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Abstract— In this paper, we compare two methods of 

estimating relevance for the emergency electronic brake light 

application. One uses an analytically derived formula based on 

the minimal safety gap required to avoid a collision. The other 

method uses a machine learning approach. The application 

works by disseminating reports about vehicles that are 

performing emergency deceleration in effort to warn drivers 

about the need to perform emergency braking. Vehicles which 

receive such reports have to decide whether the information 

contained in the report is relevant to the driver, and warn the 

driver if that is the case. Common ways to determine relevance 

are based on the lane or direction information, but using only 

these attributes can still lead to many false warnings, which 

can desensitize the driver. Desensitized drivers may ignore 

warnings or turn off the system completely, thus eliminating 

any safety benefits of the application.  We show that the 

machine learning method, in comparison to the analytically 

derived formula, is able to significantly reduce the number of 

false warnings by learning from the actions drivers take after 

receiving a report. The methods were compared using 

simulated experiments with a range of traffic and 

communication parameters. 

Keywords- machine learning, vehicle safety 

I.  INTRODUCTION 

In 2005, the National Highway Traffic Safety 
Administration (NHTSA) released a document identifying 
eight potential safety applications which utilize Dedicated 
Short Range Communication (DSRC) technology [1]. The 
applications were selected based on potential safety benefits 
they provide. Among them, the Emergency Electronic Brake 
Light (EEBL) application was determined to be one of three 
applications to possess high benefit potential. EEBL was 
defined as an application that alerts drivers of any hard 
braking done by vehicles in front of them. The idea was to 
extend drivers’ visibility through the emergency brake 
notifications. This was described as most helpful in 
situations where visibility is limited, such as in adverse 
weather conditions. 

EEBL works by vehicles disseminating a report each 
time they perform emergency braking, which occurs when 
the deceleration rate exceeds a predefined threshold. When a 
report arrives at a vehicle, the system checks whether the 
information contained in the report is relevant to the driver. 
Based on this, a warning would be given to the driver. In [1], 
authors suggested that a report could be considered based on 

the vehicle’s lane. However, using lane information as the 
only factor, all drivers of the following vehicles in the same 
lane would see the warning. This could cause many 
unnecessary warnings to be shown, which might result in 
drivers ignoring the EEBL system. False warnings could be 
eliminated by restricting the EEBL warnings to those 
vehicles for which emergency braking is necessary. This 
could be done by calculating required deceleration forces, 
given certain report attributes, such as distance, vehicle 
speeds, or vehicle density. However, such equations may not 
take into account normal driver behavior and might result in 
drivers to consider the warnings as unnecessary. It may also 
be difficult to come up with the proper equation that would 
take into account all the relevant factors. 

In this paper, we compare two ways of determining the 
relevance. One approach uses an analytically derived 
formula that tries to estimate the minimal safety gap a 
vehicle would need to avoid a collision. The other is our 
proposed method of using machine learning techniques for 
learning reports’ relevance. In this method, vehicles check 
whether emergency braking was done within a fixed amount 
of time after receiving each report. Based on this, training 
examples are created for a machine learning process which 
learns a report relevance model. The learned model can then 
be used to determine the likelihood of an arbitrary report 
being relevant. The decision to warn the driver is then based 
on this likelihood, which depends on several factors, such as 
the distance between the reporting and receiving vehicle, the 
density of vehicles on the road, and the velocity of the 
vehicles. The advantage of our proposed method is the 
ability to easily combine these individual factors. Moreover, 
through simulations, we show that the method is able to 
significantly reduce the number of warnings that drivers 
would perceive to be unnecessary.  

II. RELEVANT WORK 

The impact of false warnings on driving behavior is 
studied in [2], based on a collision avoidance system. It is 
discovered that when the false warning rate increases over 
60%, drivers begin to decrease their headways, implying 
they start to distrust the system. 

Current simple strategies for determining relevance are 
based on lane and direction [3]. A more sophisticated 
method is used in [4], where authors propose that warnings 
be evaluated based on a time-space relevance factor. 
However, the details of the exact form of the relevance factor 



are not provided. In [5], warnings are given for collisions at 
intersections when the difference between the estimated 
time-to-collision and time-to-avoidance values are within a 
certain threshold. Although such a method could be 
employed in an EEBL application, the formulation uses a 
fixed number of factors and cannot be easily extended to 
include additional information (such as weather). In [6], 
authors propose to give warnings based on calculation of 
required deceleration forces to avoid a collision. However, 
authors assume full knowledge of every vehicle’s position, 
velocity, acceleration, and length, which is not available in 
the EEBL application. 

