
Object Interoperability for Geospatial

Applications: A Case Study∗

Isabel F. Cruz†and Paul W. Calnan‡

Department of Computer Science
University of Illinois

Chicago, IL 60607-7053, USA

Abstract

In this paper, we analyze a geospatial application for visualizing U.S.
election results in order to show the problems that need to be solved in
the mapping between different XML representations and their conceptual
models. We propose a framework that provides a number of core classes
that allow applications to treat XML documents as graphs and to eval-
uate XPath expressions against such document graphs. We also propose
a mechanism that allows information to be exchanged between document
types. Our goal is to ultimately attain an overall framework for interop-
eration where maintenance problems are minimized. To achieve this, we
anticipate the need for introducing metadata in the semantic layer that
will guide the translation process between document types.

Keywords: Geospatial applications, user interface backend, object
interoperability, technologies for interoperability.

1 Introduction

In statewide geospatial applications, hundreds of systems need to be integrated.
In these applications, challenges in achieving interoperability are at the seman-
tic level (e.g., different classification schemes) and at the data structure level
(e.g., different XML DTDs). Current approaches that deal with this problem
require the intervention of a human expert to perform the mapping between

∗Research supported in part by the Advanced Research and Development Activity (ARDA)
and the National Imagery and Mapping Agency (NIMA) under Award Number NMA201-01-
1-2001, and by the National Science Foundation under CAREER Award IRI-9896052 and
Award EIA-0091489.
The views and conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the National Imagery and Mapping Agency or the U.S. Government.

†Corresponding author. Email address: ifc@cs.uic.edu
‡Worcester Polytechnic Institute, ADVIS Research Group.

XML representations or to map between the conceptual models for those rep-
resentations. Also, changes in the representations will typically entail specific
code changes by a human expert. A recently proposed layered model [11] par-
titions this problem by considering the requirements of different layers: syntax,
object, semantic, and application.

This paper discusses our approach to interoperability in the object layer us-
ing XML [2], developed as a part of a framework for geospatial data visualization
applications. Applications using our framework should be able to seamlessly pull
data from multiple XML data sources. Thus, we focus on the backend portions
that allow for querying and integrating data from multiple XML sources.

In developing our framework, we have focused on a number of application
scenarios. In this paper, we examine our election results scenario. In this sce-
nario, we create an application that will visualize results from the 2000 U.S.
Presidential Election, superimposing vote totals and campaign donations over
a given region on a map. Users will be able to search for a geographic area
in the United States, choose which data to display (e.g., demographic informa-
tion, votes cast per candidate, campaign donations, etc.), and then view that
data on a map of the region. Data can be displayed at multiple granularities,
depending on what the user wants to see (e.g., the user can display a map of
Massachusetts with county boundaries showing election results for each county
and then zoom in on a map of Worcester County showing election results and
campaign donations for each municipality). A screen shot from this scenario is
shown in Figure 1.

XML was chosen as our data representation language because it is quickly
becoming the new standard for information interchange. The main appeal of
XML is that it allows users to define their own document types, and then store
and exchange documents conforming to that document type. A document type
declaration is used to accomplish this. Document type declarations serve to
identify the root element of a document, but can also contain a document type
definition (DTD) [1]. This provides users a way of declaring the markup, syntax,
and structure of a given document type. This also provides the parser a way
of determining whether a document is valid (i.e., conforms to a DTD), rather
than just well formed (i.e., uses correct XML syntax).

Allowing everyone to create their own document types makes data exchange
easier, but it also makes data interoperability more difficult. Different organi-
zations could model the same information with different document types [1].
It is trivial to load and view documents with different document types, but
integrating the data between them is potentially quite difficult.

In this paper, we concentrate on providing a general-purpose application
framework that allows data to be interchanged between various XML document
types. We utilize XPath to concisely describe a path through the document
graph and to select a number of nodes whose values can be aggregated. Finally,
we introduce the concept of a geospatial authority. Authoritative geospatial
information about the region being covered by a given application is collected
in an XML document. This document serves as the source for geospatial rela-
tionships at the core of the application. For instance, in our election scenario,

Figure 1: User interface for the election scenario

we maintain a geospatial authority containing the names of all of the states,
the counties contained in those states, and the municipalities contained in those
counties. This provides us with a means of query refinement by providing con-
text for a given geospatial query (e.g., a search for the string “Worcester” would
yield matches in New York, Vermont, Massachusetts, Wisconsin, Missouri, and
Pennsylvania—the authority allows us to ask the user for clarification in which
“Worcester” is desired). This also provides us with context and a starting point
when looking up data in other documents, as seen in the examples given below.

