A Layered Architecturefor the Exploration of Heterogeneous I nformation
Using Coordinated Views

Isabel F. Cruz

Yuan Feng Huang

Department of Computer Science
University of Illinois at Chicago
{ifc,yhuang}@cs.uic.edu

Abstract

In a real-world decision support application, users of-
ten want to search data from various sources according to
some criteria, build a visualization based on the data be-
ing retrieved, and use the visualization to explore the data.
With our approach, these activities are supported within the
same workspace. Views are dynamically created by binding
each data set to a visualization template according to the
user’s preferences. The resulting views are then arranged
into a larger coordinated view. In our layered architecture,
data flows through the layers becoming encapsulated inside
of metadata that describes the visual attributes being added.
This metadata determines both the individual views and the
dynamic interactions within a coordinated view. Dynamic
interactions are implemented using a mediated notification
services architecture.

1. Introduction

There are several important issues related to the explo-
ration of information such as. integrating and retrieving
data from heterogeneous data sources, building visualiza-
tions of the information, coordinating different visuaiza-
tions that reflect different aspects of data, and dynamically
assembling visualizations based on the user’'s preferences.
In this paper we describe an approach that addresses these
issues. In our approach, information integration activities
and the visual exploration of the information occur in asin-
gle workspace, supporting:

e A robust and transparent way to accessthe information
from heterogeneous databases.

e A generic, interactive, and dynamic visualization
framework supporting customization, multiple inte-
grated views, and the coordinated exploration of the
data.

e A single framework where information access and vi-
sualization are fully integrated.

We have designed a framework and fully implemented a
prototype based on an architecture that combines the infor-
mation visualization and information integration aspects of
the exploration of heterogeneous information. Our frame-
work extends our Delaunay [2] and Delaunay™™ [1] sys-
tems. We therefore name our system Delaunay—Coordinate
a View or Delaunay'*¢¥, for short. Delaunay'ie" shareswith

Delaunay the capability to customize an individual view
(an individual view can be a bar chart, a bipartite graph, a
tree, or any other visualization defined by the user) and with
Delaunay™M the retrieval and visualization of multimedia
data. However, asit will become apparent from the remain-
der of the paper, the system architecture, the actual proto-
type, and the design objectives are new. For examplein De-
launay, the user startswith adatabase and definesfor each of
its data classes atemplate with which to visualize that class,
using an alphabet of primitive symbols (such as circles,
lines, text, etc.) and layout constraints. Delaunay'®" starts
from where Delaunay left off. First, we assume that tem-
plates have already been defined using Delaunay but are not
attached to specific objects, but to generic data objects. It is
up to the user to bind those templates with whichever data
objects need to be visualized, a capability that is not avail-
able in Delaunay. The other very important difference is
that Delaunay did not support multiple coordinated views of
heterogeneous databases. Del aunay™™M addressed heteroge-
neous multimedia databases, but its architecture differs sub-
stantially from that of Delaunay**¥ in that it lacks its lay-
ered architecture and the capability to coordinate views.

The Delaunay’i®" architecture supports three compo-
nents according to their major functionalities:

e The data processing component that establishes se-
mantic relationships among heterogeneous databases.
This component allows an information expert to build
a global schema out of the individual schemas from
the various information sources and uses the RQL [4]
query language to retrieve the data from the global
schema. The complete description of this component
is outside the scope of this paper, but brief descrip-
tions will be given to demonstrate its capabilities.

e Theview building component that enables usersto cre-
ate visualizations based on their preferences, applying
an available or user-defined template (e.g., bar chart,
bipartite graph, sorter). Thiscomponent also alowsthe
user to customize thevisualization (e.g., by rotating the
visualization).

e The view integration component that enables users to
construct an integrated visualization consisting of sev-
eral views defined using the previous component. The
relative positions of the views on a screen and the coor-
dination between these views are defined dynamically
resulting in asingle coordinated view.

As the data flows through the above components, it goes
through a variety of transformations, becoming encapsu-

lated inside of metadata that describes the visual attributes
that are added. This metadata determines; 1) the visualiza-
tion of the data using a particular template; 2) the visual
relationships that enable dynamic interactions within a co-
ordinated view. We identify these different transformations
and the corresponding data abstraction layers, and establish
a standardized format for the metadata.