Use of machine learning for relevance estimation has 
been previously used in [7, 8] for the purposes of ranking 
reports in travel time and parking information dissemination 
applications. Handling of false warnings through machine 
learning has been studied in [9], where authors experiment 
with a smartphone application alerting drivers of slowdowns 
in traffic on the road ahead (see [10] for application details). 
While the work presented in this paper also uses machine 
learning techniques for avoiding false warnings, the key 
difference is the feedback mechanism. In contrast to the 
procedure described in [9], our method for feedback is 
automatic and therefore does not involve users inputting their 
preferences manually. The advantage of this, aside from 
eliminating burden on the users, is that the feedback is based 
on user action and not stated preference, which may be 
imprecise. 

One application related to the EEBL is a PreCrash 
system. A PreCrash system is designed to detect a possibility 
of a collision and is typically used to prepare the vehicle for 
an imminent impact by pre-tensioning seat belts or taking 
other actions [11, 12]. While this system may also be used to 
warn drivers, similarly to the EEBL application, since it 
typically only relies on knowledge of the vehicle ahead, it 
may not provide warnings in sufficient time for driver to take 
action. Other related applications include the Adaptive 
Cruise Control [13] and Cooperative Adaptive Cruise 
Control [14]. The goal of these systems is to set vehicle’s 
acceleration or deceleration in order to maintain a safe 
following distance, typically through a defined formula. 
Unlike EEBL, these systems often rely on vehicles being 
equipped with lidar or similar device, and are not designed 
for warning drivers. 

III. MODEL ENVIRONMENT 

The environment consists of a set of vehicles, controlled 
by human drivers. A subset of these vehicles is equipped 
with the following: 

• On-board computer, with storage capability 

• Positioning device (e.g. GPS) 

• Short-range wireless communication device (e.g. 
DSRC or Wi-Fi) 

• Accelerometer 

• Warning indicator 

• Digital map  
We assume that the storage of each vehicle has an 

unlimited capacity and that the positioning device is accurate 

at all times. The accelerometer on the vehicle senses the 
deceleration rate. The warning indicator is used to warn 
drivers about the need to brake. The digital map contains 
information about the road on which the vehicle is driving. 

We call the subset of vehicles that are equipped as 
participating vehicles. Otherwise, they are called non-
participating vehicles. Non-participating vehicles do not 
have a warning indicator (no EEBL) or any communication 
capabilities. The ratio between participating vehicles and the 
total number of vehicles is called the participation rate.  

IV. THE EMERGENCY ELECTRONIC BRAKE LIGHT 

APPLICATION 

Our system design for the EEBL application consists of 
three elements: report creation, report dissemination, and 
report relevance estimation. The system works with vehicles 
creating reports based on their deceleration. These reports 
are then disseminated to nearby vehicles using the short-
range communication device. Once a report arrives at a 
vehicle, the relevance of the report is estimated. Based on 
this estimate, the warning indicator light is turned on to alert 
the drivers about the need to perform emergency braking. 
We now discuss the details of each of the design elements 
individually. 

A. Report Creation 

A vehicle emergency decelerates when its deceleration 
force exceeds or equals the threshold Tsevere_brake. 
Naturally, the Tsevere_brake threshold corresponds to hard 
braking, so we will assume that it is set to the maximum 
deceleration force of the vehicle. When a vehicle initiates an 
emergency deceleration, they generate an emergency brake 
report which includes the current location and speed of the 
vehicle, and the time when the emergency deceleration was 
performed. Additional reports will be generated 
continuously, every 0.1 seconds, while the emergency 
deceleration is sustained.  

B. Report Dissemination  

Reports are disseminated using the short-range 
communication device through broadcast communication. In 
broadcast communication, the reports sent can be received 
by all neighboring vehicles. Neighboring vehicles are those 
within a fixed distance (i.e. the transmission range) of the 
sender. New reports received by a vehicle are immediately 
rebroadcast to its neighbors. 

C. Report Relevance Estimation  

When a report is received, we estimate its relevance to 
the vehicle through one of the methods presented in the next 
section. The methods also define whether a warning will be 
shown to the driver for the given estimate of relevance. 

