
Solutions of Problems 1 and 2 of Assignment #1

(Course: CS 401)

Problem 1:

(a) Take the following functions and arrange them in descending order of growth rates. That is,

if a function gi(n) immediately follows function gj(n) in your list, then it should be the case that

gi(n) = O (gj(n)). Justify your answer clearly.

g1(n) = 2 (logn)
1/3

g2(n) = 2n2

g3(n) = n5/3

g4(n) =
√

logn
log logn

g5(n) = n (log n)2

g6(n) = 2 (11/9)n

g7(n) = (log n)logn

(b) Give examples of two continuous functions f(n) and g(n) of positive real inputs n such that

f(n) 6= O(g(n)), g(n) 6= O(f(n)), f(n) 6= Ω(g(n)) and g(n) 6= Ω(f(n)).

Solution:

(a)

g4 = O(g1) ≡
√
log n

log log n
= O

(

2 (logn)
1/3
)

≡ 1

2
log log n− log log log n = O

(
(logn)

1/3
)

︸ ︷︷ ︸

taking log of both sides

≡ log log n = O
(
(logn)

1/3
)

g1 = O(g3) ≡ 2 (logn)
1/3

= O
(
n

5/3
)
≡ log log n = O (logn)
︸ ︷︷ ︸

taking log of both sides

g3 = O(g7) ≡ n
5/3 = O

(
(log n)logn

)
≡ log n = O (log n log log n)
︸ ︷︷ ︸

taking log of both sides

g7 = O(g5) ≡ (log n)logn = O
(

n (logn)2
)

≡ log n log log n = O
(
(logn)3

)

︸ ︷︷ ︸

taking log of both sides

≡ log log n = O
(
(logn)2

)

g5 = O(g2) ≡ n (log n)2 = O
(

2n2

)

≡ (log n)2 = O
(
n2
)

︸ ︷︷ ︸

taking log of both sides

1



g2 = O(g6) ≡ 2n2

= O
(
2 (11/9)n

)
≡ n2 = O ((11/9)n)
︸ ︷︷ ︸

taking log of both sides

Thus, the correct order is g6, g2, g5, g7, g3, g1, g4.

(b)

f(n) =







n2, if n is an even positive integer

n4, if n is an odd positive integer

f (bnc) +
(

f (dne)− f (bnc)
)(

n− bnc
)

, otherwise

f(n) is a continuous function of n since the function h(n) = f (bnc)+
(

f (dne)−f (bnc)
)(

n−bnc
)

satisfy h(bnc) = f(bnc) and h(dne) = f(dne). The function g(n) can similarly be defined as

g(n) =







n4, if n is an even positive integer

n2, if n is an odd positive integer

g (bnc) +
(

g (dne)− g (bnc)
)(

n− bnc
)

, otherwise

and a similar argument shows that g(n) is also a continuous function of n.

Proof of g(n) 6= O
(
f(n)

)
g(n) 6= O

(
f(n)

)

g(n) 6= O
(
f(n)

)
and f(n) 6= Ω

(
g(n)

)
f(n) 6= Ω

(
g(n)

)

f(n) 6= Ω
(
g(n)

)
: Assume, for the sake of contradiction, that

g(n) = O
(
f(n)

)
. This implies that there exists two positive constants n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0. Let n1 = max
{
2, 2dce

}
× n0 ≥ n0. Note that n1 is an even integer

and thus,

g (n1) ≤ c f (n1) ≡ n4
1 ≤ c n2

1 ≡ n1 ≤
√
c

and the last inequality above contradicts the choice of n1. The same proof also shows that

f(n) 6= Ω
(
g(n)

)
.

Proof of f(n) 6= O
(
g(n)

)
f(n) 6= O

(
g(n)

)
f(n) 6= O

(
g(n)

)
and g(n) 6= Ω

(
f(n)

)
g(n) 6= Ω

(
f(n)

)
g(n) 6= Ω

(
f(n)

)
: Assume, for the sake of contradiction, that

f(n) = O
(
g(n)

)
. This implies that there exists two positive constants n0 and c such that

f(n) ≤ cg(n) for all n ≥ n0. Let n1 = max
{
3, 2dce + 1

}
× n0 ≥ n0. Note that n1 is an odd

integer and thus,

f (n1) ≤ c g (n1) ≡ n4
1 ≤ c n2

1 ≡ n1 ≤
√
c

and the last inequality above contradicts the choice of n1. The same proof also shows that

g(n) 6= Ω
(
f(n)

)
.

2



Problem 2: Suppose that there are only two classifications of professional wrestlers: the “good

wrestlers” and the “bad wrestlers”. Further suppose that two wrestlers can wrestle only if one

of them good and the other one is bad.

Your input is a list of n wrestlers and a list of r pairs of wrestlers that have rivalries. Your

goal is to write an algorithm to determine, in O(n + r) time, if it is possible to classify the n

wrestlers as good or bad such that the two wrestlers in every rivalry pair can in fact wrestle.

For example, if the wrestlers are W1,W2,W3 and the rivalry pairs are {W1,W2}, {W1,W3},
then classifying W1 as good and W2,W3 as bad works. If, one the other hand, the rivalry pairs

are {W1,W2}, {W3,W2}, {W1,W3}, then no matter how we classify the wrestlers, one rivalry

pair will contain two wrestlers of the same type.

Solution: Build the following undirected unweighted graph G = (V,E). There is a node vi in

V corresponding to the ith wrestler (i = 1, 2, . . . , n). There is an edge
{
vi, vj

}
in E if the ith

and the jth wrestler are in a pair of rivalry. Clearly, G has n nodes, r edges and can be built in

O(n+ r) time.

Classifying the wrestlers into two classes is equivalent to checking if G is bipartite or not (the

“good” wrestlers form the left side of nodes, and the “bad” wrestlers the right side of nodes in

the bipartite graph). In the class, we have seen how to do this using BFS in O(n+ r) time.

3


