Probabilistic Representation and Reasoning

Alessandro Panella

Department of Computer Science
University of Illinois at Chicago
May 4, 2010

Sources

■ R.J. Brachman and H.J. Levesque, Knowledge Representation and Reasoning, Elsevier, 2003

- S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed., Prentice Hall, 2003

Outline

1 Introduction

- Motivations

■ General Concepts

2 Probability and Bayesian Networks

- Probability Theory
- Bayesian Networks

■ Beyond BNs: FOL of probability

What is the problem?

■ Commonsense knowledge is not always categorical.
■ $\forall x(\operatorname{Bird}(x) \Longrightarrow \operatorname{Flies}(x))$ fails to capture much of what we could think and/or say about the world.

■ ...the world is non-categorical!

- Statistical information.
- Personal belief.
- Imperfect measure tools.
- Unreliable information.

■ Fuzzy concepts (vagueness).

Uncertainty \neq Vagueness

■ John is probably tall vs. John is quite tall.

Different flavors of probability

■ Statistical information about the domain.
■ Things are usually (rarely, almost always, ...) a certain way.

- "90\% of birds fly"
- $\forall x(\mathbf{P}(\operatorname{Bird}(x) \Longrightarrow \operatorname{Flies}(x))=0.9)$

Different flavors of probability (Cont'd)

■ Degree of belief.
■ Laziness, ignorance.
■ $\mathbf{P}($ Flies $($ Tweety $))=0.75$

■ $\mathbf{P}(\forall x(\operatorname{Bird}(x) \Longrightarrow \operatorname{Flies}(x)))=0.6$

From statistics to beliefs

\square Going from statistical information to a degree of belief.
■ e.g. " 90% of birds fly" $\longrightarrow \mathbf{P}($ Flies(Tweety $)$) $=0.9$
■ Usual procedure (Direct Inference):

- Find a reference class.

■ Use statistics for that class to compute degree of belief.

- Problem: multiple reference classes.

■ Example: what is the probability that Eric is tall?
A 20% of American males are tall.
B 25% of Californian males are tall.
C Eric is from California.
D 13% of computer scientists are tall.

Objective vs. Subjective probability

A philosophical debate

■ Objectivistic view
■ Probabilities are real aspects of the universe, propensities of objects to be a certain way.

- Independent on who is assessing the probability.
- Philosophical position supporting frequentist statistics.

■ Subjectivistic view
■ Probability is the degree of belief of the observer, no physical significance.
■ Philosophical position supporting Bayesian statistics.

■ In the end, this distinction has little practical significance.

Preliminary Concepts

■ Sample space U : every possible outcome
■ Events $a_{i} \subset U$
■ \mathcal{B} set of all possible events
■ Probability function $\operatorname{Pr}: \mathcal{B} \rightarrow[0,1]$

- Axioms of probability
$0 \operatorname{Pr}(a) \geq 0$
$1 \operatorname{Pr}(U)=1$
2 If a_{1}, \ldots, a_{n} are disjoint events, then

$$
\operatorname{Pr}\left(a_{1} \cup \ldots \cup a_{n}\right)=\sum_{i=0}^{n} \operatorname{Pr}\left(a_{i}\right)
$$

■ It follows
${ }_{3} \operatorname{Pr}(\bar{a})=1-\operatorname{Pr}(a)$
$4 \operatorname{Pr}(\varnothing)=0$

Conditioning and Bayes' Rule

1 Conditional probability: $\operatorname{Pr}(a \mid b)=\frac{\operatorname{Pr}(a \cap b)}{\operatorname{Pr}(b)}$
2 Conditional independence: $\operatorname{Pr}(a \mid s)=\operatorname{Pr}(a \mid s, b)$
■ Independece: $S=\varnothing$
3 Conjunction: $\operatorname{Pr}(a b)=\operatorname{Pr}(a \mid b) \operatorname{Pr}(b)$
4 If $\left\{b_{1}, \ldots, b_{n}\right\}$ is a partitioning of U then $\operatorname{Pr}(a)=\sum_{i=0}^{n} \operatorname{Pr}\left(a \mid b_{i}\right) \operatorname{Pr}\left(b_{i}\right)$
5 Bayes' Rule

$$
\operatorname{Pr}(a \mid b)=\frac{\operatorname{Pr}(b \mid a) \operatorname{Pr}(a)}{\operatorname{Pr}(b)}
$$

Random Variables and Joint Probability

■ (Propositional) random variable (r.v.): "feature" of the world whose value is uncertain.