To describe the data as it flows through the layers, we
use data descriptors. The semantics of the data is encapsu-
lated in the data descriptors. We use XML, the current ac-
cepted format for datainterchange, to define the contents of
the data descriptors. Data descriptors facilitate the commu-
nication between adjacent layers in our proposed architec-
ture.

The architecture of Delaunay'**" establishes a generic
scheme to transform data and data relationships into views
and coordinated views. In Delaunay'*¢¥, the representation
and the visualization of the data are loosaly coupled in two
ways: (1) templates can be applied to any data sets; and (2)
a generic message event service establishes the coordina-
tion between views.

The rest of the paper is organized as follows. In Sec-
tion 2 we present related research. Section 3 gives an exam-
ple that demonstrates our approach using the prototype we
have built. The layered approach we have designed is de-
scribed in Section 4. Section 5 describes the implementa-
tion of the various components of our prototype. Finadly, in
Section i we summarize our contributions and point to fu-
ture work.

2. Related Work

The subject of coordinated visualizations as associated
with data exploration has received considerable attention in
recent years [7, 10, 8]. One of the concerns has been on
how to alow for end users to create visualizations quickly
and interactively. We review some of the approaches that
are more closely related to our proposal. Two of them in
particular, Visage [10, 5] and the Snap-Together Visualiza-
tion [7, 6] have made major contributions to this research
area.

Visage [10, 5] is a software environment prototype that
consists of several components for supporting dynamic vi-
sualization generation and interactive information ma-
nipulation for information-intensive applications. It is an
information-centric approach to user interface design that
enables rapid generation of visualizations that is inte-
grated from diverse sources based on the user's selec-
tions. It supports the integration of various visual displays
in a flexible environment. Visage leverages the comple-
mentary features of different customized visualization and
analysis tools in a coordinated way.

The Snap-Together Visualization (or Snap for short) [7,
6] is a software system that has a lightweight mechanism,
an open architecture, and ageneric user interface that allows
for end users to rapidly and dynamically create customized
and coordinated visualizations without programming. One
of the most innovative features in Snap is the use of seman-
tic relational database concepts such as key constraints, to
model and enable the coordination between visualizations.

More recently, the InVision framework [8, 9] proposes
an open, component based, and knowledge enabled soft-
ware architecture for the rapid prototyping of information
visualization solutions. It supports an architecture for the
construction of coordinated views. The architecture aims at

ageneric solution for integrating various visual representa-
tions, each being chosen based on its suitability. Although
thiswork appearsto be still in the design stage, the creation
of the InVision framework is a worthwhile effort to estab-
lish a common architecture for the design, implementation
and integration of various visualization components, which
addresses important issues in the future devel opment of ef-
fective visualization solutions.

Our approach extends the previous approaches because
of its layered architecture, the use of XML technologies
with which we build an abstract representation for the data,
views, layout, and coordinated views, the querying of het-
erogeneous data, and the loose coupling of the data repre-
sentation and visualization.

The layered architecture and the use of XML ensures
system interoperability, in that each system component can
be implemented under different platforms using different
programming languages with different techniques. For ex-
ample, a particular data processing component can be re-
placed with any other data processing component that can
convert the search resultsto our standard data schema as de-
fined by the DTD. Likewise, the view building and view in-
tegration components need only comply with the DTDs that
we have defined for the data in the corresponding layers.

The abstract data representation allows for the recording
of the user’s visualization progress through the XML data
descriptors that contain the state of the data, views, layout,
and coordination between views at any point of the visua
interaction. This enables the storing of previous searches,
views, and coordinated views, or to easily explore differ-
ent possibilities within the same session by saving interme-
diate states and returning to them if desired.

