other through a bus, it is enough to establish a connection be-

tween any pair of FPGAs when it is needed. This model of communication has

been already widely exploited for the creation of system-on-chip’s (SoCs). To

provide an example, Xilinx EDK [46] allows the creation of SoCs with modules

connected through local busses. These busses belong the the IBM CoreConnect

[47] family, and are provided with a communication protocol which allows to es-

tablish a connection between any pair of modules connected to the bus. A similar

solution can be easily implemented on a multi-FPGA architecture: in such case,

the bus would be constituted by physical wires on the board, and each partition

would be provided with a communication interface. A tool which automatically

77

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

creates the interface for busses belonging to the CoreConnect family is already

available [48], therefore this step would not require extra work by the designer.

Although we claimed that fully hard-wired architectures are not suitable for

implementing dynamically-interconnected structures, some hybrid solutions can

be designed in order to provide a trade-off between the flexibility of crossbar

and bus and the speed of hard wires. The hybrid topologies proposed in [6] and

described in Section 1.2.1 represent an example of this kind of architectures. In

such case, static connections can be routed using hard wires, while the mutable

ones can be implemented through routing chips.

4.2 Design blocks reuse methodology

In this subsection a methodology for blocks reuse is described. First of all, the

problem to be addressed is expressed in a semi-formal way (Subsection 4.2.1), in

order to make it suitable to be treated analytically. The result of such discussion is

that the problem can be viewed as composed of two subproblems, namely how to

find isomorphic clusters and how to choose which ones to reuse. The description

and a possible solution to the first one is given in Subsection 4.2.2, while the

second subproblem is treated in Subsection 4.2.3.

4.2.1 Problem analysis

The problem of the reuse of circuit parts has been informally defined in Subsection

4.1.3. In this section, the problem is analyzed to define its peculiarities and outline

a way to cope with them. First of all, the parts of the input application that can

be considered for being used more than once have to be identified. One natural

and straightforward choice would be to consider each design block as a reusable

portion of the circuit. In a hierarchical scenario as the one we are considering, it

is possible to consider each block at each level of the hierarchy. Of course, some

78

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

constraints have to be applied in this case, and they are discussed in Subsection

4.2.3. Nevertheless, it can be noticed that restricting the choice of which portions

are considered for reuse to single blocks is a limitation. As a matter of fact, any

pattern of one or more blocks which is repeated more than once in the circuit that

has to be implemented should be considered. This problem of finding repeated

patterns has already been studied. In graph theory, these recurrent patterns are

called isomorphic subgraphs. Subsection 4.2.2 proposes a solution to this problem

which takes advantage of the hierarchical structures that are considered in this

thesis.

Once these patterns have been identified, it is necessary to choose, among

them, which ones are suitable for being reused. For this sake, a quality measure

has to be defined, which makes one solution preferable to another. In order to

understand what is a “good” choice for reusing blocks, it is important to recall the

reasons why it is necessary to introduce reuse in the circuit under consideration.

In Subsection 4.1.2 it has been stated that reuse is necessary in order to make

a circuit fit on a multi-FPGA architecture whose area is insufficient to host it

statically. Therefore, a guidance measure for driving the reused block selection is

the estimation of the quantity of area which has to be saved by the dynamically-

interconnected structure. This quantity is provided by the global layout step, in

case of failure, as a percentage of the total area of the circuit. Another remarkable

fact which has to be considered is that the reuse of components tends to increase

the execution time, because some operations are forced to be executed in sequence

on the same block, rather than being possibly performed in parallel, and because

the reconfiguration of interconnections needs some time to be performed. Taking

into account these facts, it can be argued that a solution which does not save

enough area is useless, while one that saves much more area than needed is likely

to cause high execution times. In other words, the algorithm should try to save

the least amount of area which allows the circuit to be implemented on the multi-

FPGA architecture, thus providing acceptable timing results. This part of the

79

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

problem is addressed in Subsection 4.2.3.

4.2.2 Finding isomorphic clusters

The first part of the problem deals with the identification of isomorphic structures

in the input circuit, so to provide a wide range of possibility for choosing the

best structures to be reused. As a convention, any portion of a structure will

be called cluster, implying that it is generally a group of design blocks. The

problem of extracting isomorphic subgraphs has already been object of research,

and an extensive discussion about this topic is found in [49]. A formal definition

of isomorphic cluster, derived from the previously cited work, will help in the

subsequent part of this section.

Definition 4.3. Two structures S1(B1,N1) and S2(B2,N2), where Bi and Ni are

respectively the set of blocks and the set of nets composing structure Si, are said

to be isomorphic if they are connected and

1. There exists a bijection f : B1→ B2 such that b ∈ B1 and f (b) ∈ B2 are two

instances of the same component and

2. There exists a bijection g : N1→ N2 such that n = 〈〈b1, p1〉, . . . ,〈bk, pk〉〉 ∈
N1 implies g(n) = 〈〈 f (b1), p1〉, . . . ,〈 f (bk), pk〉〉 ∈ N2 where {b1, . . . ,bk} ⊆
B1

A cluster can be identified by the set of the instances it contains. Intuitively

speaking, two clusters are isomorphic if they comprise the same blocks and the

same nets connecting them. Trivially, all the instances of a single component are

isomorphic clusters, since the first condition is true and the second is trivially

satisfied. A simple example of isomorphic structures is provided in Figure 4.3,

where the letters indicate the component each block is instance of. The two clus-

ters shadowed in grey, c1 = {B1,D1,E1} and c2 = {B2,D2,E2}, are isomorphic.

80

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

A

B1

D1

C F

E1 o1

i2

oi

oi

oi

oi

oi

o
i1
i2

B2

D2 E2

oi

oio
i1
i2

i1

o2
c2

c1

Figure 4.3: Example of isomorphic clusters.

Moreover, it can be noticed that each sub-cluster contained in c1 has one relative

isomorphic cluster in c2. As a matter of fact, the cluster {B1,D1} is isomorphic

to {B2,D2} and {D1,E1} is isomorphic to {D2,E2}.
Finding all the isomorphic clusters of a graph is a NP-complete problem [49].

Therefore, it is better to focus on an algorithm which is able to find some isomor-

phic clusters. As a general guideline, it would be better to identify isomorphic

clusters such that they are suitable to be subsequently treated as blocks in parti-

tioning and placement on the target architecture. The main goal of partitioning

and placement is to minimize the estimated length of external interconnections.

Choosing clusters such that their amount of external communication is low causes

the subsequent global layout tasks to be less expensive and to achieve better per-

formances, since such clusters are composed by strongly interconnected groups of

blocks. The proposed approach aims indeed at finding clusters with such quality.

The advantages of exploiting hierarchy in global layout tasks has been de-

scribed in Subsection 3.3.1.1. One of them was due to the regularity information

81

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

that hierarchy provides. Such notion of regularity can help also in finding isomor-

phic clusters. In literature, a similar idea of exploiting regularities for the reuse

of computational elements can be found in [43], where the authors deal with the

assignment and binding of operations to computing elements. The exploitation

of regularities allows in such case to find a solution which uses the minimum

amount of interconnecting elements (e.g. wires, multiplexers, etc...), thus reduc-

ing power consumption. The key idea is to reuse the same computational elements

and interconnections for repeated operational patterns. On such basis, the pro-

posed approach uses the regularity information given by the hierarchy to identify

isomorphic clusters which minimize external connections.

The proposed algorithm, called ISOMORPHIC-CLUSTERS, is similar to a nor-

mal bottom-up clustering, hence the name clusters for defining portion of struc-

tures. Based on the definition of isomorphic structures given above, the notion of

type of a cluster is here introduced: two clusters belong to the same type if they

are isomorphic structures. In other words, the relation of isomorphism generates

equivalence classes1, and such classes determine the type of the elements they

contain.

The algorithm starts from the leaves of the hierarchy, which represent the cir-

cuit at the lowest level of granularity. Each leaf is considered as a cluster. The

starting point is that instances of the same component represent isomorphic clus-

ters, hence they are assigned to the same type. Then, a given metric (a suitable set

of metrics will be defined in Subsection 5.2.3.1) identifies which pair of clusters

has to be collapsed, thus generating a new cluster. The choice of such pair of clus-

ters is subject to area and I/O pin constraint: if the new cluster resulting from their

collapsing has a dimension higher than the area available on a single FPGA, or

its amount of external communication requires more I/O pins that the ones avail-

able on a single chip, then the new cluster cannot be formed, and another pair of

1It is simple to see that isomorphism is an equivalence relation, since the properties of reflex-

ivity, symmetry and transitivity are satisfied.

82

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

clusters is considered. When a new cluster is formed, two situations are possible:

1. If the nodes in the collapsed pair belong to the same parent, occurrences of

such cluster type are searched in the hierarchy to apply the same transforma-

tion, if the corresponding nodes have not been involved in other collapsing

operations before. Then, the same type is assigned to these newly created

clusters. Moreover, the resulting clusters are added as children of the blocks

that contained the merged clusters.

2. If the nodes in the collapsed pair do not belong to the same parent, they are

clustered and removed from the current position, and the resulting cluster is

added as a child of TOP, which is a reasonable choice, being such cluster

unique and therefore not involved in any regularity pattern.

Moreover, if the collapsing causes a block to be left with a single child, such block

can be removed since it does no longer carry useful information about any regular

patterns it might contain. This process iterates until a single cluster, the TOP, is

obtained, or no more new clusters can be formed due to the area and I/O pins

constraints.

The representation of the hierarchy which results from the application of a

clustering algorithm is called dendrogram. An example of the execution of the

described algorithm on a simple structure is provided in Figure 4.4.

The obtained dendrogram constitutes the information that was searched. It

is important to point out that the obtained clusters are good with respect to the

objective of minimizing the cutsize in a subsequent partitioning step, since they

have been obtained from a clustering which uses closeness metrics for creating

clusters.

83

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

TOP

BA1

D1C1

E1D2 F1

GA2

C3 D3

E2D4 F2

D1E1D2 F1 GE2D4 F2

GG
F F1, F2
E E1, E2

D1, D2, D3, D4D
ClustersType

HIERARCHY DENDROGRAM

TOP

BA1

D1C1

E1D2 F1

GA2

C3 D3

E2D4 F2

D1E1D2 F1 GE2D4 F2

induces

TOP

BA1

D1C1

F1

GA2

C3 D3

DE1 F2

D1E1D2 F1 GE2D4 F2

DE2

TOP

BA1

C1

F1

A2

C3 D3

DE1 F2

D1E1D2 F1 GE2D4 F2

DE2

DG

induces

TOP

BDEF1

A2

D3

D1E1D2 F1 GE2D4 F2

DG

DEF2

TOP

DEFDDEF1

D1E1D2 F1 GE2D4 F2

DG

D3

D3

D3

D3

D3

D3

TOP

DEF1

D1E1D2 F1 GE2D4 F2

DGDEFD

D3

0

HIERARCHY DENDROGRAM

1

2

3a

4

5

6

TOP

BA1

C1 A2

C3 D3

D1E1D2 F1 GE2D4 F2

DEF1

DG

D3

3b

DEF2single
child

DE1, DE2DE
G G
F F1, F2

D1, D3D
ClustersType

DGDG
DE DE1, DE2
F F1, F2

D3D
ClustersType

DEF DEF1, DEF2
DG DG

D3D
ClustersType

DEF DEF1, DEF2
DG DG

D3D
ClustersType

DEFD DEFD
DEF DEF1

DGDG
ClustersType

DGDEFD DGDEFD
DEF1DEF
ClustersType

TOPTOP
ClustersType

Figure 4.4: Some steps of the execution of the isomorphic clustering algorithm on a sam-

ple hierarchy.

84

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

4.2.3 Selecting the clusters to be reused

What is produced from the ISOMORPHIC-CLUSTERS algorithm is a hierarchy of

clusters (the dendrogram), and the types associated with them on the basis of the

extracted isomorphisms. At this point, it is necessary to exploit such information

to produce a (flat) dynamically-interconnected structure. There are two factors

which contribute to the quality of such resulting structure. First, as said in Sub-

section 4.2.1, the size of the resulting circuit must be small enough to allow the

circuit to be mapped on the target architecture, but big enough not to waste too

much space on the chips. Moreover, it is known from [49] that reconfiguration is

an operation which requires a large amount of time, so the choice of which blocks

are reused should be targeted at minimizing the time needed for reconfiguring

their interconnections.

In the following, a formal definition of this problem is provided. Initially, the

hierarchical structure of the input (the dendrogram) is not considered. The input

of the problem is therefore a flat structural representation, which may be seen as

produced by a given cut of the input hierarchy; each block of such circuit is a

cluster which belong to a specific type. We define the set of types of the clusters

that belong to the input structure as T = {t1, t2, . . . , tN}. Notice that the elements

of such set are the types, intended as recurring patterns, and not their instances.

Three functions are defined on such set:

• a(ti) : T → N, which returns the area occupied by a cluster of type ti;

• n(ti) : T → N, which returns the number of instances of a cluster of type ti;

• p(ti) : T → N, which returns the total dimension in bits of the ports which

constitute the interface of a cluster of type ti (i.e. the amount of external

communication).

A number, A ∈ N, corresponds to the total area occupied by the chip when no

block reuse is applied. The number s ∈ N is the percentage of the total area that

85

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

has to be “saved” in order to make the circuit fit on the target architecture. This

percentage is the result of an estimation carried out after the global static layout is

attempted.

A solution to the problem is represented by a function m(ti) : T→{1,2, . . . ,n(ti)}
that represents the number of clusters of type ti which are instantiated in the re-

sulting dynamically-interconnected structure. The clusters having type ti are not

reused when m(ti) = n(ti), while they are reused a maximum number of times

when m(ti) = 1.

The reconfiguration time of the interconnections in case of reuse of a cluster

is reasonably supposed to be proportional to two quantities: the number of re-

configurations that are needed (i.e. m(ti)− n(ti)) and the amount of the external

communication (i.e. p(ti)). This latter proportionality is the result of the follow-

ing chain of implications. The reconfiguration time is proportional to the amount

of area which has to be reconfigured. The amount of area that has to be reconfig-

ured on the routing chip of a crossbar (or partial crossbar) architecture is directly

proportional to the number of interconnections which has to be re-routed. This

number is equal to the I/O pin requirements (i.e. the amount of external commu-

nication) of the block to which such interconnections are attached. Therefore, we

impose

trec(ti) : T → N := k ∗ [m(ti)−n(ti)]∗ p(ti)

to be the estimation of the reconfiguration time for clusters of type ci. Notice

that in case m(ti) = n(ti), which means that no reconfiguration is required, the

estimated reconfiguration time is equal to zero.

At this point, the problem is reduced to the choice of the solution function

m(ti) such that the total reconfiguration time

TREC = ∑
ti∈T

tREC(ti)

86

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

is minimized and the following area constraint is met:

∑
ti∈T

a(ti)m(ti) < A(1− s)

which states that the resulting instances’ total area must be less than the portion of

the original circuit area that is supposed to fit onto the target multi-FPGA architec-

ture. As it is possible to see, the request of using as most of the available area as

possible is not directly addressed. It is anyhow straightforward that the minimiza-

tion of the total reconfiguration time implicitly results in optimizing area usage,

since the more clusters are not reused - thus increasing area occupation - the less

reconfiguration time is required.

In order to exploit the information provided by the design hierarchy, the pro-

posed approach for blocks reuse decisions is based on a two step procedure. The

idea is to find a way to cope with the problem without the complexity intro-

duced by the hierarchy constraint, which nevertheless brings important informa-

tion which are not wanted to be wasted. For this reason, a first phase attempts at

finding a suitable cut of the hierarchy, as defined in Subsection 3.2.1.1. In this

way, the second phase works on the resulting flat structural representation.

The second step of the process is described first. The blocks reuse problem

on flat structures exposed above can be proved that to be NP-complete. Despite

this, a ILP (Integer Linear Programming) solution to the problem is capable to

find the optimum in a very short time also for big structures, as proved in Chapter

6. The implemented ILP model will be described in detail in Chapter 5. Be-

ing the running times of such algorithms very low even for fairly big structures,

it is possible to iterate the execution of the algorithm on flat structures gener-

ated by different cuts of the dendrogram resulting from the application of the

ISOMORPHIC-SUBGRAPH algorithm, so that providing a better result.

The problem that has still to be addressed is how to identify some suitable cuts

of the dendrogram to produce the flat structures for the subsequent phase. The so-

lution consists in the generation of all the structures resulting from horizontal cuts

87

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

D1E1D2 F1 GE2D4 F2 D3

Type No. of inst.

G 1
F 2
E 2

4D

0-cut

0

1

2

3

4

5

6

Type No. of inst.

DE 2
G 1
F 2

2D

1-cut

Type No. of inst.

DG 1
DE 2
F 2

1D

2-cut

Type No. of inst.