V. THE RELEVANCE ESTIMATION METHODS 

In this section, we will present two methods for 
estimating relevance of emergency brake reports. Both 
methods utilize the same information for calculating 
relevance, which is information that would be expected to be 
available in an EEBL system. This includes information 



about the vehicle that generated the emergency brake report, 
the vehicle that received the report. However, specific 
information about other vehicles is not assumed to be 
known. The first method, discussed in the next subsection, 
uses an analytically derived formula. The second, discussed 
in the following subsection, is our proposed method that 
utilizes machine learning techniques. 

A. Analytic Method 

This method determines relevance based on an estimate 
of the minimum safety gap. The gap is defined in terms of 
the distance between the receiving vehicle and the vehicle in 
front of it. We define the minimum safety gap as the 
minimum gap, which the receiving vehicle requires, to avoid 
a collision with the vehicle in front of it. This is based on the 
assumption that at the time the report is received by a 
vehicle, the vehicle in front of it will immediately emergency 
decelerate until stopped. Given this assumption, if the gap 
between the two vehicles is less than the minimum safety 
gap, the report will be labeled as relevant. Otherwise, the 
report will be labeled as irrelevant.  

To find whether the gap exceeds the minimal safety gap, 
we consider the scenario shown in fig. 1. There are vehicles 
driving on a road with a single lane. One of the vehicles (A), 
then receives a report from a downstream vehicle (C). 

 

 

Figure 1.  Assumed scneario for deriving the formula. Shows vehicle C 

sending report to vehicle A, which has vehicle B in front of it. 

Assume that the vehicle directly in front of A, vehicle B, 
will emergency decelerate immediately after A receives the 
report. When this happens, we want to estimate whether the 
gap between A and B is less than or equal to the minimum 
safety gap. To do this, we have to know the position and 
velocity of B. However, in the EEBL system, a report would 
contain information only about C. Therefore, we have to 
estimate the initial (i.e. at the time of report generation) 
position, velocity, and acceleration of B using available 
information. For velocity and acceleration, we will use the 
values of C that are available from the report. For position, 
we will assume we have knowledge of the density of 
vehicles on the road. The density can either be calculated 
from knowledge of current travel times or it can be estimated 
locally from wireless communication device signals and 
knowledge of the participation rate (see [15]). Let sx(t), vx(t), 
and ax(t) be the position, velocity, and acceleration of vehicle 
X at time t. Then, assuming equally spaced vehicles in 
between A and C, the initial position of B can estimated from 
density as follows: 

 (1) 

Note that the minimum is taken between the estimate and 
the initial position of C, because the estimate should never be 
greater than the position of C. 

Once we have the information about B, we can find the 
minimal safety gap formula. We assume a driver reaction 
time of 1.0 seconds, using the study in [16]. With this 

assumption, we then find the formula for the minimal safety 
gap, based on equations derived in [6]. We have omitted the 
formula in this paper due to the space limitations. 

B. Machine Learning Approach 

The general idea behind our machine learning approach 
is to use the received reports as an input to a supervised 
machine learning algorithm. The objective is to learn 
whether emergency deceleration by the reporting vehicle will 
necessitate emergency deceleration by the receiving vehicle. 
The method works in two stages: learning and usage. Every 
vehicle starts in the learning stage, which proceeds as 
follows. First, the warning indicator is disabled, to allow us 
to observe how a driver normally reacts after a report is 
received. Then, for every report received by a vehicle, we 
calculate values for a set of report attributes and determine 
whether the report was relevant. We will discuss the 
selection and calculation of the attributes in subsection 1. We 
check whether the report was relevant by monitoring the 
vehicle’s behavior after the report was received for a 
specified amount of time, called the Reaction-delay seconds 
(explained below). We then use the following definition to 
determine whether the report was relevant: a report r 
received by a vehicle v is relevant, if the driver of v performs 
an emergency deceleration within Reaction-delay seconds 
after r was generated. 