Our framework is implemented in Java 1.3 and uses Apache’s Xalan-Java 2
API for XML, XPath, and XSLT processing.

The paper is organized as follows: In Section 2, we examine treating an XML
document as a graph, using the Document Object Model (DOM) and XPath as
a means of traversing the graph. In Section 3, we present a number of classes
that form the core of the backend of our application framework. In Section 4,
we introduce our lookup mechanism that allows users to interchange data from
one document type to another. Finally, in Section 5, we examine issues that
remain open or that need to be addressed to complete our framework.

2 XML As a Graph

XML is actually a collection of W3C recommendations that define the syntax
and semantics of XML and its related technologies [1]. The core XML recom-
mendation is the XML Information Set (or Infoset) [5], which models the core
abstractions of XML as a set of information items [1]. Information items repre-
sent the pieces of an XML document, what is required of them, and how they
behave. The items modeled in the Infoset are reflected in the Document Object
Model (DOM) [9]. The DOM allows programmers to access XML documents
uniformly, regardless of the underlying implementation.

When an XML document is loaded using a DOM compliant parser, a DOM
tree is returned. The DOM provides interfaces to the following information
items: documents, document fragments, document types, entities, entity ref-
erences, elements, attributes, processing instructions, comments, text, CDATA
sections, and notations. While this is useful, for certain purposes it would be
more useful to deal with XML documents as a graph of elements.1 Each ele-
ment would have a type corresponding to its attributes. It should be possible
to retrieve an element’s children, parent, siblings, etc.

Also worth noting is the XPath [4] engine in the Xalan-Java API. XPath
provides a simple way of expressing a path through a document tree to select
a set of nodes. When a path expression is evaluated, the XPath facilities select
a set of nodes relative to a context node. Any information item represented

1Documents whose elements contain references to other elements (e.g., IDREFs) can be
considered to be a graph, rather than a tree. In the DOM, references are not considered
to be edges in the document tree, thus maintaining the tree structure. However, in certain
circumstances, it may be necessary to treat references as edges, and thus treat the document
as a graph. In any case, an XML document is primarily tree-structured, so we can use terms
like sibling, parent, ancestor, and child.

in the DOM (and consequently any information item in any document) can be
selected by an XPath expression. Using XPath expressions to traverse an XML
document is much more concise and easier to understand than using the DOM.
Also, after analyzing a DTD, it is possible to generate XPath expressions for
the body of the accessor methods necessary to perform the graph operations
described above.

3 Framework Core Classes

Our framework provides a number of core classes, shown below in Figure 2,
that allow applications to treat XML documents as graphs, to perform XSL
transformations on an XML document, to evaluate XPath expressions against
a document, and to perform inter-document lookups.

The base class that we use in the framework is the XMLObject class. In
our Java implementation, the XMLObject class contains a reference to a node
in the DOM tree. Through this node reference, it is possible to retrieve any
data contained in the node, as well as any nodes linked to that node in the
DOM tree. This class also provides an interface to the XPath facilities in the
Xalan-Java API. The node referenced by an XMLObject object is used as the
context node when evaluating XPath expressions. When an XPath expression is
evaluated, a set of DOM nodes matching that expression are selected and placed
in a DOM NodeList. The NodeList interface is wrapped by the XPathResult
class, which allows users to cast the ith node in the list to a Boolean, Double,
Integer, Node, or String. Coupled with prior knowledge of attribute types
(determined by a domain expert, or in the future by analyzing an XML Schema
for a given document type), this allows typed access to data in the document.

The XPathResult class also provides aggregate operations for the set of
nodes that match a given XPath expression. Once a set of nodes is selected,
it is often necessary to traverse the set, accumulating data. Rather than have
the application designer write code to perform these aggregate operations, we
provide such code in our framework. The aggregate operations that are provided
are listed in Figure 3.