DEF 2
DG 1

1D

3-cut

Type No. of inst.

DEFD 1
DEF 2

1DG

4-cut

Type No. of inst.

DGDEFD 2
1DEF

5-cut

Type No. of inst.
1TOP

6-cut

Figure 4.5: Example of extraction of horizontal cuts.

of the dendrogram, as shown in the example in Figure 4.5. This example works

on the dendrogram produced by the application of the ISOMORPHIC-CLUSTER

algorithm provided in Figure 4.4.

The number of such cuts is in the worst case equal to n, and this happens

when the area and I/O pin requirements do not prevent the clustering process to

eventually results in a single cluster and no regularity is detected throughout the

iterations. Since the extracted flat structures result from cutting horizontally the

dendrogram, the clusters they are composed of are internally strongly intercon-

nected. As a matter of fact, any horizontal cut reflects the sequence of collapsing

operation carried out by the ISOMORPHIC-CLUSTER algorithm, whose goal is to

reduce inter-cluster communication.

4.3 The reuse workflow

The results of the previous sections provide a methodology for identifying which

blocks or group of blocks to reuse for optimizing area usage and time expenses.

Such result is representable through a dynamically-interconnected structure, de-

fined in Subsection 4.1.1. At this point, such structure have to be partitioned,

88

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

placed, and routed on the target architecture. The resulting workflow is showed in

Figure 4.6.

For partitioning and placement, the algorithms used for the statical global lay-

out phase can be reused. As a matter of fact, the goal is to minimize the estimated

wire length, so it is a good choice to consider all the nets in the dynamically-

interconnected structure as always present in the circuit and apply a statical multi-

FPGA partitioning and placement process. For what concerns routing, the prob-

lem is more complex, as the “dynamic” routing of nets has to be specifically

addressed. A specific routing algorithm is not provided in this thesis, and the

development of a routing methodology, both for the static and dynamic case, is

proposed as a future work.

89

CHAPTER 4. REUSE AND DYNAMIC RECONFIGURABILITY

Isomorphic-Clusters

Flat Structure
Extraction

ILP

Clusters' Reuse

Partitioning

Placement

Routing

Figure 4.6: Workflow for the reuse of structural blocks.

90

Chapter 5

Implementation

In Chapter 3 and 4 the proposed workflow for the design of multi-FPGA systems

has been presented, and methodologies to deal with the different phases of the

design have been introduced and motivated. The present chapter has the purpose

of describing how such methodologies have been implemented in practice. In

order to provide a systematic presentation, each section of the chapter deals with

a phase of the workflow. Section 5.1 explains how the design extraction phase is

carried out, by providing details on the data structures used for internally represent

a structural and hierarchical design. Section 5.2 describes the implementation of

the algorithms which carry out the tasks needed by the static global layout phase.

Section 5.3 explains how the algorithms which deal with the reuse of structural

portions of the input circuit work.

5.1 Design extraction

The extraction of the design structure and hierarchy is the initial phase of the pro-

posed workflow for multi-FPGA design. Besides being embedded in such flow,

the extraction framework is also useful in other applications, therefore it can be

viewed as a standalone tool, called STRUCTGEN. Starting from a VHDL de-

91

CHAPTER 5. IMPLEMENTATION

scription, the framework produces as output a specifically designed data structure

which integrates information about hierarchy and structural representation of the

input application.

The next part of this section is organized as follows: Subsection 5.1.1 briefly

introduces the basic aspects of VHDL structural design, while Subsection 5.1.2

describes the data structure constituting the output of the framework. Subsection

5.1.3 describes how the framework works and has been implemented.

5.1.1 VHDL structural design

VHDL (Very High Speed Integrated Circuit Hardware Description Language) is a

language for the description of digital circuits, created to fulfill several needs in the

design process [50]. Though a detailed description of VHDL syntax is out of our

scope, it is important to introduce what are usually called VHDL coding styles or

paradigms [13]. There are three different coding styles. Dataflow statements are

instructions that are executed concurrently one each other. They do not need any

supporting construct, and are usually assignments and simple logic operations.

Behavioral instructions represent a more abstract way to describe hardware, and

are contained in portions of code called processes. If two or more processes are

present in a VHDL description, they are executed concurrently one each other,

while the instructions inside each process are executed in sequential order. Simi-

larly to a software programming language, in a process it is possible to use control

sequences such as conditional statements and loops. The third style is structural

VHDL, which provides constructs to declare and instantiate components. This is

very similar to the declaration and the instantiation of objects in high level soft-

ware programming languages. A component is declared by describing its name

and its interface, i.e. its I/O ports. Once it has been declared, a component can be

instantiated as many times as desired. The instantiation of a component consists

in indicating an instance name and providing an actual mapping for its I/O ports.

92

CHAPTER 5. IMPLEMENTATION

process

component
declaration

component
instantiation

(a) (b) (c)

Figure 5.1: Example of VHDL coding styles: dataflow (a), behavioral (b), and structural

(c).

Instances communicate one each other using signals, that have to be declared as

well. Figure 5.1 provides an example of three equivalent VHDL descriptions,

one for each coding style. The three styles are absolutely not mutually exclusive:

VHDL specifications are usually written mixing all three styles. A simple exam-

ple is the use of dataflow instructions as glue logic for structural components.

As the name says, the structural coding style is used to describe structural

designs, where the circuit functionality is decomposed into sub-circuits. These,

in turn, can be decomposed into smaller sub-blocks, and so on recursively. This

is one of the main reasons why VHDL has been chosen as the input format of

the multi-FPGA design workflow. Nevertheless, as hinted above, it is hard and

usually counter-intuitive to describe circuits in pure structural style. An analysis

of existent VHDL designs shows that processes and components instantiations are

likely to be found in the same description; one reason for this fact is that processes

are suitable for implementing control on such structural blocks. Moreover, it is

obviously impossible to design a circuit using only structural description. The

reason is that, even in the extreme case in which the design is structurally built up

from - or decomposed down to - single gates components, the description of such

gates has to be found somewhere, and it has to be described by some dataflow or

sequential instructions.

93

CHAPTER 5. IMPLEMENTATION

5.1.2 Representing a hierarchical design

This subsection describes the data structure created for the representation of hi-

erarchical VHDL circuits. The aim is not only to develop a representation which

fits well the needs of the particular workflow proposed in this thesis, but to pro-

vide a general and complete representation, suitable to be used in a number of

applications. It has been implemented using C++.

The data structure is composed of several levels, from the external interfaces

to the core structures, in order to hide the implementation details and provide a ro-

bust and easy-to-use Application Programming Interface (API). Such interface is

implemented through a class called Structural. Such class is a sort of container

of all the elements which represent the hierarchical VHDL design and provides

all the methods needed for creating and handling it. The Structural class basically

contains two objects: a component library, called CompLib, and an indexed table

- implemented as a C++ map - which contains all the circuit structures the hier-

archy is composed of. As a matter of fact, each non-leaf node of the hierarchy

corresponds to a structural graph which contains several sub-blocks (the children

of the node). The structural graphs have been implemented using the Boost Graph

Library (BGL) [51]. BGL provides graph objects which are easily customizable

through C++ templates: in this case, the StructGraph data type has been defined,

with adjacency list chosen as the graph internal implementation. This choice re-

flects the fact that the circuit structures have usually a relatively low number of

edges, and so they result in sparse graphs. Hence, the table contained in the Struc-

tural class maps integer indexes to StructGraph objects. In order to understand

what has been just described, an intuitive example is provided in Figure 5.2.

Each StructGraph contained in the Structural contains vertices and edges.

BGL allows to associate to these graph elements C++ classes. The class associ-

ated with a node is called Instance, while the one associated with an edge is called

Wire. Therefore, it is possible to think of a StructGraph as a set of Instances which

are connected by Wires. An Instance object contains several attributes. Most no-

94

CHAPTER 5. IMPLEMENTATION

TOP

A B

C D E F G

B
A

Instance
TOP

3 B_Graph
2 A_Graph

TOP_Graph
Subgraph

1
Index

A B

TOP_Graph

C D

A_Graph

E
G

F

B_Graph

StructGraph
Map{

Figure 5.2: Representation of a simple hierarchical structural design.

tably, it maintains a reference to the Component it is instance of. It is easy to

see here the parallelism between the VHDL structural description style and the

developed data structure. The Components are contained in the CompLib that

was cited before. The reason why components are not themselves elements of the

instances is simply that there could be more than one instances of a single compo-

nent, and in this way there is not need to store the same information several times

and consistency issues are avoided. Another remarkable fact is that the CompLib

is referenced by Structural, and not contained in it. In this way, more flexibility

is achieved because CompLib can be reused in several Structurals. Instances are

identified inside the StructGraph’s through VertexDescriptor’s provided by the

BGL. Therefore, to uniquely locate an instance in a Structural representation, a

pair of values is needed: the table index of the StructGraph which contains it and

the VertexDescriptor which identifies the instance inside such graph. Such pair

of values is provided by an object named iLocator. Hence, an Instance contains

an iLocator which identifies its parent in the hierarchy. An important attribute of

Instance is the black-box Boolean flag. If it is true, then the instance is a leaf of

the design hierarchy: in other words, it cannot be decomposed in sub-instances.

In such case, another field contains the name of the VHDL file with the descrip-

95

CHAPTER 5. IMPLEMENTATION

Structural

CompLib

StructGraph1 1..*contains

1..1

1..*

uses

Component

0..*

1

contains

Instance

Wire

0..*

11

0..*

0..*1 instance of

1

2

connects

iLocator

0..0

0..0

identifies

parent of

0..* 0..1

Figure 5.3: UML Class Diagram of the data structures for representing hierarchical de-

signs.

tion of the leaf module. If it is false, the instance is an intermediate module in

the hierarchy and it contains an identifier of the StructGraph which represent its

sub-structure. The notions introduced so far are summarized in the UML class

diagram of Figure 5.3.

5.1.3 The extraction framework

The framework for the extraction of structural and hierarchical information from

VHDL, called STRUCTGEN, is composed by two main phases. First, the VHDL

code undergoes a preprocessing procedure, which has the aim of transforming it in

a suitable form for the subsequent hierarchy extraction phase. An external module

is used to obtain information about the features of the blocks being examined. The

structure of the framework is shown in Figure 5.4. The remainder of this section is

organized as follows: Subsection 5.1.3.1 explains how the preprocessing is carried

out, while Subsection 5.1.3.2 describes how the structural parser works.

96

CHAPTER 5. IMPLEMENTATION

VHDL Proprocessing

VHDL
VHDL

Description

VHDL Structural Parser

Components'
Info Retrieval

Figure 5.4: Extraction of the design hierarchy: the STRUCTGEN workflow.

5.1.3.1 VHDL preprocessing

As discussed in Subsection 5.1.1, it is nearly impossible to find a purely struc-

tural description of a circuit, which uses dataflow and behavioral instructions only

in the leaves of the hierarchical tree. A mixed description style is predominant

all throughout the hierarchy: for instance, instantiations of sub-components are

likely to be placed beside dataflow instructions and processes. The problem is

therefore how to treat such non-structural elements to produce a hierarchical tree.

It has already been mentioned in Subsection 3.3.2 that the algorithms of the pro-

posed multi-FPGA flow deal with granularity at the the process level, meaning

that each process represents a leaf block in the hierarchy. Therefore, processes

must be extracted and turned into sub-components. Moreover, dataflow instruc-

tions must undergo the same treatment. This can be carried out automatically

without changing the semantic of the hardware description. The case of creating a

sub-component out of a process is examined: what is necessary is to detect which

97

CHAPTER 5. IMPLEMENTATION

are the Input/Output ports of the new component. Informally speaking, it can be

said that the data that are “read” by the process should become IN ports of the new

component, while the data that are “written” should become an OUT port. More

precisely, the following elements become IN ports:

• Signals and ports listed in the sensitivity list of the process;

• Signals and ports found at the right of an assignment instruction;

• Signals and ports which are used in conditional clauses, like if-then-else,

case, or loop statements.

The case of OUT ports is simpler, since they are constituted by all the identifiers

found on the left of assignment instructions.

After the I/O ports of the new component have been detected, a new compo-

nent with such interface is created in a new file, and the process is copied entirely

into it. Such component will be composed only by this single process, and is con-

sidered to be a leaf of the hierarchy. For what concerns dataflow instructions, the

procedure is almost identical, despite the fact that in such case there is not a sen-

sitivity list and sequential constructs. Similarly to what happens with processes, a

component containing only dataflow instructions is considered to be a leaf of the

hierarchy and is no further decomposed. A simple example of the application of

this sub-component extraction is shown in Figure 5.5.

The preprocessing tool has been implemented using Flex and Bison [52, 53],

which are suitable tools for creating parsers and compilers in C/C++. The files be-

longing to the input VHDL application are parsed singularly, and new VHDL files

are generated when transformations like the ones described before are needed.

Moreover, when a leaf is detected or created, an external module is called. This

module is in charge of retrieving information about the component, such as the

dimension (expressed in number of occupied slices) and the operating frequency.

This is done by invoking XST [45], a logic synthesis tool for FPGAs by Xilinx.

98

CHAPTER 5. IMPLEMENTATION

dataflow

process

Figure 5.5: Example of VHDL preprocessing.

99

CHAPTER 5. IMPLEMENTATION

The reasons of this choices have already been discussed in Subsection 3.3.2. The

information retrieved by this module, along with the name and the I/O ports of the

leaf component, are stored as a Component object in a component library (Com-

pLib), described in Subsection 5.1.2.

5.1.3.2 VHDL structural parser

Once a VHDL description has been turned into a pure structural design, with

the obvious exception of the leaf nodes, it is ready to enter the second phase

of the execution of STRUCTGEN. The aim of this phase is to parse the VHDL

descriptions and extract information about the structural representation and the

design hierarchy.

First of all, a Structural object is created which receives as input a reference

to the CompLib, provided by the preprocessing step. Then, the parsing process

starts from the file which contains the description of the TOP level of the design

hierarchy. An initial entry in the StructGen indexed table (described in Subsection

5.1.2) is created. Basically, when parsing a file, two situations are possible.

If the file contains, in the architecture description, only one process or only

dataflow instructions, such component cannot be further decomposed, and the

relative instance in the Structural is indeed marked as a black-box.

If the file contains one or more component declarations and instantiations, it

means that the current instance is composed by a number of sub-blocks. In such

case, an entry in the StructGraph table is created, which corresponds to the sub-

graph of the instance being analyzed. One issue rises at this point: consider the

sub-structure which corresponds to the current analyzed instance; besides being

composed of sub-instances and wires which connect them, there are connections

which link the sub-blocks with the ports of the parent block. This type of “hi-

erarchical” interconnection is not captured by the formalism of standard graphs,

hence the BGL does not offer a way to implement such connections. The adopted

solution to represent such connections is therefore to create, in the StructGraph

100

CHAPTER 5. IMPLEMENTATION

B C

A
IF B C

Figure 5.6: Implementation of interface interconnections in a StructGraph.

corresponding to the current instance, a special instance, called interface (IF),

which has the same I/O ports of the parent block. The wires which are theoreti-

cally connected to the I/O ports of the parent block are attached to this “dummy”

instance, which is a representation of the I/O interface of the parent block. This

particular node has dimension equal to zero. Therefore, every time a StructGraph

is created, a dummy interface instance is automatically created inside it. This fact

is better explained by the example reported in Figure 5.6.

For each component declaration in the VHDL file, the corresponding I/O ports

are locally stored in the parser. Moreover, every time a signal declaration is found,

a particular data structure is created for that signal, the use of which is explained

later. When a component instantiation is found, a node is added to the current

StructGraph, and the corresponding VHDL file name is stored in a queue. The

file to be parsed after the current one is identified by the first element of such

queue. This mechanism implements a breadth-first parsing of the VHDL files

which compose the design hierarchy. Then, the “port map” of the instantiation is

analyzed. We call the mapping of each port of the instantiated component link.

There are two kinds of links: port-to-port and port-to-signal. The first ones rep-

resent a connection between IN (OUT) port of the instantiated component and an

IN (OUT) port of the instance whose description is being parsed. When such a

link is found, a wire in the StructGraph is immediately added, between the block

being instantiated and the interface dummy instance. The other kind of link con-

nects a port of the instantiated component with a signal. As hinted before, every

101

CHAPTER 5. IMPLEMENTATION

signal is associated with a data structure, composed by the name of the signal, the

identifier of one OUT port and a set of identifiers of IN ports. This is because, as it

represents a connection between two blocks of the VHDL structural description, a

signal cannot be “fed” by more than one port, otherwise causing a double-driven

fault. Therefore, if the link is of type port-to-signal, the identifier of such port

is inserted in the corresponding record of the signal data structure, depending on

the direction of such port. At the end of the parsing of the current file, the signal

structures are analyzed to generate the wires which connects two instances of the

StructGraph.

