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on Mondays and Sundays because they are based on
real experience of dinners at weekends

Similarly, more non-spammers are registered at
weekends and Mondays

Registration and composing reviews in main site is the fastest way, so spammers show a
preference in registering and posting reviews on the main site

Spammers switch IP addresses/cities and even browser cookies more often than
ordinary/genuine users
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People in large cities (a few big pie charts) are dominated by non-spammers
The further the cities are from Shanghai, the higher the ratios of spammers

Users who frequently and randomly "move” all over China with unusual speeds are likely to be spammers

Features Restaurant reviews in Shanghai, China
Method | Accuracy | Precision | Recall | F1 | If auser is registered in main site from November 1st, 2011 to April 18th, 2014
If a user is registered between Tu. and Thur. |
Unigram and _ _ — —| |#Reviews | #users #1Ps #restaurants
Bigram 0.68 0.71 0.63 | 0.67 | |Distance from the registration city to Shanghai
Average Travel Speed 6,126,113 1,074,604 1,331,471 108,787
Behavioral % of reviews posted at weekends
conavor® 1 074 | 071 | 078 073~ P
% of reviews posted through PC Ackngwledge
Average distance to Shanghai
Proposed : :
Centures 0.84 0.81 0.86 | 0.83 | [average absolute rating deviation We yvoul.d like to thank the spam detection team
in Dianping for generously sharing the review
# of unique IPs used by a user dataset. This paper is made possible through the
of un cies b help and support from engineers and scientists in
Combined 0.85 0.83 0.87 | 0.85 ot unique cooxies by a uset Dianping who provided valuable suggestions and
# of unique cities where a user write reviews indispensable efforts in evaluation