There are three subclasses of the XMLObject class: XMLData, XMLSource,
and LookupResult. The XMLData class represents elements in the DOM tree
and is the basis for treating a document as a homogeneous graph. It encapsu-
lates many of the DOM methods that relate only to elements (i.e., retrieving
attribute names, retrieving attribute values by attribute name, retrieving chil-
dren, ancestors, and siblings). It also translates the name and namespace of an
element into the type of the graph node. XMLData objects are instantiated by
the XMLSource class. XMLSource objects represent XML documents and allow
users to load and parse documents, to serialize documents out to a stream, and
to retrieve the root node of a document as an XMLData object. The XMLSource
class also provides access to the XSLT [3] facilities (discussed below) provided
in the Xalan-Java API. The LookupResult class encapsulates the resulting data
from an inter-document lookup (discussed below).

+XMLObject(node : org.w3c.dom.Node)
+evalXPath(xpathExpr : String) : XPathResult
+getNode() : org.w3c.dom.Node

XMLObject

#node : org.w3c.dom.Node

#XMLSource(doc : org.w3c.dom.Document)
+applyXSLTransformation(xsltFilename : String) : XMLSource
+getRootNode() : XMLData
+newInstance(filename : String) : XMLSource
+serialize(output : java.io.PrintWriter)

XMLSource

#cachedDocuments : Hashtable

+XMLData(element : org.w3c.dom.Node)
+getAttrNames() : Enumeration<String>
+getAttrByName(name : String) : String
+getChildren() : Enumeration<XMLData>
+getParent() : XMLData
+getType() : String
+getValue() : String
+toString() : String

XMLData

#LookupResult(result : org.w3c.dom.DocumentFragment)
+newInstance(result : org.w3c.dom.DocumentFragment,
 lookup : Lookup,
 srcNode : org.w3c.dom.Node) : LookupResult
+invokeOperation(opName : String, args : Object[]) : Object
+getLookup() : Lookup
#setLookup(lookup : Lookup)
+getSourceNode() : org.w3c.dom.Node

LookupResult

#lookup : Lookup
#srcNode : org.w3c.dom.Node

Figure 2: UML class diagram of core framework classes

+XPathResult(result : org.w3c.dom.NodeList)
+itemAsBoolean(i : int) : Boolean
+itemAsDouble(i : int) : Double
+itemAsInteger(i : int) : Integer
+itemAsNode(i : int) : org.w3c.dom.Node
+itemAsString(i : int) : String
+getLength() : int
+aggregateAnd() : Boolean
+aggregateOr() : Boolean
+aggregateDoubleSum() : Double
+aggregateDoubleProduct() : Double
+aggregateDoubleMin() : Double
+aggregateDoubleMax() : Double
+aggregateDoubleMean() : Double
+aggregateIntegerSum() : Integer
+aggregateIntegerProduct() : Integer
+aggregateIntegerMin() : Integer
+aggregateIntegerMax() : Integer
+aggregateIntegerMean() : Integer
+aggregateConcatenate() : String
+aggregateStringList() : Enumeration<String>
+aggregateStringSet() : Enumeration<String>
+aggregateNodeList() : org.w3c.dom.NodeList

XPathResult

#result : org.w3c.dom.NodeList

Figure 3: UML class diagram for the XPathResult class

3.1 Example using the Framework Core Classes

In our election scenario, we start with an XML document that we call the
geospatial authority, which contains geographic information about the area being
covered by the application (in this case, the United States). For simplicity, we
consider an authority document that contains state elements, which in turn
contain county elements, which in turn contain municipality elements. The
DTD for the geospatial authority is shown below:

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality EMPTY>

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>

This would suggest that subclasses of XMLData are needed for states, coun-
ties, and municipalities. Each of these classes would have an accessor method
that would allow the user to retrieve the name, as well as the region(s) contained
by that region (e.g., retrieve all counties for a given state, or retrieve the mu-
nicipality named “Worcester” from Worcester county in Massachusetts). There
are also documents for each state containing election results. Potentially, each
state can have a different DTD, and consequently, a different structure for its
results document. For simplicity, we will examine the DTDs for election results
from only two states, Massachusetts and Maine:

MA results.dtd

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality (candidate+)>
<!ELEMENT candidate EMPTY>

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>
<!ATTLIST candidate name CDATA #REQUIRED

votes CDATA #REQUIRED>

ME results.dtd

<!ELEMENT state (county+)>
<!ELEMENT county (municipality+)>
<!ELEMENT municipality (ward+)>
<!ELEMENT ward (precinct+)>
<!ELEMENT precinct (candidate+)>
<!ELEMENT candidate EMPTY>

statename

county

municipality

name

name

1

n

1

n

wardid

1

n

precinctid

1

n

candidate

name

1

n

votes

statename

county

municipality

name

name

1

n

1

n

candidate

name

1

n

votes

statename

county

municipality

name

name

1

n

1

n

Geospatial Authority Massachusetts Maine

Figure 4: DTD E-R Diagrams

<!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST county name CDATA #REQUIRED>
<!ATTLIST municipality name CDATA #REQUIRED>
<!ATTLIST ward id CDATA #REQUIRED>
<!ATTLIST precinct id CDATA #REQUIRED>
<!ATTLIST candidate name CDATA #REQUIRED

votes CDATA #REQUIRED>

This represents the general structure of the election result data as presented
at the Massachusetts and Maine state websites. In order to better understand
these DTDs, Figure 4 shows the E-R diagrams of these document types.

Note that in the diagram, the cardinality of all relationships is one-to-many.
This is due to the fact that, in the DTD, all subelements have the “+” qualifier,
meaning that one or more instances of that subelement can appear. While
this is fine for the state-to-county relationship and the county-to-municipality
relationship, it does not tell the whole story for candidates. The municipality- or
precinct-to-candidate relationship should have a cardinality of many-to-many,
since there are many municipalities or precincts and many candidates. However,
the DTD does not reflect this—it only states that each municipality or precinct
can have more than one candidate. To determine a many-to-many relationship,

it would be necessary to examine the actual data.
It was stated above when discussing the geospatial authority document that

classes for states, counties, and municipalities would be desirable. However,
since each state’s results document could potentially have a different structure,
it would be unfeasible to define a separate state, county, municipality, and can-
didate class for each state’s election results. It would make more sense to have
just one state, county, and municipality class for the entire application and let
the framework classes handle the necessary translation between the underlying
XML formats of the various election result documents. To accomplish this, we
introduce our lookup mechanism.

4 Lookups

Interoperability hinges upon a system that is able to seamlessly interchange
data between various document types. Data from one document needs to be
selected, possibly restructured, and then linked to data in another document.
Our framework provides a way of linking data in this manner using what we
call lookups. This section discusses the features of our lookup mechanism and
some of the design rationale behind those features. We will illustrate this using a
running example from our election scenario: defining a lookup for Massachusetts
election results for municipalities.

Lookups in our system are specified declaratively in a lookup specification
document. This document, stored in XML, allows application designers to spec-
ify all lookup types for an application. Each lookup is given a name, a descrip-
tion, and an identifier, as shown below:

<?xml version=‘1.0’ standalone=‘no’?>
<!DOCTYPE lookup-spec SYSTEM ‘lookup-spec.dtd’>

<lookup-spec>
<lookup name=‘MA Municipal Results’

description=‘Massachusetts election results per
municipality’

id=‘1’>

4.1 Predicates

Any node in an XML document used by our system can potentially have any
number of lookups associated with it. Therefore, we first need a way in which we
can define predicates that determine whether a lookup exists from a given source
node. These predicates are expressed as XPath expressions. When checking if a
node is associated with a lookup, the predicate XPath expressions are evaluated
using this source node as the context node. If all of the predicates evaluate to
non-null results, we can consider this node associated with this lookup and can

proceed to execute the lookup. In our example, we only want to link municipal-
ities in the geospatial authority to municipalities in the Massachusetts election
results document. Consequently, we define the following predicates:

<predicate>
<!-- ensure that the source node is a municipality -->
self::municipality
</predicate>

<predicate>
<!-- ensure that the source node is in Massachusetts -->
ancestor::state[attribute::name=‘Massachusetts’]
</predicate>