5.2 Static global layout algorithms

In this section a description of the algorithms to carry out global layout tasks is

provided. To proceed with a clear description, the organization of the section re-

flects the order in which the approaches has been introduced in Section 3.3. First,

an explanation of the data structures used by the algorithms is provided (Subsec-

tion 5.2.1). Next, Subsection 5.2.2 describes the simulated annealing algorithm

designed for carry out the integrated partitioning and placement task. Subsection

5.2.3 explains how the sequential partitioning and placement approach works, by

presenting the algorithms defined.

5.2.1 Data structures

The data structure that represents structural and hierarchical VHDL designs intro-

duced in Subsection 5.1.2 provides a complete description of the elements which

compose the circuit. Nevertheless, some of the information contained in it is use-

less from an algorithmic point of view. In other words, the information carried

by the data structure presented in the above section is too much for the execution

of the algorithms. Nevertheless, it is necessary, because after the algorithms have

102

CHAPTER 5. IMPLEMENTATION

been executed what is asked is to generate an output, possibly in VHDL, which

contains all the information about the design. Hence, the solution is to create,

from the structure provided by STRUCTGEN, a lightweight data structure which

the algorithms works on, but always maintaining a bijection between the elements

of such structure and of the original one, in order to be able to re-build, after

execution, a complete description of the system.

To fulfill this need, an Application class has been created. Such class contains

the graph which represents the circuit at the lowest level of hierarchy. The class

provides a simple interface to add nodes and edges, and retrieve information. The

graph is internally implemented as an adjacency list. Despite this, the adjacency

matrix of the graph can be obtained by calling a method, since it represent a more

efficient data structure for some algorithms. Each node of the application is iden-

tified by an integer number, computed sequentially when adding new nodes.

Moreover, a Hierarchy class has been implemented, which provides informa-

tion about the design hierarchy. The internal representation of the hierarchy is a

rooted tree whose leaves corresponds to the nodes in the Application object. The

rooted tree is implemented by nodes which contains a pointer to the parent in-

stance and a list of pointers to the children instances, thus providing efficiency in

both parent and children retrieval operations.

Since partitioning and placement must be aware of the features of the target

multi-FPGA architecture, an Architecture class has been created. Such class has

several different implementations, dependent on its topology. Therefore, several

classes, one for each considered architectural topology, inherit from Architec-

ture. They must all provide the methods declared the Architecture interface. Such

methods return information about the architecture, such as the dimension of each

FPGA, the number of I/O pins and the estimated distance between a pair of FP-

GAs. To provide an example, the MeshArchitecture class is briefly described. The

internal representation of the architecture is a graph, each node corresponding to

a FPGA, which implements a 4-neighbour pattern, given as input the number of

103

CHAPTER 5. IMPLEMENTATION

rows and of columns of the matrix. The distance between two FPGAs is com-

puted as the Manhattan distance, which is the length of the semi-perimeter of the

smallest rectangle containing the two nodes. Usually, a distance equal to one is

associated with each wire. The cases of crossbar and bus topologies are simpler,

since the distance between any two FPGAs is in such cases always equal to one,

as explained in Subsection 1.2.1.

5.2.2 Integrated partitioning and placement

As reported in Subsection 3.3.1, one approach for addressing partitioning and

placement is to handle them in a unique process with an integrated algorithm.

Since the number of the variables involved in searching a solution grows by com-

bining the two problems, an iterative approach provides a suitable way to cope

with such incremented complexity. A simulated annealing algorithm has indeed

been designed and implemented. The simulated annealing technique has been

presented Subsection 2.1.1.2.

A solution to the partitioning and placement problem is represented by using

an array, whose length is equal to the number of nodes in the considered applica-

tion. The value of the elements identify which FPGA hosts the node labeled by

the correspondent index. Mathematically, a general solution is an array Sn = [ci]

of size n, ci ∈ (0,1, . . . , f −1), where n is the number of nodes in the application

and f is the number of FPGAs in the architecture; ci = j means that the node of

the application having index i is hosted by FPGA j.

There are two kinds of random moves for generating a new solution starting

from an existing one. The first one is to move a randomly picked node of the

application to a randomly chosen FPGA. The second is to randomly swap two

random nodes between their relative partitions. At each iteration, one of these

moves is chosen with equal probability. The first kind of move is useful when the

current partitions are not balanced, while the second helps in optimizing balanced

104

CHAPTER 5. IMPLEMENTATION

partitions, especially in the case where the move of a single node causes an area

constraint to be violated.

The cost function used by the simulated annealing algorithm is the weighted

estimated wire length (WEWL), that is the sum of the distances of each pair FP-

GAs in the architecture multiplied by the width (in bit) of the interconnections

between them. The weighted estimated wire length is given by the following for-

mula

WEWL = ∑
i, j∈(0,...,n−1):ci 6=c j

w(i, j)d(ci,c j)

where w(i, j) is the width of the interconnections between nodes i and j in the ap-

plication and d(ci,c j) is the distance between FPGAs ci and c j in the architecture.

Each time a random move is performed, the cost function of the new solution

has to be evaluated. In the following, the complexity of this operation is analyzed.

The distance d(ci,c j) is provided directly by the Architecture class. In the case

of mesh topology, such distance is retrieved in constant time since the architec-

tural graph is internally represented as an adjacency matrix. For bus and crossbar

topologies, it is constant as well, because the distance for any pair of FPGAs is

always the same, and in particular it is assumed to be equal to one. Therefore,

to compute the cost, it is enough to consider all the edges of the application, and

add the correspondent width if the two terminals belongs to different partitions.

Since the Application class provides a method to retrieve the outgoing edges of a

node in linear time using the underlying adjacency list structure, the overall op-

eration requires O(m) time, where m is the number of edges in the application1.

This computation is necessary only to compute the cost of the initial solution, be-

cause successively the cost of a solution can be obtained by updating the previous

one. For a single-node move, it is indeed enough to subtract from the current cost

the connections weighted considering the node as being in the old partition, and

add the connections weighted considering the node as being in the new partition.

1It is reasonably assumed that m > n

105

CHAPTER 5. IMPLEMENTATION

Mathematically, the formula for updating the cost when node i is moved from

partition r to partition s is:

WEWLnew = WEWLold + ∑
(i, j)∈δ(i)

w(i, j)d(r,c j)− ∑
(i, j)∈δ(i)

w(i, j)d(s,c j)

= WEWLold + ∑
(i, j)∈δ(i)

w(i, j)[d(r,c j)−d(s,c j)]

where WEWLold and WEWLnew are the costs before and after the random move

is executed, respectively, and δ(i) is the set of the edges incident to node i in the

application graph. Such set can be retrieved in O(|δ(i)|) time since the Application

class uses an adjacency list data structure. Therefore the computation of the new

cost takes on average O(d) time, where d is the average degree of the nodes in the

application. When a swap move is performed, it is enough to apply two times the

formula above for updating the cost.

Besides searching a solution which minimizes a cost function, the algorithm

must also satisfy the capacity constraints of the FPGAs in the architecture. There

are two constraints that a solution must satisfy in order to to be acceptable:

• Area constraint: the sum of the area (expressed in number of slices) of

the nodes assigned to each FPGA must be less than the area available on

the FPGA. In order to make this constraint more realistic, it is better to

consider the actual available area as a fraction of the total available area on

a FPGA, because it is natural that even a powerful floorplanning2 algorithm

leads some space to be wasted, because of the shape of modules and the

configuration techniques. Therefore, we impose that the sum of the area of

the nodes belonging to a partition must be less than the 80% of the total

available area of the FPGA. Mathematically, this constraint is expressed as:

∑
i∈(0,...,n−1):ci= j

ai < 0.8∗A ∀ j ∈ (0,1, . . . , f −1)

2In [42], floorplanning is defined as a generalization of placement, where the shape and pin

position of circuit components have a specified flexibility.

106

CHAPTER 5. IMPLEMENTATION

where ai is the number of slices required for physically implement node i,

and A is the number of slices available on a FPGA.

• Pin constraint: the sum of the width of the interconnections between the

nodes belonging to a partition and the nodes belonging to other partitions

must be less or equal than the I/O pins available on the FPGA. Mathemati-

cally,

∑
h∈(0,...,n−1):ci= j

∑
(h,k)∈δ(h)

w(h,k))≤ P ∀ j ∈ (0,1, . . . , f −1)

where δ(h) is the set of the edges incident to node h in the application graph,

and w(h,k) is the width of the interconnection between nodes h and k in the

application.

In order to fulfill the area and the pin constraints described above, the notion

of penalty is introduced. The penalty is obtained by summing the quantities of

area and pin counts which exceed the limit imposed by the relative constraints.

For a solution to be feasible, the penalty must be equal to zero. To compute the

penalty, two auxiliary arrays of length f are used: [oi] contains the sum of the area

occupations of the nodes in each FPGA, while [pi] contains the amount of I/O pins

required by the nodes in each FPGA. Therefore, the penalty can be computed as

Penalty = ∑
i=(0,..., f−1)

[(0.8∗A−oi)+(P− pi)]

The initialization of such arrays requires O(m) time, while the initial compu-

tation of the penalty requires O(f) time. To update the penalty of a solution after

node i has been moved from partition r to partition s, the following formula is

applied:

Penaltynew = Penaltyold − min(0,or−0.8∗A)+min(0,os−0.8∗A)

− min(0, pr−P)+min(0, ps−P)

107

CHAPTER 5. IMPLEMENTATION

where Penaltyold and Penaltynew are the penalties before and after the random

move is executed, respectively. The time complexity of such updating is O(d),

obtained by making the same considerations done for the cost updating.

To provide a good solution that has penalty equal to zero (if it exists) an algo-

rithm as been designed which is composed by two independent simulated anneal-

ing processes. The first one aims at finding a feasible solution, and stops when the

penalty reaches a value of zero. The obtained solution is then optimized by the

second annealing process, which aims at minimizing the cost function. In such

process, the moves which cause the penalty to become more than zero are imme-

diately rejected without considering the cost variation they provide. The complete

algorithm is outlined in the pseudocode showed in Algorithm 2. Details as the

Metropolis acceptance function are not provided since they has been already ex-

plained in Subsection 2.1.1.2.

Based on the complexity of the single operations explained above, the overall

complexity of the proposed algorithm is [O(m)+O(f)+H ∗O(d)]+[O(m)+K ∗
O(d)], where H and K are the number of performed iterations of the first and

the second annealing process, respectively. Although H and K are constant, it is

reasonable to suppose that an effective annealing process performs a number of

random moves (iterations) which is far bigger than the number of the nodes in

the application (n). Therefore, the complexity becomes H ∗O(d) + K ∗O(d) =

(H +K)O(d).

5.2.3 Sequential partitioning and placement

In the previous subsection an integrated partitioning and placement approach has

been described. In the present subsection, on the other hand, the implementation

of an approach in which partitioning and placement are handled separately and

sequentially is explained. In this methodology, first a partitioning of the input ap-

plication is created, such that each partition fits onto a single FPGA. Once such

108

CHAPTER 5. IMPLEMENTATION

Algorithm 2 Pseudocode of the integrated partitioning and placement algorithm.

Generate an initial random solution
T = T0
Penalty = ComputePenalty()
while tstop > 0 do

AcceptMove = FALSE
for i = 1toM do

Perform a random move (either single-node or swap)
NewPenalty = U pdatePenalty()
if AcceptMove(∆Penalty,T) then

Penalty = NewPenalty
AcceptMove = T RUE
if NewPenalty = 0 then

Exit the annealing process
end if

else
Move i to its original partition

end if
end for
if AcceptMove then

tstop = ts
else

tstop = ts−1
end if
T = T ∗α

end while

Cost = ComputeCost()
while tstop > 0 do

AcceptMove = FALSE
for i = 1toM do

Perform a random move (either single-node or swap)
NewPenalty = U pdatePenalty()
NewCost = U pdateCost()
if ∆Penalty≤ 0 then

if AcceptMove(∆Cost,T) then
Cost = NewCost
AcceptMove = T RUE

end if
else

Move i to its original partition
end if

end for
if AcceptMove then

tstop = ts
else

tstop = ts−1
end if
T = T ∗α

end while

109

CHAPTER 5. IMPLEMENTATION

partitions have been obtained, they are placed on the actual FPGAs. The advan-

tages of such approach have already been discussed in Subsection 3.3.1. Subsec-

tion 5.2.3.1 describes the implementation of the bottom up clustering partitioning

algorithm, while Subsection 5.2.3.2 explains how the 1-to-1 placement algorithm

works.

5.2.3.1 Bottom-up clustering

This algorithm implements a bottom-up clustering approach. First, each leaf of

the hierarchy is considered as a cluster. Then, the two clusters whose union max-

imizes a given closeness metric are collapsed together to form a new cluster. This

operation can be performed only if the resulting new cluster satisfies the area and

pin count constraints of the used FPGAs. This process is repeated until no more

clusters can be formed, due to the constraints, or only one cluster is left.

A solution to this problem is represented by a set of clusters C = {c1,c2, . . . ,ck};
each cluster ci is a set of nodes of the application. The metrics that the algorithm

considers are:

• Connection (Conn), which is the volume of communication between two

clusters. Mathematically, the Connection metric of two clusters cp and cq is

obtained as:

Conn(cp,cq) = ∑
i∈cp, j∈cq

w(i, j)

where w(i, j) is the amount of communication, in number of bits, between

node i and node j.

• Communication Ratio (CR), which is the ratio between the Internal Com-

munication (IC) and the External Communication (EC) of the cluster. IC is

the amount of communication between the nodes inside the cluster. Math-

ematically, the Internal Communication of the union of two clusters cp and

110

CHAPTER 5. IMPLEMENTATION

cq is obtained as:

IC(cp,cq) = ∑
i∈cp∪cq

∑
(i, j)∈δ(i): j∈cp∪cq

Conn(i, j)

where δ(i) is the set of the edges incident to node i in the application. EC is

the sum of the communications that the nodes belonging to a given cluster

have with external nodes. The following formula returns the EC value of

the union of two clusters cp and cq:

EC(cp,cq) = ∑
i∈cp∪cq

∑
(i, j)∈δ(i): j/∈cp∪cq

Conn(i, j)

Therefore, the Communication Ratio is:

CR(cp,cq) =
IC(cp,cq)
EC(cp,cq)

• Communication Density (CD), which is the ratio between the Internal Com-

munication and the number of wires of a clique of size equal to the number

of nodes in the cluster. For the union of two clusters cp and cq, this number

is obtained by:

CliqueSize(cp,cq) =
ncp∪cq(ncp∪cq−1)

2

where ncp∪cq is the number of nodes contained in the union of clusters cp

and cq. Therefore, the formula for computing the Communication Density

of the union of two clusters cp and cq is:

CD(cp,cq) =
IC(cp,cq)

CliqueSize(cp,cq)

• Common Parent (CP). For a pair of clusters, this metric is equal to one if

the two clusters have the same parent in the design hierarchy, and equal to

zero otherwise. By indicating the parent of a cluster ci with the notation

111

CHAPTER 5. IMPLEMENTATION

p(ci), the value of the Common Parent metric for clusters cp and cq is given

by the formula:

CP(cp,cq) =

{
1 if p(cp) = p(cq)

0 otherwise

These metrics can be combined in several ways, by normalizing them and per-

forming a weighted sum. The results for different combinations of the above

metrics are showed in Chapter 6. To compute these metrics, the algorithm uses

some auxiliary data structures, such that the computation of each metric can be

done efficiently. Such data structures are:

• A symmetric connectivity matrix CONN of integers. A generic element

conni j of such matrix represents the amount of communication between

nodes in cluster ci and nodes in cluster c j, expressed in number of bits.

• An internal communication vector INTCOMM of integers. A generic el-

ement intcommi of such vector represents the sum of the communication

between pairs of nodes contained in cluster ci.

• An external communication vector EXTCOMM of integers. A generic el-

ement extcommi of such vector represents the amount of communication

between nodes contained in cluster ci and external nodes.

• A parent vector PAR of integers. Two elements of this vectors are equal if

the corresponding clusters’ parents are instances of the same component.

It is simple to see how these data structures allow a constant time computation of

the metrics expressed above. This is shown by the following formulae:

Conn(cp,cq) = connpq

IC(cp,cq) = intcommp + intcommq + connpq

112

CHAPTER 5. IMPLEMENTATION

EC(cp,cq) = extcommp + extcommq− connpq

CP(cp,cq) =

{
1 if parp = parq

0 otherwise

The critical point is the computation of such data structures. At the beginning

of the execution of the algorithm, the CONN matrix can be retrieved from the

Application class in O(n2) time. The elements of the INTCOMM vector are ini-

tially all equal to zero, therefore the vector can be initialized in constant time. The

EXTCOMM vector initially contains the sums of the width of the edges incident

to each node. Its initialization requires O(n) time, because such values are stored

in the nodes of the Application class. Similarly, the PAR vector is initialized in

linear time using the information provided by the Hierarchy class.