Finally, our approach is based on the premise that datais
fluid and dynamic and can originate from any source, there-
fore ageneral approach to the visualization of the data can-
not consider only fixed formats or previously established
data relationships. To address such requirements, we pro-
vide a mechanism to dynamically wrap heterogeneous data.
The other approaches do not consider the existence of het-
erogeneous databases and therefore lack this capability. Us-
ing Delaunay’ie¥, the interaction between views or within
acoordinated view is established by data and data relation-
ships represented by XML descriptors. An XML descrip-
tor is obtained through querying, metadata, or user-defined
data connections. When interacting with multiple views or
coordinated views, there are queries that can be formulated,
which do not require further access to the database, pro-
vided that the relevant data and metadata are part of the
data descriptor or that new relationships can be established
on the fly. Therefore, this mechanism is different from the
mechanisms of Visage and Snap, which require data ma-
nipulations to an underlying database or data repository: re-
lational queries in the case of Snap and scripts in the case
Visage. Therefore, the way in which datais manipulated in
Delaunay'ie¥ further enhances the loose coupling capabil-
ities between data and visualization already mentioned in
Section 1.

3. Case Study

In this section, we present an example of the
Delaunay'**¥ system as used to produce an integrated
visualization of three related data sets. We chose a manu-
facturing application and in particular the visualization of a

bill of materials. A bill of materiasisalist of partsor com-
ponents required to build a product. In the screenshot of
Figure 1 the manufacturing of commercial airplanesis be-
ing planned using a coordinated visualization composed
of distinct individual visualizations, such as a bipar-
tite graph, abar chart, and athumbnail sorter. The bipartite
graph illustrates the part-subpart relationship between com-
mercial aircrafts and their engines. The other components
of this integrated display are: a bar chart, which can dis-
play any quantitative attribute (or aggregation of attributes),
such as the number of engines currently available in the in-
ventory of a plant or plants, and a thumbnail sorter of the
maps associated with the manufacturing plants.

Integrated View Workspace

Sy v

8- —8
PR

F(‘ | . < |i.- i,

Figure 1. A coordinated integrated visualiza-
tion.

The stepsinvolved in building this visualization are:

1. The user constructs a keyword query to obtain a data
set. This process may be repeated several times to get
data sets related to airplanes, engines, and plants. The
user can preview the dataretrieved from query, make a
refinement on the data, and name the data set for fur-
ther use (the interface is not shown here).

2. Relationships are selected (if previously defined) or
defined among the data sets, using either metadata, a
query, or user annotations. In the former two cases, the
user selects a relationship that was built by the data
processing component (see Section 1). An example of
such arelationship would be the connection that is es-
tablished between the attribute engine of the airplane
data set (containing one engine used in that airplane)
and the engine data set. Other more complex relation-
ships can be established by using an RQL query [4].
Yet another type of relationship can be a connection
that is established by the user. This interface is shown
in Figure 2. In this figure and those that follow, the |eft
panel contains the overall navigation mechanism asso-
ciated with the interface, allowing for any other step
of the querying or visualization process to be under-
taken. Note that we chose the bipartite component to

provide visual feedback when defining binary relation-
ships. Thisis the same component that is used for the
display of bipartite graphs.

alni x|
Data Relation Workspace

h::;“ Sy Ui :‘:':F':.',_-I Scart foe e =] ey [2]
N B
[]_ i | % . "
e ___|k.,‘...-
N -
L. |
w i .
e . .
B

R T

Figure 2. A relation workspace.

3. Individual views are built using templates. Users can
apply different data sets to different templates to form
different views. The interface of Figure 3 illustrates a
thumbnail sorter of the maps where the manufacturers
of aircraft engines are located. In this process, data at-
tributes of the data set are bound to the visual attributes
of the template. For example, the passenger capacity of
aplane can be applied to the height of abar chart. The
users also can further change the view to conform to
their preferences, for example, by changing the orien-
tation of a bar chart. The sorter allows for the thumb-
nails to be sorted by the values of any of the attributes
of the objects that are depicted by the thumbnails.

=101 %1
—
Foed | s Ansbkah Chooth T el Dionda” Lakachatia Ay
. 1 2
|| | [|

Figure 3. Construction of a view.

4. Individual views are laid out as in Figure 4, where
we kept some space between the views, for clarity of
the present description. The individual views can be
placed anywhere on the panel. At this stage, the user
selects from the panel that is immediately to the left
of the composition panel the kind of dynamic interac-

tion between every pair of views that are being put to-
gether. Different views can be generated dynamically
and be arranged in different places.

Figure 4. Layout views.

