43.3

An Approach to Placement-Coupled Logic Replication

MiloS Hrkic

John Lillis

Giancarlo Beraudo

University of lllinois at Chicago University of lllinois at Chicago University of lllinois at Chicago

Dept. of Computer Science
Chicago, IL 60607

mhrkic@cs.uic.edu

ABSTRACT

We present a set of techniques for placement-coupled, timing-
driven logic replication. Two components are at the core
of the approach. First is an algorithm for optimal timing-
driven fanin tree embedding; the algorithm is very general
in that it can easily incorporate complex objective functions
(e.g., placement costs) and can perform embedding on any
graph-based target. Second we introduce the Replication
Tree which allows us to induce large fanin trees from a given
circuit which can then be optimized by the embedder. We
have built an optimization engine around these two ideas
and report promising results for the FPGA domain includ-
ing clock period reductions of up to 36% compared with
a timing-driven placement from VPR [12] and almost dou-
ble the average improvement of local replication from [1].
These results are achieved with modest area and runtime
overhead.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms

Algorithms, Performance

Keywords

Timing Optimization, Logic Replication, Placement,
Programmable Logic

1. INTRODUCTION AND BACKGROUND

The idea of logic replication is to duplicate certain cells
in a design so as to enable more effective optimization of
one or more design objectives. The idea has been applied
in several different contexts including min-cut partitioning
(e.g., [10] [11]) and fanout tree optimization (e.g., [9] [13]).

Recently a few papers including [1], [2] and [3] have ex-
plored the idea of using replication to effectively deal with
interconnect-dominated delay at the physical level. In these
papers it is observed that, because replication effectively
separates multiple signal paths it becomes easier to, at the

This work was supported in part by NSF CAREER Award CCR-9875945.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC’ 04, June 7-11, 2004, San Diego, California, USA.

Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

Dept. of Computer Science
Chicago, IL 60607

jlilis@cs.uic.edu

711

ECE Department
Chicago, IL 60607

gberaudo@ece.uic.edu

al | [1b

d[] [Je

Figure 1: Example with forced non-monotone paths.
a b
T % c’
c @< T
d ﬁ ﬁ e
Figure 2: Example illustrating path straightening
by replication of cell c.

physical design level, “straighten” input-to-output (flip-flop
to flip-flop) paths which might otherwise have been very
circuitous (and therefore high delay).

A simple example from [1] reproduced in Figures 1 and 2
illustrates the idea. Suppose that the terminals at a, b, d
and e are fixed. There are 4 distinct input-to-output paths;
any movement of the central cell ¢ from the shown location
will degrade the delay of at least one of these paths (assume
for the moment a linear delay model). Thus in Figure 1
we have no choice but to tolerate non-monotone input-to-
output paths. Now suppose that we replicate cell ¢ as shown
in Figure 2 to form ¢’ computing the same function, but
feeding only output b while ¢ drives only d. If we produce
such a logically equivalent netlist all input-to-output paths
become virtually monotone.

The work of [1] exploits this phenomenon and is the most
closely related to this paper, so we briefly review its contri-
butions. First, [1] made a compelling case for the potential
of replication by observing that not only do typical place-
ments contain critical paths which are highly non-monotone,
but also that the number of cells which have near-critical
paths flowing through them is relatively small (thus, one
may conjecture that a small amount of replication may be
sufficient). Then an incremental replication procedure was
proposed and evaluated experimentally with promising re-
sults. Roughly speaking the algorithm examined the current
critical path and looked for cells to replicate; for such cells,
it placed the duplicate, performed fanout partitioning and
then legalized the placement. The criteria for selecting a
cell was based on the goal of inducing local monotonicity.
Local monotonicity was defined by a sequence of 3 cells on

s t[]

a b .
N\

Figure 3: Limitation of local monotonicity. Cells a
and b are locally monotone yet s-to-t path is not.

a path vi,v2,vs3. Let d(u,v) be the rectilinear distance be-
tween cells u and v; then we say that the path from v; to
v3 is non-monotone if d(vi,vs) < d(vi,v2) + d(v2,ds) (i.e.,
traveling to ve creates a detour). In such a case, vs is a
good candidate for replication so as to straighten this path
without disturbing other paths passing through va.