As said before, the algorithm works by recursively collapsing clusters whose

union has the maximum value of the chosen matrix. Finding this pair requires

O(n2) time. When these two clusters are identified, the procedure is to delete

all the nodes from the cluster with smaller cardinality and add them to the other

cluster. When this happens, the above data structures must be updated. The row

and column of CONN corresponding to the bigger cluster are updated by adding

the values taken from the row and column of CONN corresponding to the smaller

cluster, element by element. Then, the elements of the row and column corre-

sponding to the smaller cluster are all set to the value −1, which means that such

cluster does actually no longer exist. This updating takes O(n) time. To update the

other two vectors, it is enough to apply the formulae for the computation of IC and

EC to the element of the vectors corresponding to the bigger cluster, and set the

element corresponding to the smaller cluster to −1. This is done in constant time.

The PAR vector is updated in the following way: the element corresponding to the

smaller cluster is set to −1, while the one corresponding to the bigger cluster is

left unchanged if the CP metric for the two clusters is equal to one, and is set to -1

otherwise. Moreover, if a cluster contains all and only the nodes which compose

the structural of their common parent, the corresponding element of PAR is set to

113

CHAPTER 5. IMPLEMENTATION

the value which identifies their grandparent. This check can be performed in O(b)

time using the Hierarchy class, where b is the branching factor, that is the average

number of children of the non-leaf nodes of the hierarchy.

As said before, the area and I/O pins constraints must be satisfied each time

a new cluster is formed by collapsing two smaller clusters. These constraints are

expressed in a very similar way to the ones described for the annealing algorithm

in Subsection 5.2.2, therefore their formulae are here omitted. Two arrays, one

containing the current dimension and one containing the I/O pin requirements

of each cluster, are used for checking the constraint. Their initial computation

requires linear time, while their updating is done in constant time.

The pseudocode of the resulting algorithm, called CLUSTERING, is showed in

Algorithm 3.

Algorithm 3 Pseudocode of the bottom-up clustering algorithm (CLUSTERING).

Initialize the data structures
while A new cluster is formed or there is only one cluster do

Select the two clusters with max metric value
which do not violate area and pin count requirements

Collapse them in a new cluster
Update the data structures

end while

From what has been said regarding the complexity of the various steps of the

algorithm, it comes out that the most time consuming operation in each iteration

of the algorithm is the selection of the two clusters to be collapsed, which requires

O(n2) time. What has to be evaluated is the number of iterations of the algorithm.

The worst case execution time is when the algorithm ends producing a single

cluster. In that case, the algorithm performs n iterations. Therefore, the overall

complexity of the algorithm is O(n3).

Besides providing information to compute CP metric, as explained above, the

design hierarchy can be exploited in another way. As a matter of fact, the design

hierarchy implies regularities (Subsection 3.3.1.1) in the design. These regular-

114

CHAPTER 5. IMPLEMENTATION

ities can be exploited in the clustering process, as already described in Subsec-

tion 4.2.2. The enhanced version of the algorithm, which considers the regu-

larities of the design in the clustering process, is the basis of the ISOMORPHIC-

CLUSTERING algorithm. In order not to be redundant in the explanation, such

algorithm will be presented in Subsection 5.3.1.

5.2.3.2 1-to-1 placement

Once the partitions of the circuit have been provided, they have to be placed on

the target architecture. Each partition is assigned to exactly one FPGA, and each

FPGA receives exactly one partition. This rather simple placement problem can be

addressed by a simulated annealing algorithm which is less complex than the one

described for the integrated partitioning and placement approach in Subsection

5.2.2. As a matter of fact, after a random assignment is computed, only swap

moves are executed and no constraint checks have to be carried out, since the

provided partitions already fulfill all the multi-FPGA architectural requirements.

The cost function to be minimized is the weighted estimated wire length, which

is computed identically to the annealing algorithm cited above. For these reasons,

the implementation of the 1-to-1 placement algorithm is not explicitly provided,

as it represent a straightforward generalization of the integrated partitioning and

placement simulated annealing.

5.3 Blocks reuse algorithms

In this section the implementation of the algorithms for the reuse of blocks in

multi-FPGA systems is described. Subsection 5.3.1 describes how the algorithm

for finding isomorphic clusters in the design is implemented. The description of

the algorithm to extract the horizontal cuts of the resulting dendrogram, is pro-

vided in Subsection 5.3.2. Then, Subsection 5.3.3 describes the ILP model for

115

CHAPTER 5. IMPLEMENTATION

choosing which blocks to reuse in the execution of the application in order to

minimize the interconnections’ reconfiguration time.

5.3.1 Finding isomorphic clusters

The algorithm for finding isomorphic clusters of in the application graph, called

ISOMORPHIC-CLUSTERS, has been methodologically described in Subsection

4.2.2. In this subsection, its implementation is explained. The algorithm exploits

the regularities of the design in order to extract isomorphic structures. Such reg-

ularities are extracted in a bottom-up clustering process. Therefore, the bulk of

the algorithm is the clustering procedure which has been described in Subsection

5.2.3.1. The most remarkable addition is that in this case the hierarchy is exploited

intensively, not only as a look-up table for finding nodes’ parents. As a matter of

fact, the Hierarchy provides some methods which implements the transformation

described in Subsection 4.2.2 and exemplified in Figure 4.4. Essentially, the de-

sign hierarchy “evolves” during the execution of the clustering algorithm in order

to provide it updated information. To make this feasible, a direct mapping between

the clusters considered by the algorithm and the nodes of the mutable hierarchy

must be identified and maintained. Such mapping is implemented with a C++

map, whose pairs are represented by the index of the clusters in the algorithm data

structures and an identifier of the corresponding node in the hierarchy class.

The output of the ISOMORPHIC-CLUSTERS algorithm is a set of records, one

for each cluster that has been formed and possibly later merged into a bigger one

during the execution. The information carried by each record is:

• the identifier of the cluster,

• the nodes of the application contained into it,

• the overall dimension of the cluster, in number of occupied slices,

• the amount of external communication, in number of bits,

116

CHAPTER 5. IMPLEMENTATION

• the type of the cluster,

• the iteration of the clustering algorithm in which the cluster is created, called

born, and

• the iteration of the clustering algorithm in which the cluster is merged to

another to form a new one, called dead.

The latter two fields determine what is called the “lifetime” of a cluster, which is

the interval of iteration in which the cluster is “alive”, from when it is created by

collapsing two smaller clusters to the iteration in which it is merged with another

cluster to form a bigger one. If this never happens, the value of the last field is

conventionally set to −1.

The procedure is very similar to the “standard” clustering algorithm described

in section 5.2.3.1. The difference is that, each time a pair of clusters is selected

to be collapsed on the basis of the chosen metric, a method of the Hierarchy class

is called. Such method receives as input the identifiers of the two selected nodes,

and, if they have the same parent, looks for instances of the same type of the parent

throughout the hierarchy. For each of such instances, it extracts the pairs of nodes

which constitutes isomorphic structures with respect to the one identified by the

two initial nodes. This procedure requires O(n) time, where n is the number of

the initial clusters, that is equal to the number of leaf nodes in the hierarchy. The

set of all isomorphic pairs is then returned. At this point, all the returned pairs

are collapsed in the same iteration by the clustering algorithm. For each collapse

operation, besides updating the metric arrays as described in Subsection 5.2.3.1,

the algorithm performs two operations. First, it calls a method of the Hierarchy

class which performs the collapsing on the hierarchy, in order to keep it updated

with the execution of the clustering algorithm. This method operates in O(n) time,

needed for erasing the collapsed node from the hierarchy. Second, it sets the dead

field of the records corresponding to the merged clusters to the number of the cur-

rent iteration, and create a new record corresponding to the newly created cluster.

117

CHAPTER 5. IMPLEMENTATION

TOP

BA1

D1C1

E1D2 F1

GA2

C3 D3

E2D4 F2 D1E1D2 F1 GE2D4 F2 D3 D2, E1, D1, D4, E2, F2, G, D3 TOP17 6 -1

3

3

1

1
1

5

Dead

3

1

6

6

4

5

2
3

4
2

0

0

4

0

1

0

3

0

Born

0
0

1
2

5

3

0

0
DE
D

DG

E
F

F

DEF

D

DE

DFDEFD

Type

D

D

G

DEFD

DEF

E

16 D1, D4, E2, F2, G, D3
D4, E2, F2, D315

14 D4, E2, F2
13 D2, E1, F1
12 D1, G

D4, E211
10 D2, E1
9 D3
8 G

F27
E26

5 D4
D14

3 F1
2 E1

D21
NodesCluster ID

INITIAL HIERARCHY FINAL DEDROGRAM CLUSTERS' RECORD TABLE

Figure 5.7: Example of clusters’ record table produced by ISOMORPHIC-CLUSTERS al-

gorithm.

This is executed in constant time. An example of the generated set of records is

shown in Figure 5.7, that refers to the methodological example of Figure 4.4. In

the example, the information about the dimension and the external communication

of clusters is not provided.

Algorithm 4 Pseudocode of the algorithm for finding isomorphic clusters

(ISOMORPHIC-CLUSTERS).
Initialize the data structures and the clusters’ record table
while A new cluster is formed or there is only one cluster do

Select the two clusters cp and cq with max metric value
which do not violate area and pin count requirements

Retrieve the isomorphic pairs of clusters from the hierarchy
for Each isomorphic pair do

Collapse the two clusters to form a new one
Update the entries of the clusters’ record table corresponding to the collapsed clusters
Create a new entry in the clusters’ record table
Update the metrics data structures

end for
end while

The pseudocode of this algorithm is provided in Algorithm 4. To complete the

analysis of the complexity of the algorithm, it is necessary to consider the number

of isomorphic pairs that are retrieved in each iteration. At a first look, such number

seems to be of order O(n), since it is possible that in the first iteration n
2 isomorphic

118

CHAPTER 5. IMPLEMENTATION

pairs are provided. Nevertheless, a more careful analysis leads to a different result.

As hinted before, the worst case for the complexity of the first iteration is when n
2

pairs of clusters are retrieved, which means that every node of the input application

participates in such recurrent pattern. At the second iteration, under the same

worst case consideration, the number of retrieved isomorphic pairs is n
4 . At the

third iteration, it is n
8 , and so on. Therefore, the total number of isomorphic pairs

extracted throughout the execution of the algorithm is in the worst case equal to

n
2

+
n
4

+
n
8

+ . . .+
n
n

=
log2n

∑
i=1

n
2i

Then, the following inequality holds:

log2n

∑
i=1

n
2i = n

log2n

∑
i=1

1
2i < n

∞

∑
i=1

1
2i = n

that proves that the total number of isomorphic pairs for all the iterations of the

algorithm is of order O(n).

From what has been said, the features added with respect to the basic cluster-

ing algorithm discussed in Subsection 5.2.3.1 does not increase the its asymptotic

complexity, which is still equal to O(n3).

5.3.2 Extracting the horizontal cuts

As explained in Subsection 4.2.3, the horizontal cuts of the dendrogram resulting

from the application of ISOMORPHIC-CLUSTERS have to be determined, in order

to extract the flat structures the following phase of the workflow works on. This is

done by using the clusters’ record table provided by the aforementioned algorithm.

For generating each cut, the records of the table are scanned sequentially, in

order to extract an auxiliary table in which each record corresponds to a type of

clusters, and is associated to a list of clusters of that type which are “alive” at the

considered iteration. Then, this auxiliary structure is used to generate the data file

119

CHAPTER 5. IMPLEMENTATION

that constitutes the input of the ILP model which implements the subsequent step

of the flow.

For each cut, the sequential scan of the clusters’ record table requires O(n)

time, since the number of records is at most equal to 2 ∗ n. As a consequence,

also the number of cluster types is at most equal to 2 ∗ n, therefore the loop for

generating the output data file executes O(n) iterations. The number of cuts that

have to be provided by the algorithm is equal to the number of iterations performed

by the ISOMORPHIC-CLUSTERS algorithm, which has a maximum value of n.

Therefore, the overall complexity of the cut extraction algorithm is O(n2).

5.3.3 ILP model for blocks reuse

In this subsection the integer linear programming (ILP) model used to take de-

cisions about blocks reuse is presented. The problem to be solved has already

been described in Subsection 4.1.3. The input to the ILP model is represented by

a set of types of clusters of size L. Each cluster is provided with the following

information:

• the occupied area on the FPGA, expressed in number of slices,

• the amount of external communication (pin count), expressed in number of

bits,

• the number of occurrences of the cluster in the considered circuit.

Moreover, one additional parameter has to be provided, that is the number of slices

available on each FPGA.

The ILP model can be simply derived from the description of the problem

given in Subsection 4.1.3, and is showed in Table 5.1. The parameters pini, areai,

and numi represent, respectively, the I/O pin requirement, the occupied area, and

the number of occurrences of the correspondent cluster. The parameter AMax is

120

CHAPTER 5. IMPLEMENTATION

Set: N = {1,2, . . . ,L} Set of isomorphic clusters

Parameters: pini,1≤ i≤ L I/O pins used by cluster i

areai,1≤ i≤ L Slices occupied by cluster i

numi,1≤ i≤ L Number of occurrences of cluster i

AMax Available number of slices

Variables: xi ≥ 0, 1≤ i≤ L

Obj. function: min ∑
i∈N

pini ∗ xi Estimated reconfiguration time

Subject to: ∑
i∈N

areai ∗ (numi− xi)≤ AMax Area constraint

xi ≤ numi−1 Max reuse constraint

Table 5.1: ILP model for blocks reuse.

121

CHAPTER 5. IMPLEMENTATION

the maximum available area on the multi-FPGA architecture. The set of variables

is the vector [xi]. Each value xi, ranging from 0 to numi−1, represents the number

of times the correspondent cluster i is reused. The value xi = 0 means that the

cluster is never reused, and therefore it has to be instantiated numi times. The

value xi = numi− 1 means that the cluster is reused for all of its occurrences in

the application, and therefore must be instantiated once.

The ILP instances of the problem are solved using the Gnu Linear Program-

ming Kit (GLPK) [54]. Such tool support the GNU MathProg language [55],

which is a subset of the AMPL language.

122

Chapter 6

Experimental results

This chapter describes the experimental verification that has been carried out in

order to validate the methodology proposed in the present thesis work. The nu-

merical results of such experiments, along with comments and considerations, are

provided. All tests have been executed on an Intel Core 2 Duo 2.2 GHz machine.

In order to provide a clear exposition, the experimental results are presented in the

same order of presentation as the corresponding algorithms in Chapter 5. Section

6.1 introduces the benchmarks circuits used in the remainder of the chapter. Sec-

tion 6.2 provides the results for the design extraction phase. The performances

of the algorithms used in the global layout phase are discussed in Section 6.3.

Section 6.4 gives the results of the application of the blocks reuse algorithms.

Eventually, Section 6.5 describes a case study that shows how the workflow can

be used in a practical scenario.

6.1 Benchmarks description

The multi-FPGA design flow presented in this thesis starts with the extraction of

the structures and the hierarchy out of a circuit VHDL description. Therefore,

the benchmarks used for the validation of the work are VHDL specifications. Al-

123

CHAPTER 6. EXPERIMENTAL RESULTS

though it is common and good practice to describe large circuits by exploiting the

hierarchical construct of VHDL, it is quite hard to find freely available specifica-

tions that are suitable to be used for the validation of the proposed methodology.

Nevertheless, four benchmark circuits have been identified and are described in

the following.

• Triple-DES encryption+decryption core (3DES) [56]. This circuit is an ex-

tension of Data Encryption Standard (DES) that provides a more secure

block ciphers to be used in cryptography applications.

• Finite Impulse Response filter (FIR). This circuit is a VHDL implementa-

tion of a general Finite Impulse Response digital filter.

• Noekeon cypher (NOEK) [57]. This circuit implements the Noekeon cypher-

ing algorithm, which has the peculiarity of allowing a compact hardware

implementation and provides high resistance to attacks. The considered

VHDL implementation of Noekeon has been produced internally to the

DRESD research group [58]

Moreover, in order to evaluate the performances of the proposed algorithms on

an heterogeneous and realistic circuit, a design has been created which contains

an instance of the FIR filter and one of the Triple-DES core, connected with a

communication core. In the following, such circuit will be referred as 3DES-FIR.

6.2 Design extraction

The design extraction framework has been validated on the circuits described in

the previous section. The design extraction creates, as explained in Section 5.1,

one structural graph for each intermediate node of the hierarchy. The hierarchy

information is implemented by storing in each intermediate node an identifier of

the graph of the relative substructure. In order to obtain the lowest level cut of the

124

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: Design extraction results.