4.2 Arguments

Lookups actually link entities (that is, entities in the database sense; these
entities are expressed in XML as elements) in different documents, not actual
instances of the entities. In other words, lookups act as a link between different
data types, not their objects. It may only be possible to state a lookup in terms
of variables whose values depend on the context of the lookup being performed
(i.e., the source node’s context). For instance, in our running example linking
a municipality in Massachusetts with a municipality in the election results, one
lookup can serve all municipalities in the state. Contextual data, such as the
county and municipality name, is necessary for the lookup to be performed, but
cannot be determined until the lookup is about to be executed. Therefore, we
provide a mechanism for defining arguments whose values are computed before
executing the lookup and then substituted into the body of the lookup. These
arguments are associated with an XPath expression. When the lookup is about
to be executed from a given source node, the XPath expression is evaluated using
the source node as the context node, and the resulting value is substituted for
the argument name in the body of the lookup. For example, we would need to
define arguments for county and municipality names in order to properly link a
municipality to the election results:

<argument>
<name>$county_name</name>
<value>parent::county/attribute::name</value>

</argument>

<argument>
<name>$municipality_name</name>
<value>attribute::name</value>

</argument>

4.3 Lookups: XPath or XSLT

The next step is to define the actual body of the lookup. There are two types of
lookups supported by our framework. The first type of lookup involves simply
selecting a set of nodes in a document using an XPath expression. To specify an
XPath lookup, the actual XPath expression can be stated directly in the lookup
specification document. The second type of lookup involves restructuring a
subset of the data in a document using XSLT. To specify an XSLT lookup,
the name of the XSLT file can be stated in the lookup specification document.
When the time comes to execute a given lookup, the XPath expression or XSLT
file is loaded, argument values are evaluated and substituted, and the lookup is
performed. It is also necessary to state the file name of the target document. In
our example, we want to find the municipality element in the target document
and to select all children of that municipality. The XPath lookup to accomplish
this, written in terms of the variables given above, is shown here:

<target-document>
MA_election_results.xml
</target-document>

<!--
Start at the root, trace through the tree to find the
municipality, and select all children of the municipality.

-->
<xpath-expr>
/child::state[attribute::name=‘Massachusetts’] \
/child::county[attribute::name=‘$county_name’] \
/child::municipality[attribute::name=‘$municipality_name’] \
/child::*

</xpath-expr>

4.4 Linking the Results

When an XPath expression is evaluated, a NodeList or a NodeIterator contain-
ing the selected nodes is returned. When an XSLT file is evaluated, the resulting
DOM tree structure is returned. While DOM trees that result from XSL trans-
formations can have XPath expressions evaluated against them, NodeLists and
NodeIterators that result from XPath expressions cannot. It would be useful to
organize these results in such a manner that XPath expressions can be evaluated
against them. Similarly, we would like to be able to cache and possibly serialize
these results. It would be nice if we could simply add these nodes as children of
the lookup’s source node, but this is not allowed by the DOM because it could
potentially make the containing document invalid. However, the DOM pro-
vides the DocumentFragment interface for representing lightweight collections
of nodes. The DocumentFragment interface is intended to support movement of
nodes for operations such as “cut” and “paste” [9]. Also, since DocumentFrag-
ments are nodes, XPath expressions can be evaluated against them.

We can specify that the XSLT part of the Xalan-Java API produce a Doc-
umentFragment with the results of the transformation. For XPath lookups, we
can simply take each node in the resulting NodeList or NodeIterator and add
that node as a child of a DocumentFragment.

Our framework provides the LookupResult class, a subclass of XMLObject,
to store the resulting DocumentFragment. The details of this class are discussed
later on, but it is worth noting here that in the lookup specification, the ap-
plication designer can specify which result class to instantiate with the lookup
results. Either LookupResult, or a subclass of it, can be specified to take the
lookup results. In our running example, we simply use the LookupResult class:

<result-class>LookupResult</result-class>

4.5 Operations: Accessing the Results

Once a lookup is performed, code is needed to access the data contained in
the nodes that result from the lookup. Potentially, each lookup can select nodes
from different documents containing different structures. Therefore, each lookup
would require its own class to be instantiated with the appropriate code to
access its data. However, this can quickly become cumbersome as the number
of lookups increase. Also, if the structure of the various documents change,
those classes would need to be rewritten. In our election scenario, each state
could potentially require a separate class for lookups for its election results.
While these classes could be arranged into an inheritance hierarchy, having 50
election result classes would be a little excessive. It would be more useful if
accessor methods could be defined at the lookup level.