While this strategy proved effective in reducing clock pe-
riod, we now observe that a technique based on local mono-
tonicity has limitations. Figure 3 demonstrates this limita-
tion. In the figure we see a critical path (s, a,b,t) (dashed
lines indicate other signal paths which may be near critical).
Clearly, this path is non-monotone and yet, all sub-paths (of
length 3) are locally monotone. In this case (which is not
unusual), the approach is unable to improve the delay.

With this in mind, we have developed a more robust and
general replication strategy. There are two key elements
around which the approach has been built.

First we study the optimal fanin tree’ embedding prob-
lem. In this problem we are given the root of a fanin tree
(e.g., a flip-flop), a tree circuit which produces its inputs
and arrival times at the inputs (leaves) of the tree. Our goal
then is to embed the tree so as to obtain a tradeoff between
the cost of the embedding (which can be quite general as we
will see) and the arrival time at the root (sink) of the tree.
Our solution has evolved from the closely related problem
of embedding a fanout tree in buffer tree synthesis [5].

While this is an interesting result in its own right, un-
fortunately, most circuits, because of reconvergence, do not
contain large sub-circuits which are fanin trees. This brings
us to the second item at the core of the approach — the Repli-
cation Tree. The replication tree gives us a systematic way
of taking a set of edges in a circuit forming a directed tree
(e.g., with the root being the input of a flip-flop), and, using
replication, induce a genuine fanin tree which can, in turn,
be optimized by the fanin tree embedder. For timing opti-
mization as in our case, a natural selection for such a tree
is a slowest paths tree derived from static timing analysis.
At this point, the embedder’s ability to handle general cost
functions becomes important — in particular, we are able to
naturally encode the cost/benefit of replicating a cell in the
“placement cost” component of the cost function.

Around these two main ideas — fanin tree embedding and
the replication tree — we have built an optimization engine
for the FPGA domain. Additional components of interest
include a timing-driven legalizer and a set of post-processing
enhancement techniques.

The paper is organized as follows. Section 2 describes
a solution to the timing-driven fanin tree embedding prob-
lem. We introduce the Replication tree in section 3. Timing-
driven legalizer is described in section 4. Section 5 gives a

! Fanin trees are referred to by some authors as Fan-out-Free Cir-
cuits or Leaf-DAG Circuits [4]; we can handle either such struc-
ture.

712

Higher delay and lower cost Lower delay and higher cost

Figure 4: Example of fanin tree embedding.

Fanout Tree Fanin Tree

Figure 5: Similarity between fanout and fanin tree.

top-level view of our approach. Section 6 reveals some of the
implementation details. Experimental results are presented
in section 7 and we conclude in section 8.

2. FANIN TREE EMBEDDING

In the fanin tree embedding problem we are given a fanin
tree, placement of leaves (inputs) and root (sink), arrival
times at the inputs and a target placement region (in our
case this is encoded in an embedding graph). The goal is to
place the internal tree nodes (gates) minimizing cost subject
to an arrival time constraint at the root (typically there is
a tradeoff between cost and arrival time).

In the general case, the cost function is extremely flexible
and may include, in addition to wire-length cost, “placement
cost” in which a cost p;; is incurred when cell 7 is placed at
slot j. This is extremely useful in our application since it
allows us to give a cost “discount” if a cell is placed “on-top”
of a logically equivalent cell (and thus these two cells can
be unified). Thus, the solutions to the embedding problem
naturally capture replication overhead.?

Figure 4 illustrates two embeddings of the same fanin tree.
Given that the shaded region in the middle has high place-
ment cost, we can have a solution with smaller cost but
larger delay (left part of the figure), or we can have a solu-
tion with better delay but larger cost (on the right).