5. Anintegrated view is now built as represented earlier
in Figure 1. In the integrated view, the coordination
between individual views has been established. By se-
lecting a manufacturing plant in the thumbnail sorter,
the bar displays the inventory situation of the selected
plant, for example, the number of available engines of
each type. By selecting more plants in the sorter, the
bar chart will display an aggregate number for the se-
lected plants.

There are two ways of displaying relationships: they can
be either represented within the same visualization (asin the
bipartite graph of Figure 1) or as adynamic relationship be-
tween two different views, as in the interaction between the
bar char and sorter views. Other interactions are possible in
our case study. For example, the bipartite graph can also re-
act to the user selections on the sorter. As more selections
of plants are performed on the sorter, different types of en-
gines produced by the selected plants appear highlighted.
Moreover, the bipartite graph view can be refreshed to dis-
play only the relationship between the corresponding se-
lected itemsin the two data sets.

This simple case study illustrates several of the main

characteristics of the Delaunay'i” system:

e Unigque workspace, which supports al data selection
and visualization definition mechanisms.

e Dynamic data set and relationship building, which are
supported by queries or by metadata rel ationships.

e Flexibility of the visualization and of the coordination,
which allows for different templates to be applied to
the same data set and for the coordination rel ationships
to be created by the user on the fly; the coordination be-
tween visualizations depends on the dynamic data set
and relationship building process.

e Simple use of the visualization and integration compo-
nents, which does not require programming from the
end user.

4. Layered Approach

Layered architectures have been used in complex soft-
ware systems to achieve a clean, scalable, flexible, and
extensible design. By applying this software engineering
paradigm in information visualization, we have discovered
that not only the functionality of the system can be imple-
mented in severa layers but that also the data being visual-
ized can be clearly described in such a layered format. As
data flows through the different layers, information is added
in each layer. We use the concept of data descriptor to de-
fine each datalayer. A data descriptor should contain all the
information obtained from that layer and from the layers be-
low it. The higher the layer of the data descriptor, the more
visualization related information it will contain. The sim-
plified layered approach architecture is illustrated in Fig-
ure 5, which shows the corresponding data flow. Figure 6 il-
lustrates the data descriptor contents and how they change
through the layers.

| Coordinate Views |
A O
/ Layer 3 Data / — o
—
f s}
. <
| Layout Views | 8_
4 o
/ Layer 2 Data / — wn
4 o
D
Build Views 0.
=
4 o
/ Layer 1 Data / _— g_,_')..
o
L) =

| Retrieve Data |

_7

=1

Figure 5. Layered data flow.

Data (

Data descriptors have all the information necessary for
the system to build the views and coordinated views and are
constructed using XML standard syntax. By using XML,
we improve the capabilities of our system to communicate
with other systems. The detailed functionality of the lay-
ers and their data descriptors are discussed in the rest of this
section.

4.1. Data Retrieval

A simple common way for a user to compose a query is
by specifying one “keyword”, a“source”, and some “crite-
ria’. The underlying data retrieval engine will return to the
user a data set satisfying the query with its associated meta-
data. A simple example of adata set as represented by adata
descriptor isas follows:

»

0
o

Layer 4 "g ‘ Coordination M odel ‘

Layer 3) ‘ Layout Model ‘

Layer 2 ‘View Model‘ ‘View Model‘
Layer 1 ‘ Relationships‘ ‘ MetaData ‘

‘ Set of Tuple# ‘ Set of Tuples‘

Data ‘ Tuple‘ ‘ Tuple‘

Figure 6. Layered data model.

< dataset name="engineData’ type="relation”
sid="set02" >
<query keyword="engine’
source="inventory”
criteria="commercia airplane”’/>

<metadata>
<attr attr-
name="engineName”
type="text”
aid="a21"/>
<attr
attr-name="Image”
type="image”
aid="a22"/>
<attr
attr-name="Thrust"
type="numerical”
aid="a23"/>
<attr attr-name="Type"
type="string”
aid="a24"/>
</metadata>
<tuple>
<data attr-
ref="a21" >GE90</data>
<data attr-
ref="a22" >Images/ge90.gif
</data>
<data attr-
ref="a23" >115000
Ibs</data>
<data attr-
ref="a24" >turbine</data>
</tuple>
<!—other tuples—>

</dataset>

A data set can be of type relation and relationship. A re-
lation is just a set of tuples as in the relational data model.
A relationship is also a set of tuples, but the attributesin the
tuples are foreign keys of relations or are attributes of rela-
tions connected by a query. In the former case, the relation-
ship is solely based on metadata knowledge about keys and
foreign keys.