The relevance definition stems from the intuition that a 
temporal correlation (occurrence within Reaction-delay) 
between receiving a report and undertaking emergency 
deceleration implies that the event indicated by the report 
necessitated a reaction from the driver and is hence relevant. 
Reaction-delay, is the time interval starting when the 
reported event occurs, and ending when the driver starts 
reacting. This involves the time it takes for the reported 
event to cause a chain reaction that becomes visible to the 
driver, as well as the driver reaction time. This is the reason 
for waiting the Reaction-delay seconds after the report is 
received before determining its relevance. For our 
experiments we found that a Reaction-delay value of 5 
seconds achieved the best performance. 

Once the attribute values are calculated and the relevance 
of the report determined, the system then generates a training 
example. A training example consists of a set of report 
attribute values and a label indicating its relevance. Labels 
can be either positive (relevant) or negative (not relevant). 
The training examples that are generated are added to a 
training example set stored by each vehicle. Once a sufficient 
number of training examples are generated (we used 
thousands in our experiments), the set of all stored examples 
is input to a machine learning algorithm, which uses the 
training examples to learn a relevance model (see subsection 
2). After learning, the method proceeds to the usage stage.  

In the usage stage, the warning indicator is enabled and 
new training examples are no longer generated. Instead, 
when a report arrives at a vehicle, the report attribute values 
are calculated and the learned relevance model is used to 
decide when the warning should be turned on. Note that it is 
possible to continue to learn in the usage stage. However, 
because the EEBL warnings will affect drivers’ behavior, 



this may introduce a bias in the learning. We will therefore 
leave this issue as part of future work. We will now discuss 
the attribute selection in the next subsection and then provide 
an overview of the machine learning methods we utilized. 

1) Attributes 
The attributes used for the reports are determined based 

on factors that affect the drivers’ decision to initiate 
emergency deceleration. In this paper, we identify three such 
attributes: distance (d), difference in velocities (vd), and 
density (ρ). We define distance as the time needed for the 
receiving vehicle, traveling at its current velocity, to reach 
the point at which the report was generated. Difference in 
velocities is the difference between the velocities of the 
receiving and the reporting vehicles. Density is the number 
of vehicles on the road, divided by the road length. Note that 
additional attributes, such as those related to weather or road 
conditions, may also be used to augment the learned 
relevance model.  

2) Machine Learning Methods 
In this subsection, we discuss two methods that we have 

used for learning.  

a) Naïve Bayes 

 The Naïve Bayes method is a simple method for learning 
based on probabilities. It assumes conditional independence 
among the attributes and uses the Bayes’ rule for calculating 
the probabilities. The algorithm finds a mapping of the 
attributes to the probability that the driver will perform 
emergency deceleration within Reaction-delay seconds after 
report is received. We label the conditional probability that a 
vehicle v performs emergency braking, given a report with 
attributes ρ, d, and vd, as P(vbr|ρ,d,vd)  and the unconditional 
probability that a vehicle v performs emergency deceleration 
as P(vbr). Using Bayes’ rule, the conditional independence 
assumption, and the law of total probability, the probability 
of relevance is then calculated as: 

 (2) 

In this equation, P(vbr’) is the unconditional probability of 
not emergency braking, and can be calculated as (1-P(vbr)). 
P(vbr) can be calculated by counting all instances of 
emergency braking over time. We additionally have to find 
the conditional probabilities, P(ρ|vbr), P(d|vbr), P(vd|vbr), 
P(ρ|vbr’), P(vd|vbr’), and P(d|vbr’). We make the assumption 
that these follow a normal distribution and hence estimate 
the probabilities by maintaining sample mean and standard 
deviations for each, using the training examples as samples. 
We thus have to maintain two parameters for each of the six 
distributions: µ, the mean, and σ, the standard deviation. 

These values can be calculated as follows. After 
receiving a report, the vehicle waits for Reaction-delay 
seconds since report was received. After this time, if the 
vehicle was, at any time, emergency decelerating, we update 
P(ρ|vbr), P(d|vbr), P(vd|vbr), otherwise, we update P(ρ|vbr’), 
P(vd|vbr’), and P(d|vbr’). The updates are performed by 
calculating a new mean and standard deviation. 

b) Logistic Regression 

This method assumes that the emergency braking 
probability fits a logistic function, f(z)=1/(1+exp(-z)), where 
z is a linear combination of the attributes ρ, d, vd: z=β0+β1 
ρ+β2d+β3vd. The parameters β1, β2, and β3, are the 
coefficients of the attributes, and β0 is the intercept value. 
The values of these parameters are found based on the 
training examples, typically using maximum likelihood 
methods (see [17] for details).  