We have observed that the problems of embedding fanin
and fanout (see [5, 6]) trees are very similar. A simple ex-
ample is given in Figure 5. On the left we have a fanout
tree with source s and sinks a, b and ¢ (signal flow is from
top to bottom). In fanout tree embedding we place Steiner
nodes = and y. In fanin tree case, on the right, we have sink
s, inputs a, b and ¢, and in fanin tree embedding we place
gates x and y. For this reason, we have been able to adapt
the Dynamic Programming (DP) embedding algorithm of
the S-Tree algorithm [5] to the fanin tree problem.

The DP approach for fanout tree embedding starts from
sinks and propagates required-arrival time and cost toward
the source. In the case of a fanin tree we start from inputs
and propagate arrival time, and cost toward the sink.

2 As an aside, a simple linear program as in [8] can solve special
cases of the embedding problem but seem incapable of solving it
in the generality we have described here.

Figure 6: Replication Tree example.

In the resulting DP approach for fanin tree embedding, a
candidate solution (embedding) for a subtree rooted at node
7 in the tree with node ¢ placed at vertex j in the embedding
graph is represented by its signature (c,t), indicating that
this subsolution incurs cost ¢ and has latest arrival time ¢
at . Solutions at leaves are initialized to have zero cost and
arrival times as specified by the problem instance (which is
zero for PIs and FFs and latest arrival time computed by
static timing analysis for other leaves).

In the bottom-up DP procedure we must combine can-
didate solutions from subtrees to form new candidate solu-
tions. At internal node ¢ in the tree and vertex j in the
graph we join sub-tree solutions as follows:

c=pijt+ctect..+ck
t= ma:c(thtz, ...,tk)

where k£ in the number of inputs for gate at 4, and p; ; is
placement cost. For each pair (7,;) instead of single best
solution we keep a list of non-dominated solutions. One
solution dominates the other if it is superior in both di-
mensions (i.e., both cheaper and faster). After computing
joined solutions, they are propagated through the embed-
ding graph using generalized version of Dijkstra’s shortest
path algorithm, as in [5]. At the root we obtain a set of
solutions with cost vs. delay trade-off. From the trade-off
curve we pick a fastest solution that is not faster than the
precomputed lower-bound on best possible worst delay of
the circuit (which is in general limited by distance between
PIs and POs and number of logic blocks in between).

3. THE REPLICATION TREE

Since most circuits do not have large fanin trees due to
reconvergence, we have devised the Replication Tree which
enables us to induce large fanin trees in a logically equiva-
lent circuit. The idea is best illustrated by an example. In
the left part of Figure 6 we have a portion of a circuit with a
set of edges in bold. These edges form a tree with all edges
pointing toward the root (f). Note that in the left figure,
this tree does not form a valid fanin tree due to reconver-
gence. To induce a fanin tree we (temporarily) make a copy
of each node in the tree (f,d,a,b,c). If the original cell is
v and the copy is v'*, we assign connections as follows: let
U1, ..., ur be the inputs to v. If (u;,v) is a tree edge, then
vT receives its ¢’th input from ul*; otherwise, it receives its
i’th input from wu;.

This construction is applied to the circuit in the figure
and results in the circuit on the right and yields a fanin tree
sub-circuit formed by the replicated cells. Notice that cells
d® and f® connect to c rather than ¢® — otherwise the repli-
cated cells would not form a proper fanin tree (technically
speaking it is a Leaf-DAG because, for example “leaf” node
¢ connects to two cells in the tree, however, since the timing
properties of ¢ are fixed and known, this does not compli-

713

Figure 7: Example of e-slowest paths tree.

cate the embedding process). Thus from the construction
we have two claims. First, if we modify the circuit in this
way (again, temporarily), the result is functionally equiva-
lent; this is clear from the construction. Second, the set of
replicated nodes form the internal vertices of a legitimate
fanin tree which can be embedded.