Accessor methods can be defined using XPath expressions that will be eval-
uated using the DocumentFragment as the context node. The return values for
such accessor methods can be computed using our aggregate operations dis-
cussed above. The application designer can therefore define accessor operations
in the lookup specification using a name, aggregation type, and an XPath ex-
pression for the body of the operation. Parameters can also be defined when
extra context is needed for the operation. Default values for those parameters
can also be given, where necessary.

In our running example, we would define the following two operations:

<!-- select all candidate names, return a set of strings -->
<operation name=‘getCandidateNames’ aggregation=‘sset’>
<body>
child::candidate/attribute::name

</body>
</operation>

<!-- select vote total for a candidate, return an integer -->
<operation name=‘getVotesByCandidate’ aggregation=‘isum’>
<parameter>

<name>$candidate_name</name>
</parameter>

<body>
child::candidate[attribute::name=‘$candidate_name’] \
/attribute::votes

</body>
</operation>
</lookup>
</lookup-spec>

If all election result lookups define operations with the same name, multiple
classes to represent the election results would no longer be needed. Rather,
we can use one subclass of LookupResult. Operations defined in the lookup
specification can be invoked using the invokeOperation() method provided
by the LookupResult class. In our subclass, we can provide methods (e.g.,
getCandidateNames()and getVotesByCandidate()), which simply call invokeOperation()
with the appropriate parameters.

4.6 The Lookup Specification

As stated above, all lookups are specified in an XML document. These doc-
uments must conform to the lookup specification DTD (lookup-spec.dtd),
shown below:

<!ELEMENT lookup-spec (lookup+)>
<!ELEMENT lookup (predicate+,

argument*,
target-document,
(xpath-expr | xslt-file),
result-class,
operation*)>

<!ATTLIST lookup name CDATA #REQUIRED
description CDATA #REQUIRED
id ID #REQUIRED>

<!ELEMENT predicate (CDATA)>
<!ELEMENT argument (name,

value)>
<!ELEMENT name (CDATA)>
<!ELEMENT value (CDATA)>

<!ELEMENT target-document (CDATA)>
<!ELEMENT xpath-expr (CDATA)>
<!ELEMENT xslt-file (CDATA)>
<!ELEMENT result-class (CDATA)>

<!ELEMENT operation (parameter*,
body)>

<!ATTLIST operation name CDATA #REQUIRED
aggregation (nodelist |

and | or |
dsum | dprod | dmin | dmax | dmean |
isum | iprod | imin | imax | imean |
concat | slist | sset) #REQUIRED>

<!ELEMENT parameter (name, default-value?)>
<!ELEMENT default-value (CDATA)>
<!ELEMENT body (CDATA)>

5 Conclusion and Open Issues

In this paper, we analyzed a geospatial application for the U.S. elections as a
means of illustrating the problems that need to be solved in the mapping be-
tween different XML representations and their conceptual models. The frame-
work that we presented allows application designers to treat XML documents
as homogeneous graphs and to evaluate XPath expressions and XSL transfor-
mations against a document. Our framework also allows application designers
to define a set of lookups that integrate data from multiple documents. Data
retrieved using a lookup can also have operations defined for it declaratively in
a lookup specification. Coupled with our aggregation operations, this provides
uniform access to non-uniformly structured data.

We anticipate the need for introducing metadata in the semantic layer to
guide the translation process between document types. In this section, we dis-
cuss metadata issues in the semantic layer and a number of other issues that
still need to be investigated.

5.1 Metadata, Semantics, and Ontologies

A certain amount of metadata is necessary for a domain expert or application
designer to appropriately identify the entities that can be linked and how the
lookups should be performed. In some cases, this metadata is available from
the DTD or from another external source that describes that document type.
In other cases, this metadata may be implied. For example, one can reasonably
expect measurements in documents from Europe to be in metric units, while
measurements in documents from the United States to be in feet and inches, even
though this information is not explicitly stated anywhere in the document. Some
conversions may be handled by XSLT, but some may require more complicated
computations and consequently must be performed by another mechanism.