Circuit Extraction Time Flattening Time # Nodes # Leaves Tot. Dimension

3DES 36 ms 96 ms 67 52 1613 slices

FIR 87 ms 691 ms 231 211 561 slices

NOEK 48 ms 12 ms 29 25 958 slices

3DES-FIR 101 ms 2230 ms 301 264 2141 slices

hierarchy, that is the circuit composed by all the leaves of the hierarchical tree, a

flatten function, provided by the Structural API, is called. In the results reported in

Table 6.1, the actual extraction time and the flattening time are reported separately.

The other three columns of the table report the number of nodes that constitute

the hierarchy, the number of leaves of the hierarchy (i.e. the number of nodes of

the flattened circuit) and the total area size in number of occupied slices on a Virtex

Spartan-3 FPGA. It is possible to see that the actual extraction time is fairly low,

while the time needed by the flattening function rapidly increases as the number of

nodes of the design grows. Moreover, it can be noticed that the FIR circuit, which

has 211 leaf nodes, is three times smaller than the 3DES circuit. This is caused

by the fact that 3DES has bigger leaves. This fact will be taken into account for

considerations about the algorithm performances in the following sections.

The extraction phase also provides some graphical representation of the cir-

cuit, under the format of dot files [59], that can be viewed as graphs using the

Graphviz tool [60]. Figure 6.1 shows the extracted hierarchy tree fr the 3DES

benchmark, while Figure 6.2 depicts the flattened 3DES circuit.

6.3 Global layout

In this section the results of the executions of the algorithm for the global layout

phase proposed in this thesis are provided. In Subsection 6.3.1 the simulated an-

125

CHAPTER 6. EXPERIMENTAL RESULTS

top

tdes_top_pi1 DESCIPHERTOP1 DESCIPHERTOP2 DESCIPHERTOP3

des_chiper_top_pi1 KEYSCHEDULE DESTOP des_chiper_top_pi1 KEYSCHEDULE DESTOP des_chiper_top_pi1 KEYSCHEDULE DESTOP

key_schedule_pi1 key_schedule_pi2 des_top_pi1 BLOCKTOP key_schedule_pi1 key_schedule_pi2 des_top_pi1 BLOCKTOP key_schedule_pi1 key_schedule_pi2 des_top_pi1 BLOCKTOP

block_top_pi1 E_EXPANSIONFUNCTION ADDKEY SBOX PBOX ADDLEFT block_top_pi1 E_EXPANSIONFUNCTION ADDKEY SBOX PBOX ADDLEFT block_top_pi1 E_EXPANSIONFUNCTION ADDKEY SBOX PBOX ADDLEFT

S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

Figure 6.1: Hierarchical tree of the 3DES benchmark circuit.

nealing algorithm to address the partitioning and placement problems in the same

time is evaluated. On the other hand, Subsection 6.3.2 provides the results rel-

ative to the sequential approach, in which partitioning and placement are faced

separately as two sequential steps. Subsection 6.3.3 provides a comparison be-

tween the two approaches.

6.3.1 Integrated partitioning and placement

The simulated annealing approach evaluated in this section has been methodolog-

ically described and motivated in Subsection 3.3.1, and its implementation has

been explained in Subsection 5.2.2. In the following, several architectural solu-

tions are considered.

Recalling what has been said in 5.2.2, the cost function for partitioning and

placement is the Weighted Estimated Wire Length (WEWL), that is the sum of

the amounts of communication for any pair of application nodes weighted on the

relative distance of the FPGAs which host the two nodes. As concerns bus-based

or crossbar-style topologies, the integrated approach is essentially reduced to a

partitioning process, since the distance of any two pairs of FPGA is considered

to be equal to one. For mesh topologies the cost function is instead weighted on

the Manhattan distance between the FPGAs. The annealing parameters have been

tuned on the basis of observation of its behavior. The starting temperature has

been set to 5000, with a cooling rate equal to 0.99. For each temperature value,

the algorithm performs 10 random moves, and it stops if there is no change in the

126

CHAPTER 6. EXPERIMENTAL RESULTS

IF_IN

key1_in
key2_in
key3_in

function_select
data_in
lddata
ldkey
reset
clock

1_1

IN - - - OUT

clock
reset

function_select
data_out_internal

des_out_rdy_internal
key1_in
key2_in
key3_in
lddata

data_in

nextstate
lddata_internal

out_ready
fsel_internal

fsel_internal_inv
data_out

key1_in_internal
key2_in_internal
key3_in_internal

memkey1
memkey3

data_in_internal

clock (1)

reset (1)

function_select (1)

key1_in (64)

key2_in (64)

key3_in (64)

lddata (1)

data_in (64)

2_1

IN - - - OUT

clock
lddata

data_in

data_in_internal
data_ready_internal

w (1)

5_2

IN - - - OUT

clock
reset

key_in

K1
K2
K3
K4
K5
K6
K7
K8
K9

K10
K11
K12
K13
K14
K15
K16

key_ready

w (1)

w (1)

6_1

IN - - - OUT

clock
reset

key_ready
func_select

data_in
data_ready

L_out_internal
R_out_internal

RoundCounter
core_busy
nextstate

des_out_rdy
L_in_internal
R_in_internal

data_out

w (1)

w (1)

3_1

IN - - - OUT

clock
lddata
data_in

data_in_internal
data_ready_internalw (1)

7_2

IN - - - OUT

clock
reset

key_in

K1
K2
K3
K4
K5
K6
K7
K8
K9

K10
K11
K12
K13
K14
K15
K16

key_ready

w (1)

w (1)

8_1

IN - - - OUT

clock
reset

key_ready
func_select

data_in
data_ready

L_out_internal
R_out_internal

RoundCounter
core_busy
nextstate

des_out_rdy
L_in_internal
R_in_internal

data_out

w (1)

w (1)

4_1

IN - - - OUT

clock
lddata
data_in

data_in_internal
data_ready_internal

w (1)

9_2

IN - - - OUT

clock
reset

key_in

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
K15
K16

key_ready

w (1)

w (1)

10_1

IN - - - OUT

clock
reset

key_ready
func_select

data_in
data_ready

L_out_internal
R_out_internal

RoundCounter
core_busy
nextstate

des_out_rdy
L_in_internal
R_in_internal

data_out
w (1)

w (1)

IF_OUT

data_out
out_ready

out_ready (1)

data_out (64)

w (64)

w (1)

w (64)

w (1)

w (64)

w (1)

w (64)

w (1)

w (64)

w (1)

5_1

IN - - - OUT

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
K15
K16

Keyselect

Key_out

K1 (48)

K10 (48)

K11 (48)

K12 (48)

K13 (48)

K14 (48)

K15 (48)
K16 (48)
K2 (48)

K3 (48)

K4 (48)

K5 (48)

K6 (48)

K7 (48)

K8 (48)

K9 (48)

w (1)

w (1)

11_1

IN - - - OUT

R_in
R_out_internal

R_out
L_out

w (32)

11_2

IN - - - OUT

x_in

block0_out
block1_out
block2_out
block3_out
block4_out
block5_out
block6_out
block7_out

w (32)

11_6

IN - - - OUT

x_in
left_in x_out

w (32)

w (64)

w (1)

w (32)

w (32)

11_3

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in
key

x0_out
x1_out
x2_out
x3_out
x4_out
x5_out
x6_out
x7_out

a0 (6)

a1 (6)

a2 (6)

a3 (6)

a4 (6)

a5 (6)

a6 (6)

a7 (6)

14_1

IN - - - OUT

a spow (6)

14_2

IN - - - OUT

a spow (6)

14_3

IN - - - OUT

a spow (6)

14_4

IN - - - OUT

a spo
w (6)

14_5

IN - - - OUT

a spo

w (6)

14_6

IN - - - OUT

a spo

w (6)

14_7

IN - - - OUT

a spo

w (6)

14_8

IN - - - OUT

a spo

w (6)

11_5

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in

x_out

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

d0 (32)

R_out_internal (32)

w (64)

w (1)

7_1

IN - - - OUT

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
K15
K16

Keyselect

Key_out

K15 (48)

K16 (48)

K2 (48)

K3 (48)

K4 (48)

K5 (48)

K6 (48)

K7 (48)

K8 (48)

K9 (48)

K1 (48)

K10 (48)
K11 (48)
K12 (48)

K13 (48)

K14 (48)

w (1)
w (1)

12_1

IN - - - OUT

R_in
R_out_internal

R_out
L_out

w (32)

12_2

IN - - - OUT

x_in

block0_out
block1_out
block2_out
block3_out
block4_out
block5_out
block6_out
block7_out

w (32)

12_6

IN - - - OUT

x_in
left_in x_out

w (32)w (64)

w (1)

w (32)

w (32)

12_3

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in
key

x0_out
x1_out
x2_out
x3_out
x4_out
x5_out
x6_out
x7_out

a0 (6)
a1 (6)
a2 (6)

a3 (6)

a4 (6)

a5 (6)

a6 (6)
a7 (6)

15_1

IN - - - OUT

a spo

w (6)

15_2

IN - - - OUT

a spo

w (6)

15_3

IN - - - OUT

a spo

w (6)

15_4

IN - - - OUT

a spo

w (6)

15_5

IN - - - OUT

a spo
w (6)

15_6

IN - - - OUT

a spow (6)

15_7

IN - - - OUT

a spow (6)

15_8

IN - - - OUT

a spo

w (6)
12_5

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in

x_out
w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

d0 (32)

R_out_internal (32)

w (64)

w (1)

9_1

IN - - - OUT

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
K15
K16

Keyselect

Key_out

K1 (48)

K10 (48)

K11 (48)

K12 (48)

K13 (48)

K14 (48)

K15 (48)

K16 (48)

K2 (48)

K3 (48)

K4 (48)

K5 (48)

K6 (48)

K7 (48)

K8 (48)

K9 (48)

w (1)

w (64)

w (1)

w (1)

13_1

IN - - - OUT

R_in
R_out_internal

R_out
L_out

w (32)

13_2

IN - - - OUT

x_in

block0_out
block1_out
block2_out
block3_out
block4_out
block5_out
block6_out
block7_out

w (32)

13_6

IN - - - OUT

x_in
left_in x_out

w (32)

w (32)

w (32)

13_3

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in
key

x0_out
x1_out
x2_out
x3_out
x4_out
x5_out
x6_out
x7_out

a0 (6)

a1 (6)

a2 (6)

a3 (6)

a4 (6)

a5 (6)

a6 (6)

a7 (6)

16_1

IN - - - OUT

a spow (6)

16_2

IN - - - OUT

a spow (6)

16_3

IN - - - OUT

a spow (6)

16_4

IN - - - OUT

a spo
w (6)

16_5

IN - - - OUT

a spo

w (6)

16_6

IN - - - OUT

a spo

w (6)

16_7

IN - - - OUT

a spo

w (6)

16_8

IN - - - OUT

a spo

w (6)

13_5

IN - - - OUT

x0_in
x1_in
x2_in
x3_in
x4_in
x5_in
x6_in
x7_in

x_out

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

w (4)

d0 (32)
R_out_internal (32)

Figure 6.2: Flattened circuit view of the 3DES benchmark circuit.

127

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Results for the integrated partitioning and placement algorithm on bus/crossbar

architectures.

Circuit 3DES FIR

FPGA Dim. WEWL Time WEWL Time

300 slices 773 1945 ms 54 2324 ms

400 slices 616 2029 ms 53 2025 ms

600 slices 468 1666 ms 0 939 ms

Circuit NOEK 3DES-FIR

FPGA Dim. WEWL Time WEWL Time

300 slices 2061 1571 ms 862 5249 ms

400 slices 1880 1461 ms 756 4950 ms

600 slices 1128 1291 ms 619 4277 ms

cost function after 1000 moves.

First, the results for bus/crossbar architectures are provided. In such case, an

architecture is completely specified by the number of chips, their dimension, and

their number of I/O pins of each FPGA. Fixing the number of I/O pins to 300,

three FPGA sizes are considered: 300 slices, 400 slices and 600 slices. The num-

ber of chip the architecture is composed of varies according to the dimension of

the considered benchmark circuit: more precisely, it is set to the value
⌈

dimFPGA
dimcircuit

⌉
.

The results are shown in Table 6.2. Since the simulated annealing is a random-

ized process, ten runs of the algorithm have been executed for each architectural

topology, and the average values are reported in the table. Times are expressed in

milliseconds.

As expected, the algorithm has higher execution times as the dimension of the

circuit increases. The zero value for the WEWL obtained in partitioning the FIR

circuit is explained by the fact that the application fits entirely on a chip having

a number of slices greater than the total dimension of the circuit. In order to

128

CHAPTER 6. EXPERIMENTAL RESULTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
500

1000

1500

2000

2500

3000

3500

4000

4500

Iterations

W
E
W
L

Figure 6.3: Plot of the annealing cost function for the FIR circuit partitioning.

show how the annealing process works, the plot of the cost function is provided

in Figure 6.3. The figure refers to the 3DES-FIR circuit and a FPGA size of 600

slices.

For mesh topologies, the number of chips, given the FPGA dimension, has

been set in a slightly different way. As a matter of fact, narrow mesh topologies

are avoided, by favoring mesh shapes which are close to a square. To give an

example, given a FPGA dimension of 100 slices and a circuit of 1050 slices, a

more common 3×4 mesh is used rather than a 1×11 one. The results are shown

in Table 6.3. To describe a particular mesh architecture, the notation dimn×m is

used, which means that the mesh has n rows and m columns, and there are dim

available slices on each FPGA. The WEWL column reports the value cost function

that results from the placement, while Time is the execution time.

From the table, it can be inferred that the execution times are only slightly

higher than the bus/crossbar topology case. The results of the two tables provided

in this subsection will be compared to the results obtained by the execution of the

sequential partitioning and placement algorithms in Subsection 6.3.2.

129

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.3: Results for the integrated partitioning and placement algorithm on mesh archi-

tectures.

3DES FIR

Arch. WEWL Time Arch. WEWL Time

3002×3 1126 1955 ms 3001×2 96 2972 ms

4002×2 1527 1857 ms 4001×2 62 2294 ms

6001×3 796 1671 ms 6001×1 0 998 ms

NOEK 3DES-FIR

Arch. WEWL Time Arch. WEWL Time

3002×2 2609 1667 ms 3002×4 1565 6068 ms

4001×3 2337 1510 ms 4002×3 1206 4917 ms

6001×2 1130 1348 ms 6002×2 844 4736 ms

6.3.2 Sequential partitioning and placement

In this subsection, the sequential partitioning and placement approach is evalu-

ated.

First, the results for the partitioning algorithm based on clustering are pre-

sented. As described in Subsection 5.2.3.1, there are several metrics that can be

considered in the clustering process. Although four metrics were described, only

three of them are explicitly used, namely Conn (Connection), CR (Communica-

tion Ratio), and CD (Cluster Density), while the CP (Common Parent) metric is

intrinsically used for extracting regularities from the design hierarchy. In the fol-

lowing, comparisons among the metrics are provided, based on tests carried out

on the benchmark circuits. The architectural parameters that the algorithm has

to consider are the pin count, fixed to 300, and the FPGA dimension. As for

the verification of the integrated approach described in the previous Subsection,

three different FPGA dimensions are considered, namely 300, 400 and 600 slices.

130

CHAPTER 6. EXPERIMENTAL RESULTS

Moreover, in order to provide a comparison with an existent approach, the results

obtained with the Metis partitioning framework (presented in Subsection 2.1.1.3)

are provided as well.

It is important to notice that the clustering algorithm does not receive as input

the number of FPGAs used in the architecture. As a matter of fact, the clustering

process implicitly aims at finding a solution which minimizes the number of par-

titions. On the other hand, the Metis partitioner takes as input a parameter which

represents the number of desired partitions. In our evaluation, Metis is executed

by giving as input the number of partitions obtained by the clustering process; this

ensures that a fairly comparison is carried out. In the following, four tables pro-

vide the results for the different benchmark circuits: Table 6.4 contains the results

obtained for the 3DES circuit, Table 6.5 contains the results for the FIR circuit,

Table 6.6 contains the results for the NOEK circuit, and Table 6.7 contains the re-

sults for the 3DES-FIR circuit. Each table provides the results obtained by means

of the three considered metric. The FPGA dim. field is the size of the FPGA in the

considered architecture, Cutsize is the amount of communication, in bits, between

the different partitions, No. part. is the number of the obtained partitions, No. it

is the number of iterations performed by the clustering process, and Time is the

execution time in milliseconds. The last column report the cutsize obtained by

running the Metis partitioner. As concerns Metis, the running time is not provided

as it is supposed to be always less than 100 milliseconds. As a matter of fact, the

tool returns the running time in seconds chopped to the first decimal value.