- e.g. X_{1} outcome of the first coin toss.
- Might be discrete or continue.
- Interpretation $\mathcal{I} \in U$: specification of the value for every r.v.
$■$ Joint probability distribution $J(\mathcal{I})$: degree of belief the agent assigns to interpretation \mathcal{I}.

$$
0 \leq J(\mathcal{I}) \leq 1 \quad \text { and } \quad \sum_{\mathcal{I}} J(\mathcal{I})=1
$$

- For any event $a, \operatorname{Pr}(a)=\sum_{\mathcal{I} \models a} J(\mathcal{I})$

■ Not useful for calculation: exponential number of interpretationns.

Bayesian Networks

■ A Bayesian (or belief) Network (BN) is a direct acyclic graph where:

■ nodes P_{i} are r.v.s

- arcs represent (intuitively) direct dependency relations
\square each node has a conditional probability distribution $\operatorname{Pr}\left(P_{i} \mid\right.$ Parents $\left.\left(P_{i}\right)\right)$

(from AIMA, 2ed)

Bayesian Networks

Basic property

■ A node is conditionally independent from its non-descendants, given its parents.

■ Full joint distribution.

$$
\operatorname{Pr}(\mathcal{I})=\operatorname{Pr}\left(p_{1}, \ldots, p_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(p_{i} \mid \operatorname{Parents}\left(P_{i}\right)\right)
$$

■ Usually requires much less space.

Bayesian Networks

An example

$$
\begin{aligned}
\operatorname{Pr}(j \wedge m \wedge a \wedge \neg b \wedge \neg e) & =\operatorname{Pr}(j \mid a) \operatorname{Pr}(m \mid a) \operatorname{Pr}(a \mid \neg b \wedge \neg e) \operatorname{Pr}(\neg b) \operatorname{Pr}(\neg e) \\
& =0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& =0.00062
\end{aligned}
$$

Queries in BNs

- Query variable $X \in \mathbf{X}$

■ Set of evidence variables \mathbf{E}
■ Set of nonevidence variables $\mathbf{Y}=\mathbf{X} \backslash(X \cup \mathbf{E})$

$$
\operatorname{Pr}(X \mid \mathbf{e})=\alpha \operatorname{Pr}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \operatorname{Pr}(X, \mathbf{e}, \mathbf{y})
$$

Example

$$
\begin{aligned}
\operatorname{Pr}(b \mid j, m) & =\alpha \sum_{e} \sum_{a} \operatorname{Pr}(b, e, a, j, m) \\
& =\alpha \sum_{e} \sum_{a} \operatorname{Pr}(b) \operatorname{Pr}(e) \operatorname{Pr}(a \mid b, e) \operatorname{Pr}(j \mid a) \operatorname{Pr}(m \mid a)
\end{aligned}
$$

Computational complexity of BN inference

■ Naive computation: $O\left(n 2^{n}\right)$

- Depth-first computation: $O\left(2^{n}\right)$
- Some terms are recurrent

■ Dynamic programming approach (Variable Elimination)

- Linear time for polytrees (at most one path between any two nodes)
- Exponential complexity in general

■ Join tree algorithms are usually used in commercial tools.
■ Not surprising: BN \supset Propositional Logic
■ Inference is \#P-hard
■ Need for approximate techniques
■ Many forms of sampling algorithms.

Beyond BNs

■ BNs are essentially propositional.
■ Finite and fixed set of variables, with a fixed domain.

- Don't capture regularities of the domain.

■ Extend probability to First-Order
■ First-Order Probabilistic Languages (FOPL).

- Theoretical difficulties [Halpern 1990].
- Need to restrict the semantics.
- Several approaches
- Bayesian Logic (BLOG) [Milch et al.]

■ Markov Logic Networks [Domingos et al.]