VI. EVALUATION 

The main goal of the evaluation was to measure the 
effectiveness of the EEBL system in preventing vehicular 
collisions and to measure the potential for driver 
desensitization to warnings. The evaluation was done 
through simulations using the MITSIM simulator [18], 
modified to enable vehicle collisions and to simulate the 
EEBL system. The evaluation compared the two relevance 
estimation methods: the analytic method (Analytic), and the 
machine learning method using Naïve Bayes (ML-NB) and 
logistic regression (ML-LR). Two baseline methods were 
also used: noEEBL, which never showed warnings, and 
simpleEEBL, which showed warnings for every received 
report. The next subsection will describe our modifications 
to MITSIM. Subsection B explains our simulation 
environment and subsection C provides the evaluation 
procedure.  Results are shown in subsection D. 

A. Modifications to MITSIM 

Since the original software focused mainly on evaluating 
traffic flow, it did not permit vehicle collisions. To prevent 
collisions, MITSIM allowed vehicles, in certain cases, to 
exceed their specified maximum deceleration. We therefore 
modified MITSIM by making sure maximum deceleration 
cannot be exceeded at any time during car following. As a 
result, vehicles may not have enough time to stop and 
collisions can occur. We also implemented the ability to stop 
one of the vehicles immediately, which allowed us to 
simulate a worst case emergency braking situation.  

The EEBL system was implemented by checking, during 
every time step, the deceleration rate of all vehicles. If one of 
the vehicles reached the maximum deceleration rate, the 
EEBL report was then sent to all following vehicles in the 
same time step. All vehicles which received the report would 
resent it in the same time step and the relevance estimator 
would decide whether a warning would be given. If a 
warning was given, the vehicle, after some driver reaction 
time, decelerated with maximum force until stopped. 

B. Simulation Environment 

The environment consisted of a 3 mile road with a single 
lane. Vehicles entered the road at a rate specified by the 
mean departure rate, which is a random number from a 
normal distribution and is fixed for the duration of a single 
simulation run. The inter-vehicle spacing is Poisson 
distributed with mean rate equal to the mean departure rate. 
The speed limit and free-flow speeds on the road are both set 
to 55mph. The driver reaction times were set according to 
values in [16]. Tsevere_brake was set to the MITSIM 



specified maximum deceleration. TWarning was set to 0.5. 
All other parameters were set to their MITSIM defaults. 

Each run simulated a single incident on the road, in 
which a particular vehicle, we call the incident vehicle, 
stopped immediately after it traversed 99% of the road 
length. The vehicle selected to stop was always the 100

th
 

vehicle entered onto the road. This was done to allow the 
simulation to initialize. However, we have tested using the 
1

st
, 10

th
, 50

th
, and 200

th
 vehicle instead of the 100

th
 as the 

incident vehicle, but the results did not change. The incident 
initiated a possible sequence of collisions. For each run, we 
recorded the number of collisions in the last 2 miles of the 
road. The first mile is not considered, because collisions at 
the road entrance are typically unrealistic due to the method 
MITSIM uses for loading vehicles onto the road. In order to 
focus on the collisions that happen after the incident, the 
EEBL system was initially turned off and then turned on 
after the incident occurred. 

C. Evaluation Procedure 

The evaluation of our relevance estimation method was 
done in several steps. First, we ran 2000 simulation runs 
without EEBL to gather training examples. For these runs, 
the departure rate was set to a mean of 800 vehicles per hour, 
and the standard deviation to 400. Examples from the first 
1000 runs were used for learning, done through the Weka 
Learning Toolkit [19], using  the NaiveBayesSimple and 
Logistic implementations with default parameter values. The 
remaining examples were used for testing the false warning 
rate with the different relevance estimation methods. We 
defined the false warning rate as the number of false 
warnings, divided by the total number of warnings shown. A 
false warning was counted every time the relevance 
estimation method would have given a warning for the 
particular set of attribute values, while the driver would not 
have performed emergency deceleration within the Reaction-
delay seconds of report generation. We used the false 
warning rate as a means of testing the potential driver 
desensitization that can occur. A high false warnings rate 
will increase the possibility of driver desensitization, because 
when a warning is shown in cases where the driver did not 
feel it was needed, he or she will be less likely to react to the 
warning the next time it is shown. 