In the following, an analysis of the results provided in the tables is carried out

in order evaluate the three considered metrics. The first metric, Conn, produces

better cutsizes with respect to the other two. Nevertheless, the number of ob-

tained partitions is in most cases slightly higher. The second metric, CR, creates

partitions having a better area exploitation, being the number of partitions always

smaller or equal than the first metric. Moreover, it also has lower execution times

for all the considered instances. On the other hand, the value of the obtained cut-

131

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.4: Results of the application of the clustering algorithm for the 3DES benchmark

circuit.

Metric: Conn Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 547 7 42 18 ms 712

400 550 5 34 17 ms 1536

600 349 3 46 19 ms 1335

Metric: CR Metis

FPGA dim. Cutsize No. part. No it. Time Cutsize

300 1604 6 45 13 ms 577

400 1296 5 46 13 ms 1536

600 1193 3 48 13 ms 1335

Metric: CD Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 915 6 44 13 ms 577

400 692 5 44 13 ms 1536

600 417 3 46 14 ms 1335

132

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.5: Results of the application of the clustering algorithm for the FIR benchmark

circuit.

Metric: Conn Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 36 2 186 970 ms 27

400 50 2 186 952 ms 27

600 0 1 187 974 ms 0

Metric: CR Metis

FPGA dim. Cutsize No. part. No it. Time Cutsize

300 130 2 190 639 ms 27

400 197 2 210 663 ms 27

600 0 1 210 660 ms 0

Metric: CD Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 111 3 101 337 ms 58

400 53 2 102 334 ms 27

600 0 1 103 342 ms 0

133

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.6: Results of the application of the clustering algorithm for the NOEK benchmark

circuit.

Metric: Conn Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 1965 4 22 3 ms 2128

400 2061 3 23 3 ms 1518

600 1314 2 24 3 ms 1421

Metric: CR Metis

FPGA dim. Cutsize No. part. No it. Time Cutsize

300 2672 4 22 2 ms 2128

400 2478 3 23 2 ms 1518

600 1643 2 24 2 ms 1421

Metric: CD Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 1965 4 22 2 ms 2128

400 1995 3 23 2 ms 1518

600 1506 2 24 2 ms 1421

134

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.7: Results of the application of the clustering algorithm for the 3DES+FIR bench-

mark circuit.

Metric: Conn Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 610 9 228 2034 ms 1827

400 620 6 229 2019 ms 2826

600 434 4 230 1990 ms 1683

Metric: CR Metis

FPGA dim. Cutsize No. part. No it. Time Cutsize

300 1371 8 219 1165 ms 2148

400 1482 6 256 1255 ms 2826

600 1344 4 257 1261 ms 1683

Metric: CD Metis

FPGA dim. Cutsize No. part. No. it. Time Cutsize

300 1348 8 200 1187 ms 2148

400 1001 6 187 1082 ms 2826

600 976 4 210 1167 ms 1683

135

CHAPTER 6. EXPERIMENTAL RESULTS

sizes range in most cases between 2 and 3 times the ones obtained by adopting the

first metric. The third metric, CD, seems to represent a middle ground between

the first and the second ones. As a matter of fact, the cutsizes are always lower

than the ones obtained with the second metric and higher than the ones obtained

with the first metric. Besides that, it generates in all cases the same amount of

partitions as the CR metric. Moreover, the running times are lower than the other

two metrics. This last result comes from the fact that this metric tends to cause a

lower number of iterations of the clustering process with respect to the other two.

To conclude this comparison, it is possible to say that the Conn metric is a good

choice in case the critical objective is the minimization of the cutsize. In the case

the stress is one the number of used FPGAs, the CD metric seems to be the most

favourable choice. The CR metric, instead, does not emerges as a good choice in

neither on of this two scenarios.

It is interesting to compare the obtained results with the ones obtained by the

Metis partitioner. The cutsizes produced by Metis are in most cases much higher

than the one obtained using the proposed clustering algorithm with the Conn met-

ric. The only instances in which Metis behaves better are the partitionings of the

FIR circuit. By observing the ratio between the number of nodes and the total area

of the circuits provided in Table 6.1, it can be noticed that Metis works well when

the dimension of the nodes is on average small with respect to the area available

on the FPGAs. Since the proposed methodology addresses circuit structures hav-

ing process-level granularity, choice due to the several advantages explained in

Subsection 3.3.2, a clustering approach seems to represent a better choice than an

algorithm intended for working on classic low-level netlists, such as Metis.

Once the partitioning is carried out, the obtained clusters are subject to a 1-to-

1 placement one the actual FPGAs. This process, as said in Subsection 5.2.3.2, is

carried out with an annealing algorithm which is simpler than the integrated ap-

proach presented in the previous section, due to the facts that the solution space is

narrower and the architectural constraints are already fulfilled by the partitioning

136

CHAPTER 6. EXPERIMENTAL RESULTS

step. In the following, the results of such 1-to-1 placement on mesh architec-

ture are provided. Since the result of partitioning represents by itself the output

placement in case a bus partial crossbar topology is adopted (remember than the

distance between two FPGAs in such architectures is always equal to one), the

algorithm is not executed in case such topologies are chosen.

In order to provide comparable data with the ones obtained with the integrated

approach in the previous Subsection, the considered mesh structures are the same.

Table 6.8 shows the obtained results. The best possible metric is used in each

case, given that the produced number of partitions is compatible with the used

architecture. The Arch. column provides a specification of the target architec-

tural topology, WEWL is the cost function, Time is the running time of the 1-to-1

placement considered singularly, and Tot. time is the whole execution time of

the clustering and placement steps. One of the architectures is marked with a

’*’, meaning that none of the metrics produces the desired number of partitions;

therefore, a bigger architecture is chosen.

From the table, it is possible to see that running times have a high variance.

This is due to the fact that in some cases the solution to the 1-to-1 placement

problem is trivial, like the case in which there are only two FPGAs in the mesh.

In the next Subsection comparisons between the integrated approach and the

sequential one are provided.

6.3.3 Comparisons between integrated and sequential approach

First, the results relative to bus and crossbar architectures are provided. These

two topologies do not need a placement phase that minimizes the estimated wire

length. The results that are considered for comparison can be found in Table 6.2

and the set of four tables (Tables 6.4, 6.5, 6.6, 6.7) for the integrated and the

sequential approach, respectively.

One difference in the two approaches that must be pointed out is that the

137

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.8: Results for the sequential partitioning and placement approach on mesh archi-

tectures.

3DES FIR

Arch. WEWL Time Tot. time Arch. WEWL Time Tot. time

3002×3 1224 1335 ms 1348 ms 3001×2 36 2 ms 946 ms

4002×3* 621 770 ms 789 ms 4001×2 50 2 ms 946 ms

6001×3 494 527 ms 540 ms 6001×1 0 1 ms 947 ms

NOEK 3DES-FIR

Arch. WEWL Time Tot. time Arch. WEWL Time Tot. time

3002×2 2287 655 ms 3 ms 3002×4 2099 1658 ms 2837 ms

4001×3 2061 528 ms 531 ms 4002×3 775 892 ms 2870 ms

6001×2 1314 2 ms 5 ms 6002×2 545 753 ms 2743 ms

annealing-based integrated approach is imposed to use the lowest number of FP-

GAs as possible, while the clustering algorithm for partitioning does not work

with a fixed number of partitions. This can constitute an advantage for the inte-

grated method when the design requirements impose the implementation of the

circuit on a specific architecture whose total available area is close to the dimen-

sion of the circuit.

As concerns cutsize values, clustering behaves slightly better than the anneal-

ing algorithm. Nevertheless, the best cutsizes obtained with clustering usually

implies the use of one FPGA more than the solutions obtained with annealing. A

comparison obtained by considering in clustering the results which use the same

number number of partitions as in the annealing solutions shoes that the cutsize

values are mostly comparable. On the other hand, the running times of the inte-

grated annealing process are higher than the clustering ones, even for relatively

small problem instances.

The results for mesh architectures, contained in Table 6.3 and Table 6.8 for

138

CHAPTER 6. EXPERIMENTAL RESULTS

the integrated and the sequential approach, respectively, are compared in the fol-

lowing. Again, there is not a neat predominance of one approach over the other as

regards the cost function, even if the sequential method seems in general to per-

form slightly better. The running times resulting by the execution of the annealing

process are higher than the ones obtained with the sequential approach.

From what has been said in this Subsection, it emerges that the two methods

provide overall comparable values of the objective function, with the sequential

approach showing lower execution times. Moreover, the clustering performed in

the sequential method is essentially the same algorithm which has to be carried out

for finding isomorphic clusters if a static feasible solution to global layout cannot

be found. Therefore, it is possible to conclude that the sequential partitioning

and placement approach represents a more coherent and effective choice in the

particular design flow proposed in this thesis.

6.4 Blocks reuse

In this Subsection the blocks reuse algorithms are evaluated. As concerns the

ISOMORPHIC-CLUSTERS algorithm, which is in charge of finding isomorphic

structures for implementing reuse in the following step, its functioning is iden-

tical to the clustering partitioning algorithm whose results have been provided in

the previous Subsection. The only difference is that ISOMORPHIC-CLUSTERS

outputs a data structures which contains information about the clusters to be used

by subsequent algorithms, as explained in Subsection 5.3.1. This fact does not

directly affects the performance of the algorithm, therefore the results are not ex-

plicitly reported, in order not to cause useless repetitions.

In the following, the time needed for solving ILP model described in Subsec-

tion 5.3.3 is considered. The ILP model is solved for the data set extracted from

the dendrogram resulting from the application of ISOMORPHIC-CLUSTERS. It is

important to recall that every horizontal cut of the dendrogram generates a data

139

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.9: Time results for solving the ILP models for blocks reuse.

3DES FIR NOEK 3DES-FIR

Depth Time Depth Time Depth Time Depth Time

300 42 420 ms 186 2103 ms 22 2173 ms 228 2763 ms

400 34 492 ms 186 2142 ms 23 2325 ms 229 2685 ms

500 46 474 ms 187 2078 ms 22 2296 ms 230 2753 ms

set that is given as input to the ILP model. Table 6.9 reports the overall execution

times resulting from executing the ILP solver on all such data sets. In order not to

provide an intractable amount of results, the set of problem instances is restricted:

considering only the Conn metric in the clustering executed by the ISOMORPHIC-

CLUSTERS algorithm. In the table, for each benchmark circuit, the column Depth

is the depth of the dendrogram resulting from the ISOMORPHIC-CLUSTERS algo-

rithm, which is the number of data sets the ILP model has to be solved on, and

Time is the overall execution time for solving such ILP instances.

The results reported in the table show that there is not a direct correlation

between the execution times and the number of instances that have to be solved

by the ILP model. As a matter of fact, the ILP models solving process takes more

time in the case of NOEK with respect to the FIR circuit, though the last one

produces dendrograms that are almost ten times deeper. Generally, it can be seen

that the running times are acceptable, even for fairly big circuits as the 3DES-FIR

benchmark.

The proposed ILP model minimizes the estimated interconnection reconfigu-

ration time for implementing blocks reuse, given a maximum usable area. Among

the horizontal cuts of the dendrograms, the one which provides the least estimated

reconfiguration time is then chosen. In order to show the result relative to such

estimation, the ILP result for every cut is plotted. Figure 6.4 represents the plot of

the objective function for the 3DES-FIR circuit, considering a FPGA dimension

140

CHAPTER 6. EXPERIMENTAL RESULTS

0 50 100 150 200 250
!500

0

500

1000

1500

2000

2500

3000

3500

4000

DENDROGRAM CUT

ES
TI

M
AT

ED
 R

EC
. T

IM
E

Figure 6.4: Estimated reconfiguration time varying the dendrogram cut.

of 600 slices and a maximum available area of 1600 slices.

For cuts of the dendrogram higher than iteration 139 the value of -100 means

that there is no solution to the ILP model. In other words, even reusing all the

recurrent patterns of blocks the maximum amount of time, the area constraint

cannot be met. The plot shows that after an initially slightly decreasing, the es-

timated reconfiguration time grows by cutting the dendrogram at higher levels.

From the observation of other instances, this comes out to be a general trend. In

this particular case, the best dynamically-interconnected structure - with respect

to reconfiguration time - for implementing the circuit on an architecture that does

not statically hosts it is obtained by considering one of the horizontal cuts of the

dendrogram between level 2 and 6.

141

CHAPTER 6. EXPERIMENTAL RESULTS

6.5 Case study: JPEG decoder

In this section a case study is discussed, in order to provide evidence of how the

design workflow presented in this thesis could actually be used in practice. The

situation where the case study takes place is simple: we want to deploy a JPEG

decoder on a multi-FPGA system. In order to achieve higher performances, the

core is composed by two decoder modules that operate in parallel. First, we will

find a good partitioning of the application over the multiple FPGAs, so that the

inter-chip communication volume is minimized. Later, we will assume that we

have another multi-FPGA architecture that does not statically contain the whole

module. Therefore, we will look for the best block reuse solution that minimizes

the required reconfiguration time.

6.5.1 JPEG decoder core

In this subsection, the JPEG decoder core that is considered in this case study is

described. The main components are two identical decoding units that run in par-

allel. Such units have a strongly modular design, that arises from the modularity

of the JPEG decoding. Such modularity does in turn derives from the different

steps involved in the JPEG compression algorithm - and consequently in the de-

compression (decoding) for image rendering. The decoding unit has been taken

from opencores.org [61], where it is provided with an extensive documentation.

JPEG encoding is carried out applying different transformations to the incom-

ing raw image specification. In the following, we take a brief look to the steps

composing the baseline process encoding algorithm, which is the most used for

JPEG compression. Figure 6.5 gives a representation of the sequence of transfor-

mations involved in this algorithm.

The first step is a conversion from the RGB (Red, Green, and Blue) com-

ponents of every pixel in the raw image to the YCrCb (Luma, red-difference

Chroma, and blue-difference Chroma) encoding of the JPEG image. This is basi-

142

CHAPTER 6. EXPERIMENTAL RESULTSJPEG Compression Overview

Encoding Parameters

SamplingRGB2YCbCr DCT

Quantization
Zigzag

Ordering

Entropy
Encoding

Jpeg
compressed

data

Data
Image
Raw

Figure 1.1: The essential steps in JPEG encoding (baseline process). First the im-
age is transformed to the YCbCr color mode separating luma (Y) from chroma
(Cb/Cr) information [RGB2YCbCr]. Then the color components are reduced
in spatial resolution [Sampling]. Applying the Discrete Cosine Transformation
(DCT) the blocks are mapped to frequency space [DCT] where the higher fre-
quencies can now be removed[Quantization]. After reordering the remain-
ing coefficients [Zigzag-Ordering] the resulting bitstream is then very well
prepared for entropy encoding using run length encoding and an Huffman
algorithm [Entropy Encoding].

To understand the principles of JPEG technologies it is more intuitive to take a look at
the steps of encoding rather than decoding. Therefore, despite the fact that a decoder
has been developed, due to better understanding this chapter will explain the steps of
encoding. The steps of decoding will be the inverse of the encoding steps but in reverse
order.

1.1 JFIF - Structure of the Header

The way header information is stored in a JPEG file is presented in the JFIF standard and
the Annex B of the JPEG standard. As mentioned before the JFIF standard specifies a sub-
set of techniques from the JPEG standard and additionally has its own (JPEG compatible)
restrictions.

To be JFIF compatible the image components need to be Y, Cb & Cr for color images and
just Y for grayscale images (cp. section 1.2).

6

Figure 6.5: Schematic of the baseline process JPEG encoding algorithm (from documen-

tation at [61]).

cally a linear transformation of the RGB vector for every pixel. Since the Chroma

components brings less information to the human eye than the Luma one, the Ch-

components are sampled in order to reduce the image size. This sampling does

not involve loss in visual perception quality. A common method is to take the av-

erage of Cr and Cb over a 2x2 pixel grid. Anyway, the particular sampling used for

encoding is specified, along with other important information, in the JPEG header.

The next step in JPEG encoding is the discrete cosine transformation (DCT).

The DCT is a particular form of Fourier Transformation that ouputs real values

only, and provides results identical to Direct Fourier Transformation (DFT) if the

input is real. The DCT causes the image to be encoded in the frequency domain

and is carried out on two-dimensional 8x8 blocks. Since low-frecuency com-

ponents carry more information than high-frequency ones, a quantization that

reduces the image size is possible without apparent loss of quality. This is car-

ried out according to a 8x8 quantization table that is included in the JPEG header.

This operation has the effect of setting to zero many high frequency values, that

are in the lower right area in every 8x8 block. For this reason, a zig-zag mapping

143

CHAPTER 6. EXPERIMENTAL RESULTS

Header Readout

Input Buffer Entropy
Decoding Dequantize Dezigzag

IDCT Upsampling YCBCr-2-RGB

JPEG
image

RAW
decoded

image

Figure 6.6: Schematic of the JPEG decoding algorithm (adapted from documentation in

[61]).

is used to rearrange the order of the squares in the encoding such that long se-

quences of zeros are at the end, making the final encoding more efficient. The last

step, called entropy encoding, is the combination of three techniques: run length

encoding, variable length encoding and Huffman encoding. These methods al-

lows to pass from a pixel-based representation of the image to a sequence-based

one. For example, in run length encoding, a YCrCb color is specified together

with the string of consecutive pixels that have that color. The detailed discussion

of these encoding techniques is beyond the goal of this section.