Each data set will have aunique user defined identity as-
sociated with it. The query element adds extra metadata,

by specifying how the data was retrieved or a relationship
formed. The metadata component contains the type and for-
mat of the data. The data component of the descriptor can
contain actual data retrieved from the database or alink to
the data content (e.g., to an imagefile).

4.2. View Building

Asall thedataisavailablein Layer 1, the user can inter-
act with the system to build views to visualize the data sets
in the descriptor. The system has a set of predefined visu-
alization templates that can be set dynamically by the user
to build a view of a data set. The properties of a visual-
ization template belong to two categories. 1) Pairs contain-
ing the visual attributes (e.g., bar length in the case of a bar
chart) and the data attribute they visualize (e.g., thrust in
the case of an engine); 2) The attributes that are added by
the user’s customization of the templates (e.g., the orienta-
tion of abar chart or the ordering of a sorter).

Upon finishing the interactive operations for building
views using Delaunay'*¢¥, the system will construct a data
descriptor in Layer 2:

<view template="barchart” dataset-ref="set02”
name="barchart-engine” vid="v01" >

<view-property bar-length="a23"
bar-color="a24"
bar-label="a21"/>

<customization direction="east”
bar-ratio="50" bar-width="20"/>

<Ilview>
In this example, the length of the bar is proportional to
the thrugt, its color encodes the engine type, and its label
displays the engine name. Since more than one view can
be built, there will be a group of such view templates ap-
pended to the data descriptor from Layer 1.

4.3. View Layouts

Using the data descriptor of Layer 2, the Delaunay'i¥
system can represent the view inside a floating window; the
user can move and resize the window and place several win-
dows in the same panel. The positions will be represented
in Layer 3. An example of this data descriptor in this layer
isasfollows:

<layout name="scenel” width="400" height="600"
lid="s1">

<view-position view-ref="v01"
width="200" height="400"
xPos="0" yPos="0"/>

<view-position view-ref="v02"
width="200" height="400"
xPos="200" yPos="0"/>

<view-position view-ref="v03"
width="600" height="200"
xPos="0" yPos="400"/>

</layout>
Each view element in this layer must exist as a data de-
scriptor in Layer 2, that is, it must have been defined by
building aview.

4.4, Coordinated Views

The same set of views of the previous layer will be used
to coordinate views. The user will set the possible coordi-
nation between views using the system provided interface.
When a coordination occurs between two views, one is the
initiating view and the other one isthe destination view. The
destination view will respond to certain types of actions on
the initiating view (e.g., clicking on a visual element). For
example, the visual representation of a particular object can
change (e.g., be highlighted) if that object is related to the
object whose visual representation was manipulated in the
initiating view.

Once the coordination properties are defined by the user,
the system can append metadata to the data descriptor of
Layer 3, to form a data descriptor at Layer 4. An example
of the new metadata to be appended is as follows:

<coordination layout-ref="s1"
connection-type=" one-to-many-aggregation”
name="sorter-barchart” >
<initiating-view view-ref="v02"
sel ection-type="group”/>
<destination-view view-ref="v01"
reaction-type="update-model” />
<operation param1-ref="set03”
param2-ref="set02"
operator="sum” data-ref="ral"/>
</coordination>
In this example, a sorter is the initiating view. The user
selects a group of thumbnails in the sorter. As a result,
the destination view, which is a bar chart representing for
each engine the number of engines that are available, will
change. The reaction type in this case is “update-model”
meaning that an attribute in the view will represent a new
attribute of the engine data set. In this case, previously the
length attribute for a bar was related to the attribute Thrust
for each engine. As a result of the aggregation, the length
of the bar will display the available number of enginesin
al the selected plants. As more plants are selected, the ag-
gregated quantity of the engines that are available in those
plants will change, thus changing the length of the bars.
This particular visualization refers to a relationship with id
“ral”, which was established by metadata, connecting the
plant and the enginesthat it manufactures. Thisrelationship
can be established with the interface of Figure 2 without us-
ing a separate query processor. Furthermore, the aggrega-
tion can be computed just by accessing the data descriptor.