After learning the relevance models, we then ran 1000 
simulation runs with EEBL enabled, and repeated the runs 
using varying departure rates, participation rates, and 
transmission ranges.  For every combination of parameter 
values, the average number of collisions per run was then 
calculated. 

D. Results 

1) False Warning Rate 
The results of the false warning rate tests are shown in 

fig. 2. Both the simpleEEBL and analytic methods had 
similar false warning rates of 67% and 65%, respectively. 
Intuitively, such high rates of false warnings will eventually 
desensitize drivers and reduce the safety benefit of EEBL. In 
contrast, ML-NB achieved a much lower false warning rate 
of 39%. ML-LR had an even lower rate of 24%. The reason 

that the analytic method had a high false warning rate was 
because the formulas used to calculate the minimal safety 
gap are based on assumptions about driver behavior and 
approximations of vehicle positions that may not be valid. 

 
Figure 2.  False warning rate for different relevance estimation methods. 

2) Number of Collisions 
The results showing the average number of collisions per 

for different parameter values are shown in fig. 3 and 4. For 
results shown in fig. 3, we varied the departure rate, while 
keeping the transmission range set to infinity, and the 
participation rate set to 100%. With the noEEBL method, the 
average number of collisions decreased considerably with 
increasing departure rates. This behavior can be attributed to 
the fact that at low densities, vehicles travel at much higher 
velocities, which makes it harder for the vehicle to stop and 
avoid a collision with a stopped vehicle. Averaging over all 
departure rates, noEEBL averaged 28.16 collisions per run. 
Through the use of EEBL, vehicular collisions were nearly 
avoided at all departure rates, with an average of 0.260 
collisions per run for the simpleEEBL method. The reason 
for the large difference between the number of collisions 
using noEEBL and simpleEEBL is that the tested scenario 
creates a chain of vehicular collisions which is avoided using 
EEBL. On average the machine learning method using naïve 
Bayes (ML-NB) achieved the best performance, with 0.256 
average collisions, but this was not much lower than the 
simpleEEBL, analytic (0.291), or the ML-LR (0.301) 
methods. Note that in some cases, the machine learning or 
analytic methods may prevent more collisions than 
simpleEEBL, because the simple method may cause 
unnecessary emergency deceleration. This unnecessary 
deceleration can then cause additional collisions that would 
not otherwise happen without the EEBL warning. 

In real life, the wireless communication technologies 
such as DSRC typically have a limited transmission range, 
so therefore only a subset of vehicles (those within range) 
can receive the reports. Additionally, not all vehicles may be 
equipped with EEBL. In fig. 4, we show what happens when 
the transmission range (TR) is limited and not all vehicles 
are equipped with EEBL, using ML-NB and simpleEEBL 
methods. For these tests, the departure rate was fixed to 600 
veh/hr. Results showed no significant difference between 
any of the EEBL methods as the participation rate or 
transmission range varied. Also, the results indicate a 
considerable decrease in the number of collisions even with a 
low participation rate. The implication is that obtaining a 



safety benefit from the EEBL system may not require a large 
vehicle participation rate. 

 
Figure 3.  Average number of collisions for different relevance estimation 

methods and vehicle departure rates. 

 
Figure 4.  Average number of collisions vs. vehicle participation rate at 

limited transmission range (TR). 

VII. CONCLUSION 

In this paper we compared two methods for estimating 
relevance of emergency brake reports in an EEBL system. 
One used an analytic approach based on the minimal safety 
gap to avoid a collision. The other method used a machine 
learning approach. The two methods were evaluated in 
simulations using the MITSIM software. Tests showed that 
the simpleEEBL method, which always displayed a warning 
to drivers when a report arrives, significantly lowered the 
number of collisions on the road. The results also showed 
that both the analytic and the machine learning methods 
achieved a similar number of collisions as the simpleEEBL. 
However, the machine learning method significantly reduced 
the number of false warnings given to drivers in comparison 
to all other methods, which reduced the possibility of driver 
desensitization to warnings. Additional tests showed the 
impacts of participation rate and limited transmission range 
on the average number of collisions. 

ACKNOWLEDGMENT 

This work was supported in part by the National Science 
Foundation IGERT program under Grant DGE-0549489 and 
IIS-0957394. 

REFERENCES 

[1] A. Carter, “The status of vehicle-to-vehicle communication as a 
means of improving crash prevention performance,” Tech. Rep. 05-
0264, NHTSA, 2005.  