The JPEG decoding unit used in this case study carries out the inverse of the

described operations in exactly the opposite order, thus providing a raw image

-renderizable by a VGA module- starting from its JPEG encoding. The basic

structure of the decoder is represented in Figure 6.6.

6.5.2 Design extraction

As said, the core we want to deploy is composed by two units like the one showed

in Figure 6.6. The input of of the design workflow is represented by a hierarchy of

VHDL files The preprocessing step (Subsection 5.1.3.1) converts any behavioral

144

CHAPTER 6. EXPERIMENTAL RESULTS

and dataflow part of such files. into instantiated components. A new hierarchy

of VHDL files is produced by this step. Such specification is then fed into the

structural parser (Subsection 5.1.3.2) that saves all the information regarding the

structure and the hierarchy of the design in a specifically created data structure.

The result of this parsing can be viewed in the form of several graphs which are

automatically generated by the parser. There is a graph that represents the struc-

ture of each non-leaf node of the hierarchy, In particular, we take a look to the

structural graph of the JPEG decoding unit, depicted in Figure 6.7.

In the figure, the components implementing the steps of the decoding algo-

rithm are highlited, so to prove the correspondence of the circuit to the theoretical

framework. The other components in the structural graph are the modules for

synchronizing and allowing the communication among the algorithmic blocks.

In general, every of these extra-modules corresponds to a process -or dataflow

instructions- in the original VHDL specification. In order to inspect the hierarchy

of the design, the design extraction also provides a hierarchy tree, which is not

reported here because of its size.

In the following, some properties of the design are provided. The size of the

circuit is 3978 slices1. The hierarchy tree is composed of 174 nodes, 162 of which

are leaves. The average size of leaf nodes is 24.56 slices, while the standard devi-

ation of leaves size is 114.22, which means that the size of nodes in the flattened

circuit highly varies. The extraction of the design requires 117 milliseconds, while

454 milliseconds are required for the creatiion of the corresponding flattened cir-

cuit.

6.5.3 Global layout

The next phase of the proposed design flow is the global layout. In this phase,

the input application is partitioned and placed over a given multi-FPGA architec-

1Dimensions are obtained by performing sysntheses with Xilinx XST [45].

145

CHAPTER 6. EXPERIMENTAL RESULTS

IF
_

IN

C
lk

d
a
ta

_
i

re
se

t_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

jp
e
g

_
in

p
u

t_
fi

fo
_

p

IN
 -

 -
 -

 O
U

T

d
in

rd
_

c
lk

rd
_

e
n

rs
t

w
r_

c
lk

w
r_

e
n

a
lm

o
st

_
fu

ll

d
o

u
t

e
m

p
ty

fu
ll

v
a
li

d

jp
e
g

_
c
h

e
c
k

_
F

F
_

p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

h
e
a
d

e
r_

v
a
li

d
_

i

h
e
a
d

e
r_

se
le

c
t_

i

d
a
ta

_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

e
o

i_
o

d
a
ta

_
o

c
o

n
te

x
t_

o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o
jp

e
g

_
c
h

e
c
k

ff
_

fi
fo

_
p

IN
 -

 -
 -

 O
U

T

d
in

rd
_

c
lk

rd
_

e
n

rs
t

w
r_

c
lk

w
r_

e
n

a
lm

o
st

_
e
m

p
ty

a
lm

o
st

_
fu

ll

d
o

u
t

e
m

p
ty

fu
ll

v
a
li

d

jp
e
g

_
h

u
ff

m
a
n

_
p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

h
e
a
d

e
r_

se
le

c
t_

i

h
t_

sy
m

b
o

ls
_

w
e
a
_

i

h
t_

ta
b

le
s_

w
e
a
_

i

h
t_

se
le

c
t_

i

h
t_

ta
b

le
s_

a
d

d
re

ss
_

i

h
t_

n
r_

o
f_

sy
m

b
o

ls
_

a
d

d
re

ss
_

i

h
t_

d
a
ta

_
i

c
o

n
te

x
t_

i

d
a
ta

_
i

c
o

m
p

1
_

h
u

ff
_

d
c
_

i

c
o

m
p

2
_

h
u

ff
_

d
c
_

i

c
o

m
p

3
_

h
u

ff
_

d
c
_

i

c
o

m
p

1
_

h
u

ff
_

a
c
_

i

c
o

m
p

2
_

h
u

ff
_

a
c
_

i

c
o

m
p

3
_

h
u

ff
_

a
c
_

i

sa
m

p
li

n
g

_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

e
rr

o
r_

o

c
o

n
te

x
t_

o

d
a
ta

_
o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
d

e
q

u
a
n

ti
z
e
_

p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

c
o

n
te

x
t_

i

d
a
ta

_
i

h
e
a
d

e
r_

se
le

c
t_

i

sa
m

p
li

n
g

_
i

q
t_

w
e
a
_

i

q
t_

se
le

c
t_

i

q
t_

d
a
ta

_
i

c
o

m
p

1
_

q
t_

n
u

m
b

e
r_

i

c
o

m
p

2
_

q
t_

n
u

m
b

e
r_

i

c
o

m
p

3
_

q
t_

n
u

m
b

e
r_

i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

c
o

n
te

x
t_

o

d
a
ta

_
o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
d

e
z
ig

z
a
g

_
p

IN
 -

 -
 -

 O
U

T

C
lk

c
o

n
te

x
t_

i

d
a
ta

_
i

re
se

t_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

c
o

n
te

x
t_

o

d
a
ta

_
o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
id

c
t_

p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

c
o

n
te

x
t_

i

d
a
ta

_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

c
o

n
te

x
t_

o

d
a
ta

_
o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
u

p
sa

m
p

li
n

g
_

p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

c
o

n
te

x
t_

i

d
a
ta

_
i

sa
m

p
li

n
g

_
i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

c
o

n
te

x
t_

o

Y
_

o

C
b

_
o

C
r_

o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
Y

C
b

C
r2

R
G

B
_

p

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t_
i

c
o

n
te

x
t_

i

Y
_

i

C
b

_
i

C
r_

i

d
a
ta

v
a
li

d
_

i

re
a
d

y
_

i

c
o

n
te

x
t_

o

R
_

o

G
_

o

B
_

o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
h

e
a
d

e
r_

p

IN
 -

 -
 -

 O
U

T

C
lk

d
a
ta

_
i

d
a
ta

v
a
li

d
_

i

re
se

t_
i

e
o

i_
i

h
e
a
d

e
r_

v
a
li

d
_

o

h
e
a
d

e
r_

se
le

c
t_

o

h
e
a
d

e
r_

e
rr

o
r_

o

h
t_

sy
m

b
o

ls
_

w
e
a
_

o

h
t_

ta
b

le
s_

w
e
a
_

o

h
t_

se
le

c
t_

o

h
t_

ta
b

le
s_

a
d

d
re

ss
_

o

h
t_

n
r_

o
f_

sy
m

b
o

ls
_

a
d

d
re

ss
_

o

h
t_

d
a
ta

_
o

q
t_

w
e
a
_

o

q
t_

se
le

c
t_

o

q
t_

d
a
ta

_
o

c
o

m
p

1
_

h
u

ff
_

d
c
_

o

c
o

m
p

2
_

h
u

ff
_

d
c
_

o

c
o

m
p

3
_

h
u

ff
_

d
c
_

o

c
o

m
p

1
_

h
u

ff
_

a
c
_

o

c
o

m
p

2
_

h
u

ff
_

a
c
_

o

c
o

m
p

3
_

h
u

ff
_

a
c
_

o

h
e
ig

h
t_

o

w
id

th
_

o

sa
m

p
li

n
g

_
o

c
o

m
p

1
_

q
t_

n
u

m
b

e
r_

o

c
o

m
p

2
_

q
t_

n
u

m
b

e
r_

o

c
o

m
p

3
_

q
t_

n
u

m
b

e
r_

o

jp
e
g

_
p

2

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t

sa
m

p
li

n
g

_
D

w
id

th
_

D

h
e
ig

h
t_

D

c
o

m
p

1
_

q
t_

n
u

m
b

e
r_

D

c
o

m
p

2
_

q
t_

n
u

m
b

e
r_

D

c
o

m
p

3
_

q
t_

n
u

m
b

e
r_

D

sa
m

p
li

n
g

w
id

th

h
e
ig

h
t

c
o

m
p

1
_

q
t_

n
u

m
b

e
r

c
o

m
p

2
_

q
t_

n
u

m
b

e
r

c
o

m
p

3
_

q
t_

n
u

m
b

e
r

jp
e
g

_
p

5

IN
 -

 -
 -

 O
U

T

C
lk

re
se

t

c
h

e
c
k

_
F

F
_

e
o

i

re
a
d

y
_

D

re
a
d

y

jp
e
g

_
p

6

IN
 -

 -
 -

 O
U

T

c
h

e
c
k

_
F

F
_

re
a
d

y

d
a
ta

v
a
li

d
_

i

re
a
d

y

c
h

e
c
k

ff
_

fi
fo

_
fu

ll

re
a
d

y
_

i

c
h

e
c
k

_
F

F
_

e
o

i

Y
C

b
C

r2
R

G
B

_
c
o

n
te

x
t

re
se

t_
i

h
e
a
d

e
r_

e
rr

o
r

h
u

ff
m

a
n

_
e
rr

o
r

Y
C

b
C

r2
R

G
B

_
R

Y
C

b
C

r2
R

G
B

_
G

Y
C

b
C

r2
R

G
B

_
B

sa
m

p
li

n
g

_
o

u
t

w
id

th
_

o
u

t

h
e
ig

h
t_

o
u

t

Y
C

b
C

r2
R

G
B

_
d

a
ta

v
a
li

d

in
p

u
t_

fi
fo

_
re

se
t

in
p

u
t_

fi
fo

_
rd

_
e
n

in
p

u
t_

fi
fo

_
w

r_
e
n

c
h

e
c
k

ff
_

fi
fo

_
re

a
d

y

v
g

a
_

re
a
d

y

e
o

i_
o

c
o

n
te

x
t_

o

e
rr

o
r_

o

re
d

_
o

g
re

e
n

_
o

b
lu

e
_

o

sa
m

p
li

n
g

_
o

w
id

th
_

o

h
e
ig

h
t_

o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

IF
_

O
U

T

e
o

i_
o

e
rr

o
r_

o

c
o

n
te

x
t_

o

re
d

_
o

g
re

e
n

_
o

b
lu

e
_

o

w
id

th
_

o

h
e
ig

h
t_

o

sa
m

p
li

n
g

_
o

d
a
ta

v
a
li

d
_

o

re
a
d

y
_

o

jp
e
g

_
p

4

IN
 -

 -
 -

 O
U

T

in
p

u
t_

fi
fo

_
a
lm

o
st

_
fu

ll

in
p

u
t_

fi
fo

_
e
m

p
ty

re
a
d

y

re
a
d

y
_

D

jp
e
g

_
p

3

IN
 -

 -
 -

 O
U

T

Y
C

b
C

r2
R

G
B

_
c
o

n
te

x
t

sa
m

p
li

n
g

w
id

th

h
e
ig

h
t

sa
m

p
li

n
g

_
o

u
t

w
id

th
_

o
u

t

h
e
ig

h
t_

o
u

t

jp
e
g

_
p

1

IN
 -

 -
 -

 O
U

T

h
e
a
d

e
r_

se
le

c
t

h
e
a
d

e
r_

sa
m

p
li

n
g

sa
m

p
li

n
g

w
id

th

h
e
ig

h
t

h
e
a
d

e
r_

w
id

th

h
e
a
d

e
r_

h
e
ig

h
t

h
e
a
d

e
r_

c
o

m
p

1
_

q
t_

n
u

m
b

e
r

h
e
a
d

e
r_

c
o

m
p

2
_

q
t_

n
u

m
b

e
r

h
e
a
d

e
r_

c
o

m
p

3
_

q
t_

n
u

m
b

e
r

c
o

m
p

1
_

q
t_

n
u

m
b

e
r

c
o

m
p

2
_

q
t_

n
u

m
b

e
r

c
o

m
p

3
_

q
t_

n
u

m
b

e
r

sa
m

p
li

n
g

_
D

w
id

th
_

D

h
e
ig

h
t_

D

c
o

m
p

1
_

q
t_

n
u

m
b

e
r_

D

c
o

m
p

2
_

q
t_

n
u

m
b

e
r_

D

c
o

m
p

3
_

q
t_

n
u

m
b

e
r_

D

En
tro

py

De
co

di
ng

In
pu

t
Bu

ffe
r

He
ad

er

Re
ad

ou
t

De
-

qu
an

tiz
e

De
-

zig
za

g

ID
CT

Up
-

sa
m

pl
in

g

YC
bC

r
2

RG
B

Figure 6.7: Graph representing the structure of the decoding unit.

146

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.10: Result of different clustering metrics for the case study circuit.

Metric Conn CR CD Metis

Partition 5 10 7 5 (imposed)

Edge Cut 198 887 591 388

Iterations 118 137 121 -

ture. Due to the good results reported in Subsection 6.3.2, the bottom-up clus-

tering algorithm (described in Subection 5.2.3.1) is used for partitioning. We

assume that the application is to be deployed on an architecture composed by

Xilinx XC3S100E devices, belonging to the Spartan3E family [62]. The proper-

ties that are important to us are the number of available slices, which is 1960, and

the number of I/O pins, equal to 108. Furthermore, we assume that the FPGAs

are connected through a crossbar topology: there is a chip which implements the

communication channels among the devices. Such communication channels can

be reconfigured, thus providing a suitable scenario for our blocks reuse algorithm,

whose application to this use case will be trated in the next section. There is no

architectural specification regarding the crossbar chip: different types of devices

can be used, such as FPGAs or FPIDs (Field Programmable Interconnection De-

vices (FPIDs). The crossbar can be assumed to be either total or partial. The

particular choice of crossbar architecture doesn’t affect the methodology and the

results proposed in this work. Since a crossbar topology is used, there is no point

in actually executing the 1-to-1 placement algorithm, because in such a topology

the distance between any pair of FPGAs is equal. Therefore, the remainder of this

section will focus on the partitioning step.

The bottom-up clustering algorithm for partitioning is run for all the three met-

rics described in Subsection 5.2.3.1, namely Connection (Conn), Communication

Ratio (CR), and Communication Density (CD), obtaining the results in Table 6.10.

It is clear that the Connection metric works better in this case, both in terms

of edge cut and number of obtained partitions. An interesting data is the number

147

CHAPTER 6. EXPERIMENTAL RESULTS

0, 960

1, 960

412, 138
50

8

3, 960

504, 960
8

41

Figure 6.8: Partitions resulting using the bottom-up clustering algorithm.

of iterations: if i is such number, l is the number of leaves in the design, and p is

the number of obtained partitions, then the quantity

r = l− (i+ p)

corresponds to the number of times a regularity has been “applied” in the cluster-

ing process. The formula is trivially obtained by the fact that the number of itera-

tions in a “normal” clustering algorithm (i.e. that does not exploit any regularity

in the design) is i = l− p. The quantity r is equal to 39 in out case. This means

that throughout the clustering process a collapsing operations has been replicated

to another instance of the same parent component -during the same iteration- 39

times. This is not surprising if we take into account the nature of the core under

test, which has two identical parallel modules. Nonetheless, the result supports the

importance of regularity-driven partitioning in modular-designed applications. As

a comparison, the kMetis algorithm provides an edge cut equal to 388 when asked

to partition the same -flattened- circuit into 5 parts. The clustering algorithm runs

in 475 milliseconds. The partitions resulting from using the Connection metric

are shown in Figure 6.8. The figure shows a certain symmetry: this is once again

due to the exploitation of regularities of the design exploited by the clustering

algorithm.

6.5.4 Blocks reuse

In order to show the results of the blocks reuse methodology, we assume that the

available FPGA area is smaller than the application dimension. To ground this

148

CHAPTER 6. EXPERIMENTAL RESULTS

fact in a real scenario, we assume that the multi-FPGA system under exam de-

ploys hardware applications on-demand. In this scenario, imagine that several

applications are demanded by users prior to the JPEG decoder under exam, leav-

ing just 3000 slices available for deploying it. We then execute the block reuse

algorithm bounding the total available area to 3000 slices. The proposed method-

ology works on the dendrogram produced by the -possibly previously executed-

regularity driven bottom-up clustering. Recalling from Subsection 4.2.3, every

horizontal cut of the dendrogram -i.e. iteration of the algorithm- corresponds to

a complete specification of the original circuit, at different levels of granularity2.