There are also naming issues that need to be taken into consideration. For
instance, it is possible for a geographic entity to have multiple accepted spellings
(e.g., Foxboro, MA vs. Foxborough, MA; or Mt. Washington vs. Mount
Washington). Often times, foreign place names have multiple accepted English

spellings, and this too must be taken into consideration. In some cases, this
can be handled using a crosswalk table or some other form of dictionary data
structure. In other cases, the accepted spellings of a place name may depend
on the current context or the location of that place.

Further research is also needed to see how to use ontologies, especially as
presented in [7] and [8], in our system.

5.2 Technical Issues

We need an engine capable of executing graph queries. With such an engine,
it may be possible to take a generic graph query language that supports aggre-
gation, such as the G+ language presented in [6], and compile queries in that
language into XPath expressions or another XML based query language (e.g.,
XQL, or whichever XML query language reaches W3C recommendation status).

We can also look at performance issues, especially in a distributed environ-
ment. Each XML document that we are interoperating between can potentially
be stored on a different server. We need to look at different ways of caching and
processing data. We also are examining different security schemes for accessing
the various XML data sources.

At this point in the development of our framework, much of the code nec-
essary to perform the tasks described above must be written by hand. This
may become too complex to be practical. In the future, we plan to analyze all
DTDs that will be supported by and application and generate the necessary
code to perform many of the tasks described above. It would still be necessary
for the application designer or a domain expert to determine the links between
the different document types. It may be possible, however, to automatically
or semi-automatically generate the lookup specifications necessary to execute
the lookups, but more research is needed in this area. In order to generate any
code based on a DTD, it is first necessary to parse the DTD to determine its
structure. This can be done by creating a DTD graph, using algorithms de-
scribed in [10] and [12]. From there, we can begin to examine code generation
for XPath-based accessor methods in the lookup specification. It may also be
possible to automatically or semi-automatically generate the lookup code (using
either XPath or XSLT). Code generation can be supplemented by the input of
the application designer or domain expert via a visual tool that displays E-R
diagrams based on a given DTD.

5.3 Document Structure

The election scenario example shown throughout this paper is somewhat con-
trived (the actual data was originally retrieved in HTML format from a website
and then converted to XML) as we have created all of the documents and defined
their structure. Obviously, in a real-world application, the document structures
could potentially be quite different, requiring more restructuring of the data.

We also need to examine the effects that changing a document type would
have on code that has already been written or generated. Ideally, our final

framework would be sufficiently powerful to handle such changes.

6 Acknowledgements

We would like to thank Nancy Wiegand and Steve Ventura for discussions on
the subject of statewide geospatial applications.

References

[1] D. Box, A. Skonnard, and J. Lam. Essential XML Beyond Markup.
Addison-Wesley, 2000.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). W3C Recommendation, 2000.

[3] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommenda-
tion, 1999.

[4] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C
Recommendation, 1999.

[5] J. Cowan and R. Tobin. XML Information Set. W3C Candidate Recom-
mendation, 2001.

[6] I. Cruz and T. Norvell. Aggregative Closure: An Extension of Transitive
Closure. In IEEE International Conference on Data Engineering, pages
384–390, 1989.

[7] M. Erdmann and R. Studer. How to Structure and Access XML Documents
with Ontologies, 2001. DKE 36(3): 317–335.

[8] F. Fonseca. Gis ontology.com. GIScience 2000.
http://www.spatial.maine.edu/ fred/#Publications.

[9] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion,
and S. Byrne. Document Object Model (DOM) Level 2 Core Specification
Version 1.0. W3C Recommendation, 2001.

[10] D. Lee and W. Chu. Constraints-Preserving Transformation from XML
Document Type Definition to Relational Schema. In Proc. 19th Int’l Conf.
on Conceptual Modeling. Springer-Verlag, October 2000.

[11] S. Melnik and S. Decker. A Layered Approach to Information Modeling and
Interoperability on the Web. In ECDL 2000 Workshop on the Semantic
Web, Lisbon, Portugal, September 2000.

[12] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and
J. Naughton. Relational Databases for Querying XML Documents: Limi-
tations and Opportunities. In Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