5. Implementation
5.1. DataDriven Mechanism

In the DelaunayVi®" framework, a user's progress
through the visualization process is associated with the un-
derlying XML descriptor. The system provides an environ-
ment that allows for the user to access underlying data and
customize the visualization properties in such a way that
data and visualization are persistent as an XML descrip-
tor. So, the visualization process can be resumed from the
saved descriptor. We describe here the data driven mecha-
nism through which the internal visualization objects can be
saved simultaneously and transparently into the XML de-
scriptor, and vice versa. This bidirectional information
binding of the XML data descriptor to the internal visual-
ization and data objects requires several implementation

components that are illustrated in Figure 7. In prin-
ciple, the implementation of this data binding facility
should be based on the DTD of the descriptor that de-
finesthe XML data descriptor.

Model Container

I9POIN
uonRUIPI00D

[SpOIN ereq
[OPON MBIA

[T [9pOJA 1n0AeT]

4_
<«
<

DOM Node Reader & Writer

‘DOM Document ‘—ﬂ XPathAPI ‘
A

v |
XML Data Descriptor in Sto@

Figure 7. Architecture for the XML data driven
mechanism.

suoneluawa|dw| aoeyIalu| I8N pue
$193[0O UOIIRZI[ENSIA [RUI]U|

The main component in this facility is the model con-
tainer. Since the data descriptor has four layers, the model
container aso needs four types of model classes to provide
different implementations of the set model and get model
functionalities. A set model method will transform the sys-
teminternal data structure of one of the data modelsinto an
XML DOM representation based on the XML data descrip-
tor specification. A get model method will do the opposite,
by creating the internal data structure from the DOM doc-
ument. Conseguently, data objects or visualization objects
can be built based on that data structure.

The DOM node data reader & writer component uses
the model class types and the information contained in the
attributes to find the traversal path to the correct XML el-
ements or attributes and to perform the data assignment or
dataretrieval. In particular, we use the X PathAPI classfrom
Apache Xalan to simplify theimplementation coding for the
retrieval. By applying a document and Xpath expression to
one of the static methods in XPathAPI, the method will re-
turn a node or a set of nodes that corresponds to the given
Xpath expression in the document. An XML parser is used
by the DOM node data reader & writer to read or write
XML data from external storage. For a large XML data
descriptor, the data manipulation adapter provides a cache
mechanism to store part of the DOM tree in secondary stor-
age. This XML data driven mechanismisutilized in dl dif-
ferent stages associated with building an integrated visual-
ization.

5.2. Building Views from Templates

One of the major functiondlities in the Delaunay’ie”
framework is the possibility of building customized views
by applying datato a view template.

A view template can be applied to any data set, and a
data set can be visualized using any view templates. This
flexibility is achieved by applying the MV C design pattern.

The MVC (Model-View-Controller) design pattern has been
proved very useful in building visual interfaces (see, for ex-
ample, [6, 8]). In our work, the model (Model) that is ap-
plied to the view template (View) is a subset of the datain
Layer 1. Inrelational database terms, we could say that they
result from a projection on some of the attributes, which will
be visualized. By applying that subset, for example of en-
gines (Model:Engines), to the view that is chosen by the
user, for example sorter (View:Sorter), the system will build
aconcrete view (see Figure 3).

In the system implementation, aview template class has
a corresponding template model class as the data provider.
The template model class is the extension of model class
with a specific type, which istailored to aspecific view tem-
plate. So, the template model class can use the XML reader
& writer class, which wraps aDOM document parsed from
the descriptor, to get and set data on the fly. The template
model classis based on the corresponding DTD that the de-
scriptor conforms to. The view template classes implement
the Layer 2 view customization featuresdefined inthe DTD.

5.3. Multiple Views L ayout

The system provides an interface with which users can
layout the views defined previously on a 2D panel, accord-
ing to their preferences, by choosing their size and position.
Such activities are similar to moving and resizing windows
in most window software environments.

The users can continuously change the positions and
views of the views. As soon as the user exits this process,
the layout information will be exported as supplementary
data information to the previous data descriptor (of Layer
2). The system will use the information of the layout model
to present the integrated visualization through a container
class. The container class consists of several view objects
(built in previous stages) together with the (z,y) positions
associated with the views, as provided by the layout model.