The information relative to each of these circuits are given as input to the ILP

solver which runs the model described in Subsection 5.3.3. Hence, for each hori-

zontal cut, we obtain a solution and a corresponding estimate of the time needed

to reconfigure the connections on the crossbar chip. In particular, running the

clustering algorithm using the Connection metric, and feeding the ILP solver with

the data from each horizontal cut, the reconfiguration time estimations plotted in

Figure 6.9 are obtained.

From the plot, it can be inferred that the lowest reconfiguration time estimation

is obtained by running the ILP solver on circuit descriptions retrieved from the

dendrogram at iterations 14 through 18. In order to understand what this means,

we analyze the ILP solutions of one of these five horizontal cuts, namely the

one corresponding to iteration 14. The ILP solution says that two blocks of the

circuit are reused once, i.e. they are used twice in the execution of the application.

Of these two blocks, one is a leaf of the original hierarchy, which means that it

is composed by a single atomic component, while the other one results from a

collapsing operation the clustering algorithm carries out at iteration 14. In order

to provide a realistic picture of what have been said, the structure of this latter

block is depicted in Figure 6.10.

2As already pointed out, the clustering process defines a new hierarchy on the design, that

could resemble in some points the original design hierarchy.

149

CHAPTER 6. EXPERIMENTAL RESULTS

‐150 

‐100 

‐50 

0 

50 

100 

150 

200 

1  4  7  10
 

13
 

16
 

19
 

22
 

25
 

28
 

31
 

34
 

37
 

40
 

43
 

46
 

49
 

52
 

55
 

58
 

61
 

64
 

67
 

70
 

73
 

76
 

79
 

82
 

85
 

88
 

91
 

94
 

97
 

10
0 

10
3 

10
6 

10
9 

11
2 

11
5 

11
8 

Re
c.
 T
im

e 

Itera-on No. 

Figure 6.9: Estimated reconfiguration time for different cuts of the dedrogram obtained

by the regularity-driven clustering.

IF_IN

ac_dc_counter_0

code_read_1

dataready_3

is_negative_4

Clk_5

ce_6

last_dc_select_D_7

reset_8

jpeg_huffman_p6_0

IN - - - OUT

ac_dc_counter

code_read

dataready

is_negative

last_dc

data_D

last_dc_D
jpeg_huffman_p13_2

IN - - - OUT

Clk

ce

last_dc_Cb_ce

last_dc_Cr_ce

last_dc_D

last_dc_Y_ce

last_dc_select_D

reset

last_dc_Cb

last_dc_Cr

last_dc_Y

last_dc_select

IF_OUT

data_D_2

jpeg_huffman_p12_1

IN - - - OUT

last_dc_Cb

last_dc_Cr

last_dc_Y

last_dc_select

last_dc

last_dc_Cb_ce

last_dc_Cr_ce

last_dc_Y_ce

cluster_type_69

Figure 6.10: Structure of one block which is suggested for reuse in order to minimize the

interconnections reconfiguration time.

150

CHAPTER 6. EXPERIMENTAL RESULTS

We are not considering here the impact that such reuse could have on the

parallel execution of the two decoders, since it goes beyond the scope of this

simple case study. Of course, the introduction of a scheduler on the execution of

the application could refine the results provided by the ILP models. Chapter 7 will

discuss this and others improvements to the current work.

151

CHAPTER 6. EXPERIMENTAL RESULTS

152

Chapter 7

Conclusion and future work

In this thesis work a novel multi-FPGA design flow has been proposed, which

makes use of blocks reuse through dynamic reconfigurability to make the imple-

mentation of large systems feasible even on multi-FPGA architectures with strict

physical constraints. The validity of the proposed solutions has been proved in

Chapter 6 through several experimental results.

One important result is the development of a global partitioning and place-

ment approach which exploits the design hierarchy and cope with specifications

at a process level of granularity. The sequential approach composed by bottom-

up clustering followed by a 1-to-1 annealing-based placement has shown to be

preferable to an integrated simulated annealing methodology. Besides providing

slightly better performances, the sequential method represents a more suitable

choice since it already provides elements for the possible execution of the branch

of the workflow which copes with reuse and dynamic reconfigurability, which is

necessary in case a static global layout is not found.

Another important result is the development of a technique for carrying out

choices for the reuse of components in case the application does not statically fits

onto the architecture. The design hierarchy is in such case fundamental in order

to find the isomorphic structures which are considered for being reused.

153

CHAPTER 7. CONCLUSION AND FUTURE WORK

The future work must address both the improvement of the proposed tech-

niques and algorithms and the creation of the modules of the workflow which

have not been developed in this work.

As concerns the improvements, the proposed bottom-up clustering algorithm

can be ameliorated with the addition of more powerful clustering metrics, and

the development of solutions to address the intrinsic greediness of the clustering

approach. Moreover, an implementation of the algorithm with a smaller time

complexity - now of order O(n3) - has to be provided, since the execution times

grows too rapidly as the number of nodes of the application increases. The blocks

reuse approach can be enhanced by designing a more accurate estimation function

of the reconfiguration time of the system, in order to provide precise information

for a subsequent scheduling phase.

As concerns the modules of the workflow, a large amount of work still has

to be carried out. First, a robust and effective routing algorithm for both static

and dynamic implementations has to be developed, as already pointed out in Sec-

tion 4.3. Then, a suitable interconnection between the global layout and the reuse

phases of the workflow has to be provided, by precisely defining the information

that must flow from one phase to the other. The reuse methodology has to be

expanded by the design of an algorithm for the scheduling of blocks usage. Af-

ter the scheduling is performed, the dynamically-interconnected system has to be

partitioned and placed; hence, a modification of the proposed algorithms has to

be provided in order to cope with such typology of systems. Moreover, a module

which carries out the generation of VHDL code at the end of the flow has to be

implemented.

Another direction of future works deals with the creation of the architectural

solutions for hosting the system resulting from the workflow proposed in this the-

sis. As explained in Subsection 4.1.4, a bus-based or crossbar multi-FPGA archi-

tectural topology are suitable for such implementations.

154

Bibliography

[1] S. Hauck, “The roles of fpgas in reprogrammable systems,” 1998. [Online].

Available: citeseer.ist.psu.edu/hauck98roles.html

[2] Xilinx inc., “Virtex 2.5 v field programmable gate arrays,” 2001.

[3] Xilinx Inc., “Ise 9.1i quick ISE 9.1i quick start tutorial.”

[4] P.-A. Mudry, F. Vannel, G. Tempesti, and D. Mange, “Confetti : A recon-

figurable hardware platform for prototyping cellular architectures,” Parallel

and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-

tional, pp. 1–8, 2007.

[5] S. Hauck, “Multi-fpga systems,” Ph.D. dissertation, University of Washing-

ton, 1995.

[6] M. Khalid, “Routing architecture and layout synthesis for multi-fpga

systems,” Ph.D. dissertation, University of Toronto, 1999. [Online].

Available: citeseer.ist.psu.edu/khalid99routing.html

[7] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agar-

wal, “Logic emulation with virtual wires,” 1997. [Online]. Available:

citeseer.ist.psu.edu/babb97logic.html

155

BIBLIOGRAPHY

[8] V. Rana, M. D. Santambrogio, D. Sciuto, B. Kettelhoit, M. Köster, M. Por-

rmann, and U. Rückert, “Partial dynamic reconfiguration in a multi-fpga

clustered architecture based on linux,” in IPDPS, 2007.

[9] G. Estrin, “Organization of computer systems–the fixed plus variable struc-

ture computer,” Proc. Western Joint Computer Conf., Western Joint Com-

puter Conference, New York, pp. 33–40, April 1960.

[10] M. D. Santambrogio, “Hardware/Software codesign methodologies for dy-

namically reconfigurable systems,” Ph.D. dissertation, Politecnico di Mi-

lano, 2007.

[11] Xilinx Inc., “Two Flows of Partial Reconfiguration: Module Based or

Difference Based,” Xilinx Inc., Tech. Rep. XAPP290, November 2003.

[Online]. Available: http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

[12] M. Khalid and J. Rose, “Experimental Evaluation of Mesh and Partial

Crossbar Routing Architectures for Multi-FPGA Systems,” IFIP IWLAS97,

Grenoble, France, pp. 119–127, 1997.

[13] P. P. Chu, RTL Hardware Design Using VHDL. John Wiley and Sons, 2006.

[14] J. Hidalgo, J. Lanchares, and R. Hermida, “Partitioning and placement

for multi-FPGA systems using geneticalgorithms,” Euromicro Conference,

2000. Proceedings of the 26th, vol. 1, 2000.

[15] K. Roy and C. Sechen, “A timing driven N-way chip and multi-chip par-

titioner,” Proceedings of the 1993 IEEE/ACM international conference on

Computer-aided design, pp. 240–247, 1993.

[16] J. de Vicente, J. Lanchares, and R. Hermida, “Placement optimization based

on global routing updating for system partitioning onto multi-fpga mesh

topologies,” in FPL ’99: Proceedings of the 9th International Workshop

156

BIBLIOGRAPHY

on Field-Programmable Logic and Applications. London, UK: Springer-

Verlag, 1999, pp. 91–100.

[17] B. W. Kernighan, S. Lin, “An efficient heuristic procedure for partitioning

of electrical circuits,” Bell Systems Technical Journal, vol. 49, no. 2, pp.

291–307, February 1970.

[18] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving

network partitions,” in DAC ’82: Proceedings of the 19th conference on

Design automation. Piscataway, NJ, USA: IEEE Press, 1982, pp. 175–181.

[19] S. Dutt, “New faster kernighan-lin-type graph-partitioning algorithms,”

Computer-Aided Design, 1993. ICCAD-93. Digest of Technical Papers.,

1993 IEEE/ACM International Conference on, pp. 370–377, 1993.

[20] L. A. Sanchis, “Multiple-way network partitioning,” IEEE Trans. Comput.,

vol. 38, no. 1, pp. 62–81, 1989.

[21] S. Dutt and W. Deng, “A probability-based approach to VLSI circuit

partitioning,” in Design Automation Conference, 1996, pp. 100–105.

[Online]. Available: citeseer.ist.psu.edu/dutt96probabilitybased.html

[22] S. M. Sait, A. H. El-Maleh, and R. H. Al-Abaji, “General iterative heuristics

for vlsi multiobjective partitioning,” in Circuits and Systems, 2003. ISCAS

’03. Proceedings of the 2003 International Symposium on, 2003, pp. 497–

500.

[23] ——, “Evolutionary algorithms for vlsi multi-objective netlist partitioning,”

Engineering applications of artificial intelligence, vol. 19, no. 3, pp. 257–

268, April 2006.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598, pp. 671–

680, 1983.

157

BIBLIOGRAPHY

[25] T. W. Manikas and J. T. Cain, “Genetic algorithms vs. simulated annealing:

A comparison of approaches for solving the circuit partitioning problem,”

Department of Electrical Engineering, The University of Pittsburgh, Tech.

Rep. 101, May 1996.

[26] J. Cong, “A parallel bottom-up clustering algorithm with applications to cir-

cuit partitioning in VLSI design,” Proceedings of the 30th international con-

ference on Design automation, pp. 755–760, 1993.

[27] C. J. Alpert, J.-H. Juang, and A. B. Kahng, “Multilevel circuit partitioning,”

in DAC, 1997, pp. 530–533.

[28] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irreg-

ular graphs,” Journal of Parallel and Distributed Computing, vol. 48, pp.

96–129, 1998.

[29] G. Karypis, V. Kumar, and kirk Shloegel, “A new algorithm for multi-

objective graph partitioning,” Department of Computer Science and Engi-

neering, University of Minnesota, Tech. Rep. 003, September 1999.

[30] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in

DAC, 1999, pp. 343–348.

[31] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-

graph partitioning: applications in vlsi domain,” Very Large Scale Integra-

tion (VLSI) Systems, IEEE Transactions on, vol. 7, no. 1, pp. 69–79, 1999.

[32] D. Behrens, K. Harbich, and E. Barke, “Hierarchical partitioning,” in IC-

CAD ’96: Proceedings of the 1996 IEEE/ACM international conference on

Computer-aided design. Washington, DC, USA: IEEE Computer Society,

1996, pp. 470–477.

158

BIBLIOGRAPHY

[33] S. Hauck and G. Borriello, “Logic partition orderings for multi-

FPGA systems,” in FPGA, 1995, pp. 32–38. [Online]. Available:

citeseer.ist.psu.edu/hauck95logic.html

[34] C. Lee, “An algorithm for path connections and its applications,” IRE Trans.

Electron. Comput., vol. EC-10, pp. 346–365, 1961.

[35] R. Baraglia, R. Perego, J. I. Hidalgo, J. Lanchares, and F. Tirado, “A parallel

compact genetic algorithm for multi-fpga partitioning,” pdp, vol. 00, p. 113,

2001.

[36] A. Kahng, “Futures for Partitioning in Physical design,” Proc. IEEE/ACM

International Symposium on Physical Design, pp. 190–193, 1998.

[37] H. Krupnova, A. Abbara, and G. Saucier, “A Hierarchy-Driven FPGA Par-

titioning Method,” Proceedings of the 34th annual conference on Design

automation conference, pp. 522–525, 1997.

[38] W.-J. Fang and A. C. H. Wu, “Integrating hdl synthesis and partitioning for

multi-fpga designs,” IEEE Des. Test, vol. 15, no. 2, pp. 65–72, 1998.

[39] W.-J. Fang and A. C.-H. Wu, “Multiway fpga partitioning by fully exploiting

design hierarchy,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 1, pp.

34–50, 2000.

[40] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, “An In-

tegrated Partitioning and Synthesis System for Dynamically Reconfigurable

Multi-FPGA Architectures,” IPPS/SPDP Workshops, pp. 31–36, 1998.

[41] C. Niessen, “Hierarchical design methodologies and tools for VLSI chips,”

Proceedings of the IEEE, vol. 71, no. 1, pp. 66–75, 1983.

[42] S. M. Sait and H. Youssef, VLSI Physical Design Automation. World Sci-

entific Publishing, 1999, vol. Lecture Notes Series on Computing, no. 6.

159

BIBLIOGRAPHY

[43] R. Mehra and J. Rabaey, “Exploiting regularity for low-power design,” iccad,

vol. 00, p. 166, 1996.

[44] T. Kutzschebauch and L. Stok, “Regularity driven logic synthesis,” in IC-

CAD ’00: Proceedings of the 2000 IEEE/ACM international conference on

Computer-aided design. Piscataway, NJ, USA: IEEE Press, 2000, pp. 439–

446.

[45] Xilinx, Inc, XST User Guide.

[46] ——, Embedded System Tools Reference Manual.

[47] IBM Corp., The CoreConnect Bus Architecture.

[48] M. Murgida, A. Panella, V. Rana, M. Santambrogio, and D. Sciuto, “Fast ip-

core generation in a partial dynamic reconfiguration workflow,” Very Large

Scale Integration, 2006 IFIP International Conference on, pp. 74–79, Oct.

2006.

[49] M. Redaelli, “Task partitioning for the scheduling on partially dynamically

reconfigurable fpgas,” 2006.

[50] P. J. Ashenden, “The vhdl cookbook,” 1990.

[51] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User

Guide and Reference Manual. Addison Wesley Professional, 2001.

[52] C. Donnely and R. Stallman, Bison. The YACC-compatible Parser Genera-

tor, November 1995.

[53] V. Paxson, Flex, version 2.5, 2nd ed., March 1995.

[54] GNU Linear Programming Kit Reference Manual, Version 4.28, Free Soft-

ware Foundation, Inc., March 2008.

160

BIBLIOGRAPHY

[55] A. Makhorin, Modeling Language GNU MathProg, Free Software Founda-

tion, Inc., May 2007.

[56] CoreTex Systems, LLC, Triple-DES Encryption+Decryption Core, Novem-

ber 2006.

[57] J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Noekeon,

http://gro.noekeon.org.

[58] C. Bolchini, D. Quarta, and M. D. Santambrogio, “Seu mitigation for sram-

based fpgas through dynamic partial reconfiguration,” in GLSVLSI ’07: Pro-

ceedings of the 17th Great lakes symposium on VLSI. New York, NY, USA:

ACM, 2007, pp. 55–60.

[59] E. Gansner, E. Koutsofios, and S. North, Drawing graphs with dot, January

2006.

[60] J. Ellson, E. R. Gansner, E. Koutsofios, and S. C. N. andGordon Woodhull,

“Graphviz and dynagraph - static and dynamic graph drawing tools,” AT&T

Labs, Tech. Rep.

[61] (M)JPEG Decoder. [Online]. Available: http://www.opencores.org

[62] Xilinx, Inc, Spartan-3E FPGA Family: Complete Data Sheet, April 2008.

161

Printed the October 14, 2009 using LATEX 2ε