[2] T. A. Dingus, D. V. McGehee, N. Mankkal, S. K. Jahns, C. Camey, 
and J. M. Hankey, ”Human factors field evaluation of automotive 
headway maintenance/collision warning devices,” Human Factors, 
39, pp. 216-229. 

[3] Y. Zang, L. Stibor, H. J. Reumerman, and H. Chen, "Wireless local 
danger warning using inter-vehicle communications in highway 
scenarios," Proc. 14th European Wireless Conference, June 2008, 
pp.1-7, 22-25. 

[4] B. van Arem, C. M. J. Tampère, and K. M. Malone, “Modeling traffic 
flows with intelligent cars and intelligent roads,”  Proc. IEEE Intell. 
Vehicles Symp., Columbus, OH, Jun. 2003, pp. 456–461. 

[5] R. Miller and H. Qingfeng, "An adaptive peer-to-peer collision 
warning system," Vehicular Technology Conference, 2002. VTC 
Spring 2002. IEEE 55th , vol.1, pp. 317- 321. 

[6] B. A. Galler and H. Asher, “Vehicle-to-Vehicle Communication for 
Collision Avoidance and Improved Traffic Flow,” Technical Report, 
Transportation Research Board, May 1995. 

[7] P. Szczurek, B. Xu, J. Lin, and O. Wolfson, “Machine Learning 
Approach to Report Prioritization with an Application to Travel Time 
Dissemination,” Proc. of The Second International Workshop on 
Computational Transportation Science, 2009, pp.31-36. 

[8] P. Szczurek, B. Xu, J. Lin, and O. Wolfson, “Spatio-temporal 
Information Ranking in VANET Applications,” International Journal 
of Next-Generation Computing. 1, 1 (2010). 

[9] C. Manasseh, Y. P. Fallah, R. Sengupta, and J. Misener, "Learning 
User Perception To Traveler Situation Awareness Alerts on Mobile 
Devices", unpublished. 

[10] C. Manasseh, Y. P. Fallah, R. Sengupta, and J. Misener, "Using 
Smartphones to Enable Situation Awareness on Highways", Proc. of 
Intelligent Transportation Society of America annual conf. ITSA 
2010, in press. 

[11] M. M. Muntzinger, S. Zuther, and K. Dietmayer, "Probability 
estimation for an automotive Pre-Crash application with short filter 
settling times," Proc. IEEE Intelligent Vehicles Symposium, 3-5 June 
2009, pp.411-416. 

[12] Z. Sun, R. Miller, G. Bebis, and D. DiMeo, "A real-time precrash 
vehicle detection system," Proc. Sixth IEEE Workshop on 
Applications of Computer Vision (WACV), 2002, pp. 171- 176. 

[13] S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, and H. Fujii, "Vehicle 
control algorithms for cooperative driving with automated vehicles 
and intervehicle communications," IEEE Transactions on Intelligent 
Transportation Systems, vol.3, no.3, pp. 155- 161, Sep 2002. 

[14] G. Naus, R. Vugts, J. Ploeg, R. Vd Molengraft, and M. Steinbuch, 
“Towards On-The-Road Implementation Of Cooperative Adaptive 
Cruise Control,” 16th ITS World Congress, 2009.  Sep. 21-25th. 

[15] S. Panichpapiboon and W. Pattara-atikom “Evaluation of a Neighbor-
based Vehicle Density Estimation Scheme,” IEEE International 

Conference on ITS Telecommunications (ITST'08), Phuket, Thailand, 
Oct. 2008, pp. 294-298. 

[16] G. Johansson and K. Rummer, “Drivers' brake reaction time,” Human 
Factors, 13(1):23, February 1971. 

[17] S. Le Cessie and J. C. van Houwelingen, J.C., “Ridge Estimators in 
Logistic Regression”, Applied Statistics, 1992, 41(1):191-201. 

[18] Q. Yang, and H. N. Koutsopoulos, “A Microscopic Traffic Simulator 
for Evaluation of Dynamic Traffic Management Systems,” 
Transportation Research Part C: Emerging Technologies. Vol.4, issue 
3, June 1996, pgs. 113-129. 

[19] I. H. Witten and E. Frank. Data Mining: Practical machine learning 
tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 
2005.

 


