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Introduction Motivations

What is the problem?

Commonsense knowledge is not always categorical.
∀x(Bird(x) =⇒ Flies(x)) fails to capture much of what we could
think and/or say about the world.

...the world is non-categorical!
Statistical information.
Personal belief.
Imperfect measure tools.
Unreliable information.
Fuzzy concepts (vagueness).
...
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Introduction General Concepts

Uncertainty 6= Vagueness

John is probably tall vs. John is quite tall.
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Introduction General Concepts

Different flavors of probability

Statistical information about the domain.
Things are usually (rarely, almost always, ...) a certain way.
"90% of birds fly"
∀x(P(Bird(x) =⇒ Flies(x)) = 0.9)
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Introduction General Concepts

Different flavors of probability (Cont’d)

Degree of belief.
Laziness, ignorance.
P(Flies(Tweety)) = 0.75

P(∀x(Bird(x) =⇒ Flies(x))) = 0.6
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Introduction General Concepts

From statistics to beliefs

Going from statistical information to a degree of belief.
e.g. "90% of birds fly" −→ P(Flies(Tweety)) = 0.9

Usual procedure (Direct Inference):
Find a reference class.
Use statistics for that class to compute degree of belief.

Problem: multiple reference classes.
Example: what is the probability that Eric is tall?

A 20% of American males are tall.
B 25% of Californian males are tall.
C Eric is from California.
D 13% of computer scientists are tall.
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Introduction General Concepts

Objective vs. Subjective probability
A philosophical debate

Objectivistic view
Probabilities are real aspects of the universe, propensities of
objects to be a certain way.
Independent on who is assessing the probability.
Philosophical position supporting frequentist statistics.

Subjectivistic view
Probability is the degree of belief of the observer, no physical
significance.
Philosophical position supporting Bayesian statistics.

In the end, this distinction has little practical significance.
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Bayesian Networks Probability Theory

Preliminary Concepts

Sample space U: every possible outcome
Events ai ⊂ U

B set of all possible events
Probability function Pr : B → [0, 1]

Axioms of probability
0 Pr(a) ≥ 0
1 Pr(U) = 1
2 If a1, ..., an are disjoint events, then

Pr(a1 ∪ ... ∪ an) =
∑n

i=0 Pr(ai)

It follows
3 Pr(a) = 1− Pr(a)
4 Pr(∅) = 0
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Bayesian Networks Probability Theory

Conditioning and Bayes’ Rule

1 Conditional probability: Pr(a|b) = Pr(a∩b)
Pr(b)

2 Conditional independence: Pr(a|s) = Pr(a|s, b)
Independece: S = ∅

3 Conjunction: Pr(ab) = Pr(a|b)Pr(b)

4 If {b1, ..., bn} is a partitioning of U then Pr(a) =
∑n

i=0 Pr(a|bi)Pr(bi)

5 Bayes’ Rule

Pr(a|b) = Pr(b|a)Pr(a)
Pr(b)
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Bayesian Networks Probability Theory

Random Variables and Joint Probability

(Propositional) random variable (r.v.): "feature" of the world whose
value is uncertain.

e.g. X1 outcome of the first coin toss.
Might be discrete or continue.

Interpretation I ∈ U: specification of the value for every r.v.

Joint probability distribution J(I): degree of belief the agent
assigns to interpretation I.

0 ≤ J(I) ≤ 1 and
∑
I

J(I) = 1

For any event a, Pr(a) =
∑

I|=a J(I)

Not useful for calculation: exponential number of interpretations.

Alessandro Panella (CS Dept. - UIC) Probabilistic Representation and Reasoning May 4, 2010 14 / 21



Bayesian Networks Bayesian Networks

Bayesian Networks

A Bayesian (or belief) Network (BN) is a direct acyclic graph
where:

nodes Pi are r.v.s
arcs represent (intuitively) direct dependency relations
each node has a conditional probability distribution
Pr(Pi|Parents(Pi))

Weather Cavity

Toothache Catch
(from AIMA, 2ed)
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Bayesian Networks Bayesian Networks

Bayesian Networks
Basic property

A node is conditionally independent from its non-descendants,
given its parents.

.  .  .

.  .  .U1

X

Um

Yn

Z nj

Y1

Z 1j

(from AIMA, 2ed)

Full joint distribution.

Pr(I) = Pr(p1, ..., pn) =

n∏
i=1

Pr(pi|Parents(Pi))

Usually requires much less space.
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Bayesian Networks Bayesian Networks

Bayesian Networks
An example

B
T
T
F
F

E
T
F
T
F

P(A)
.95

.29

.001

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)
T
F

.90

.05

A P(M)
T
F

.70

.01

.94

(from AIMA, 2ed)

Pr(j ∧ m ∧ a ∧ ¬b ∧ ¬e) = Pr(j|a)Pr(m|a)Pr(a|¬b ∧ ¬e)Pr(¬b)Pr(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998
= 0.00062
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Bayesian Networks Bayesian Networks

Queries in BNs

Query variable X ∈ X
Set of evidence variables E
Set of nonevidence variables Y = X \ (X ∪ E)

Pr(X|e) = α Pr(X, e) = α
∑

y
Pr(X, e, y)

Example

Pr(b|j,m) = α
∑

e

∑
a

Pr(b, e, a, j,m)

= α
∑

e

∑
a

Pr(b)Pr(e)Pr(a|b, e)Pr(j|a)Pr(m|a)
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Bayesian Networks Bayesian Networks

Computational complexity of BN inference

Naive computation: O(n2n)

Depth-first computation: O(2n)

Some terms are recurrent
Dynamic programming approach (Variable Elimination)
Linear time for polytrees (at most one path between any two nodes)
Exponential complexity in general
Join tree algorithms are usually used in commercial tools.

Not surprising: BN ⊃ Propositional Logic
Inference is #P-hard

Need for approximate techniques
Many forms of sampling algorithms.
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Bayesian Networks FOL

Beyond BNs

BNs are essentially propositional.
Finite and fixed set of variables, with a fixed domain.
Don’t capture regularities of the domain.

Extend probability to First-Order
First-Order Probabilistic Languages (FOPL).
Theoretical difficulties [Halpern 1990].
Need to restrict the semantics.
Several approaches

Bayesian Logic (BLOG) [Milch et al.]
Markov Logic Networks [Domingos et al.]
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Bayesian Networks FOL
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