5.4. Coordinating Multiple Views

In order to establish coordinating multiple views, the
system provides a user interface with which users select the
interaction of the views with one another. Building this co-
ordination relies on the information that was built in the pre-
vious steps through the data descriptors. The interaction be-
tween the views reflects the data relationships underlying
the views that exist in the data descriptor of Layer 3. This
coordination building facility supports:

e A generic way in which data, relationships, and views
are built dynamically.

e A user interface for the specification of the properties
of the coordination.

e Generic mechanisms that can dynamically (i.e,
there is no static coding) establish interaction be-
tween views.

The architecture for establishing the coordination
of views is based on a loosely coupled event notificar
tion mechanism that uses a mediator. The mediator, which
is the core component, keeps track of the coordination in-
formation between views and establishes the interac-
tion at run time. An event encapsulates data messages that
need to be passed from one view to another. The interac-
tion between views is communicated through the mediator

in terms of an event. For example, if two views have an es-
tablished coordination between them, when one action oc-
cursin an initiating view (e.g., click on an object), an event
will be forwarded to the destination view by the medi-
ator, and the destination view will update its view upon
recelving the event (e.g., highlighting of a related ob-
ject). The major components and the different coordination
events areillustrated in Figure 8.

=====m= Has a Reference = Implements an Interface
Event __1 | | | Data
Data Model Data Model |« SrEEET
1 1
1 1
Interface for ! Interface for H .
Initiating View I Destination View | g 7-DataOperation,
1 1 Update View
4 1 3 1
| 1
T T
L.onClick Wrapper 1 Wrapper 1 | 6. Actionon
P a g 3 Event
—— Initiating View | | Reacting View L.._..
! i
| i
1 addSendListener() setReceive(EventType) :
N | A y o
S : s
ol | Sender Interface | | Receiver Interface | [
< I g
o
2 | setSendEvent() addToList() 1 &
! [
] \ y 13
: Mediator]
e ——
N I
v Coordination List
3.Publish Event 4. Lookup List

Figure 8. View coordination architecture.

Next, we describe in detail the different elements of the
architecture:

1. The mediator keeps the information of which view can
receive which event type and from which view that
event can be received. This information is kept as a
coordination list containing the initiating view identi-
fier, the event type, and the destination view identifier.
The mediator also has a programming interface that al-
lowsthe view to register or publish the information as-
sociated with an event. The mediator is implemented
as a singleton class [3]. At any time, the system only
has one reference to it, therefore the mediator actsasa
control center for dispatching the event.

2. The event classes are generated according to the data
models that exist in the system. The connection be-
tween two views is based on the same type of event
class. In order to connect two views dynamically, one
of the views, the initiating view, uses the mediator to
publish an event of its own data model type, while the
other view, the destination view, has subscribed with
the mediator to receive an event of that type. An event
must have two attributes, one is the identifier for the
initiating view and the other one isthe generic datain-
stance that contains data and metadata. When a coor-
dinating action occurs, the initiating view will gener-
ate an event using its view identifier and related data
set and will pass them to the mediator. The mediator
checks the coordination list in order to inform the cor-
responding views of the event type and of the view

identifier. That is, the initiating view broadcasts the
event, but the destination views are selected accord-
ing to the events to which they subscribe to.

3. A set of interfaces is defined for the event notifica-
tion services. The implementation of such an interface
is mandatory for the view components whose coordi-
nation is established through the mediator. In our im-
plementation, we have a wrapper class for the view
component, which implements the common function-
alities that are needed by the mediator. Such function-
ditiesinclude calling the mediator to publish an event
method using the event as the parameter.

The wrapper class works as a container for an indi-
vidual view component. It provides view components
with an indirect way to use the mediator. Therefore,
the view components do not implement the specific in-
terface required by the mediator where the implemen-
tation code is the same for the different view compo-
nents. The interface that view components need to im-
plement will have different implementations depend-
ing on each view component.

