Implementation of a Constraint-Based Visualization System

Isabel F. Cruz
Peter S. Leveille

Information visualization focuses on graphical mechanisms designed to show
the structure of information and improve the cost of access to large data reposito-
ries. Declarative approaches to information visualization allow the user to specify
what the displays look like but not how they are to be produced from the specifi-
cation. While declarative systems have been developed to automate the designs of
graphs and diagrams, oftentimes they depend upon textual specifications and on
time-consuming constraint solvers, e.g., based on simulated annealing or genetic
algorithms.

Our approach takes advantage of the old adage “a picture is worth a thousand
words,” and uses a visual language for the specification of the visualizations with
which users can specify their own visualizations. To support this visual mode of
interaction, a sophisticated system called Delaunay was built that accepts both the
user’s specification and the information in the database, and produces images that
depict that information.

Advanced visual interfaces have been implemented for the input of the visual
specifications and for the output of the generated visualizations in Delaunay. The
input interface is shown Figure 1. In this example, the user is specifying the
visualization of a flowchart. In the drawing pad on the right, the user assembles
visual symbols from the top left portion of the screen. In this casef gtatement
in a flow chart is being specified. The previously specified components of the
flowchart are shown to the user as interactive thumbnails on the left of the drawing
pad.

The flowchart produced by this specification for one of the flowcharts in our
database is shown in Figure 2, which also shows the output component of the user
interface. In this component, visualizations can be manipulated using panning,
zooming, and fish-eye views. In addition, the interface allows for the textual data
associated with each graphical object to be inspected on demand. These features
are shown in Figure 3 that displays an n-ary tree as visualized using Delaunay.

M= E1)[5 ponoir - Meansok sissa) Eapiomr ol =]
| Eix Edt Yiew Fraories Tools Help

QRS | v 127 011 (pa LHICEAE e 2] efo | jumks ®

CLABE I =l

prcorElandSmet "
e by ba o 0 1401 278 ETO0

uf‘l

| @] spet vt L

Figure 1: Specification of thi& component of a flowchart.

The figure also illustrates the fisheye view feature of the output with different
distortions and the exploration of the data associated with a visual object (shown
on the right panel).

In order to allow for a powerful and flexible tool, most of the specification
is left to the user. However, when appropriate, the system will enforce certain
rules of good visualization by judicious encoding of data attributes using visual
attributes. For example, hue is used for encodiominaldata (i.e., data without
guantitative content) instead of color saturation, another possibility offered by
the system. In addition, it is also important that Delaunay be “intelligent” about
choices that users leaves to it. For instance, if we tell the system that we wish
to have random colors assigned to a set of objects, it should (1) assign colors to

2

E;j Applet Yiewer: vis_ class

Loas i |

Aoplet started.

Figure 2: Visualization of a flowchart.

each object that are sufficiently different from each other; (2) take into account
other colors previously assigned in the specification in order not to overload the
meaning of that color.

Automatic assignment of colors was performed in the example of Figure 4.
In this relational diagram, we chose to represent the relationship between Aus-
tralian animals and traits that occur in these animals. Multimedia objects are used
to display both. Lines express the relationship between each animal and a trait

w i ey Los a2

Figure 3: Two different fisheye distortions are illustrated; an actual fish was su-
perimposed on this picture to show the focus of the view.

that the animal possesses. The user just has to specify that the lines emerging
from the same trait should have the same color encoding, and the system automat-
ically chooses the different colors, obeying the above rules. Since the data being
displayed is nominal, the system chooses color hue for the representation.

To determine the actual positions of the visual objects on the output, our sys-
tem uses constraint satisfaction techniques. In fact, a key component of the system
is the constraint solver. Constraint solving is not a trivial issue. Previously, the
SkyBlue constraint solver (the result of a PhD thesis at the University of Washing-
ton) had been used in Delaunay. Unfortunately, SkyBlue cannot solve cyclic con-
straints that are common in practice. Therefore, we implemented a new constraint
solver, capable of handling efficiently the constraints appearing in Delaunay.

Delaunay uses a class of basic constraints over a set of variables, where lin-
ear arithmetic expressions are combined with min/max operators. The variables
represent the values of other constraints in the same specification or the value of
a database attribute (so that we can set a length to be proportional to that attribute
value). The constraint solver runs in quadratic time in the number of equations
that are related to each variable. We found that a small number of variables is
needed even in the most complex visual specifications, and that the number of
equations associated with a variable is also small. Therefore, in practice, the con-
straint solver is efficient.

:'=" Appled Viewesr wig clmgs
<o A e rlrasisl]

A L

Figure 4: A relational diagram.

The Delaunay system has been developed and tested with a rich variety of vi-
sualizations, proving that it is a powerful and useful visualization system. Exam-
ples of visualizations created by Delaunay include the drawings of graphs (trees,
series-parallel graphs, bipartite graphs) quantitative and temporal charts, relational
charts, and X-Y plots. Contrary to other systems such visualizations are not pre-
defined. Instead, they are just examples of a potentially unlimited number of
visualizations that a user can define, for any domain of choice. For example, in
business analysis, diverse visualizations such as stock charts, Gantt diagrams, and
flowcharts have been deployed.