4. The determination of a relation between two views
needs to be conducted when a view component re-
celves an event and an action is going to take place.
A few relation operation functions are implemented as
static methods thus becoming accessible to any view
components in the implementation of the “actionOn-
Event” method. The relation data passed to the func-
tions are the objects of the generic data model that is
presented in every view component. For example, if a
linking coordination is established between two views,
the receiving view component will obtain the data of
the sending view from the event. The receiving com-
ponent can use this data and the data associated with
its own view as parameters to invoke the static method
associated with the linking operation to find out the ac-
tual dataitem that the receiving view needsto belinked
to.

6. Conclusions and Future Work

In this paper we presented a visualization system called
Delaunay’ie¥. This system facilitates decision support ap-
plications by allowing users to explore heterogeneous data
from multiple sources in a customized integrated view.
Users can customize both the integrated view and the in-
dividual views that make up the integrated view.

The system features a layered architecture, such that
data flows through the different layers and gets wrapped by
metadata that describes the views and the interaction among
the views.

The architecture for establishing the coordination
of views is based on a loosely coupled event notifica-
tion mechanism that uses a mediator to keep track of
the coordination information between views and estab-
lishes the interaction at run time. The way in which the
coordination is achieved is dynamic, that is, an interac-
tion is possible between any two views independently of the
V\iay in which they were defined or of which data they dis-
play.

Future work will concentrate on the refinement of the
layered architecture, on the exploration of interoperability
issues, and on customization features. We intend to further

refine the layered architecture so that we can have a com-
plete history with rollback capabilities, that is, at any mo-
ment a session can be interrupted and resumed at exactly
the same state where it was left off. This kind of feature
is interesting from a usability viewpoint. We aim at com-
pletely characterizing the state of such acomplex visualiza-
tion system by enabling it to be captured by a data descrip-
tor.

From an interoperability viewpoint, we would like to ex-
periment with the implementation of the different layers us-
ing different programming languages and distributed plat-
forms communicating with aweb services architecture.

Finally, we would like to explore a semantic-based ap-
proach to customize the interface so as to reflect the pref-
erences of a particular user or groups of users. Such an ap-
proach would annotate the connections among user inter-
face componentsto reflect the users' choicesin displaying a
p?rticylar kind of objects or in following a certain sequence
of actions.

Acknowledgments

This research was supported in part by the National Sci-
ence Foundation under Awards I TR 11S-0326284 and EIA-
0091489. We would like to thank Haiyan Lin for helping
with the implementation.

References

[1] I. F Cruz and K. M. James. A User Interface for Dis-
tributed Multimedia Database Querying with Mediator Sup-
ported Refinement. In International Database Engineering
and Applications Symposium (IDEAS ’99), pages 433-441.
IEEE Press, 1999.

[2] I.F. Cruzand P. S. Leveille. Implementation of a Constraint-
based Visualization System. In IEEE Symposium on Visual
Languages (VL ’00), pages 13-20, 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plex-
ousakis, and M. Scholl. RQL: A Declarative Query Lan-
guage for RDF. In Proceedings of the Eleventh International
Conference on World Wide Web, pages 592—603. ACM Press,
2002.

[5] J. Kolojgichick, S. F. Roth, and P. Lucas. Information Ap-
pliances and Toolsin Visage. IEEE Computer Graphics and
Applications, 17(4), 1997.

[6] C. North. A User Interface for Coordinating Visualiza-
tions Based on Relational Schemata: Snap-Together Visual-
ization. PhD thesis, Computer Science Dept., University of
Maryland., 2000.

[7] C.North and B. Shneiderman. Snap-Together Visualization:
A User Interface for Coordinating Visualizations via Rela-
tiona Schemata. In Working Conference on Advanced Vi-
sual Interfaces, pages 128-135, 2000.

[8] T. Pattison and M. Phillips. View coordination architecture
for information visualisation. In Australian Symposium on
Information Visualisation, volume 9, pages 165-169, 2001.

[9] T. Pattison, R. Vernik, D. Goodburn, and M. Phillips. Rapid
assembly and deployment domain visualisation solutions.
In Australian Symposium on Information Visualisation, vol-
ume 9, 2001.

[10] S.F Roth, P.Lucas, J. A. Senn, C. C. Gomberg, M. B. Burks,
P. J. Stroffolino, J. A. Kolojejchick, and C. Dunmire. Visage:
A User Interface Environment for Exploring Information. In
Information Visualization, pages 3-12, 1996.