The temporary nature of the replication can now be tied
to the placement cost which we have incorporated into the
embedding formulation and this point is crucial. We men-
tioned that placing a node coincidentally with a logically
equivalent node receives a “discount.” In the context of the
replication, this should now become clear — if the embedder
places v at the same location as v, there is no replication
and thus, we implicitly only replicate the cells that yield
the most significant improvement. A special case may oc-
cur if node v has fanout of one. Then we still replicate but
all placement locations receive a discounted cost, since no
actual replication will ever occur.

Furthermore, over the course of multiple optimizations,
we may have more than two copies of a cell. Placement cost
is assigned accordingly in such situations (i.e., placement
with any logically equivalent cell receives a discounted cost,
not only with the immediate source of the replication).

Clearly there are many trees in a timing graph which we
may use to generate a replication tree. For timing optimiza-
tion, it is natural to focus on trees with slow paths. The
slowest paths tree (SPT) can be thought of as the result
of finding a longest paths tree from the critical sink in the
timing graph with the edges reversed (equivalently, finding
the shortest paths tree in the reversed graph with the delay
values negated). Finding this tree is trivial once the static
timing analysis has completed.

Similarly, an e-SPT is a subset of the slowest paths tree
which includes only cells with paths within e of the current
critical path delay. This allows us to focus on the most
critical portions of the fanin cone of the critical sink. An
example of e-slowest paths tree is given in Figure 7. Circuit
inputs are a, b, ¢, d and j. Outputs are [and m. Sink
m has been identified as critical. Edges of the e-SPT are
shown with solid lines and dashed edges represent circuit
connectivity. Note that g and j are not contained in the
e-SPT.

4. TIMING-DRIVEN LEGALIZATION

After the preceding phases, it is possible that some cells
overlap in the placement (actually it is very likely). The pur-
pose of the legalizer is to resolve those overlaps and move
cells from congested to empty locations. We observe that by
moving cells that are on the critical path one may degrade
circuit performance. In order to minimize perturbations to
the placement and preserve timing achieved in the embed-
ding phase (as much as possible), we have adopted ripple-

-—H

Overflow

%%

Figure 8: Gain graph in legalizer.

L]
!
Empty

move strategy from [7]. We have also modified this strategy
to incorporate timing as well as wiring information.

The legalizer is invoked after each embedding phase. Dur-
ing embedding it is possible that we replicate and/or move
multiple cells, so we may have more than one violation in
the placement. If an overlap-free placement is achievable
(i.e. there are enough free slots), the legalizer will resolve
one overlap at a time until the entire placement is legal.

In the procedure we first identify an overlap location. If
we have more than one overlap, we pick the first one we en-
counter while we scan placement for overlaps. We then iden-
tify up to four closest free slots (one slot in each quadrant,
if they exist, assuming that the center is at the congested
slot). Next we identify which of those free slots will be used
for legalization. To do this, we construct a gain graph (Fig-
ure 8), which has monotone paths from congested slot to
free slots. Each edge is labeled by the gain value that we
get by moving a cell from that slot to the neighboring slot
(in the direction toward the target free slot).

Gain is computed as the difference of costs of having a
cell at the current and the neighboring slot. This cost has
wire and timing component. Wire cost is the sum of the
estimated wire lengths of the net for which the current cell is
a root and those nets for which current cell is a sink. As wire
length estimation we use half-perimeter metric augmented
by a net size coefficient from [12].

Timing cost is computed as the squared delay of the slow-
est path through the current cell if such delay approaches
the critical delay (above 60% in our experiments) and zero
otherwise (in this way, moves that are likely to make a near
critical path worse are discouraged). The cost of a cell at
particular location is a composite of timing and wire cost:

C =aCr + (1 — a)Cw.
Gain of moving cell from current to new location is:

Cnew~

Gain = Ceyrr —

Once we have constructed the gain graph, we find the max-
gain path in the graph and use target slot with the highest
gain for ripple-move legalization. Note that to minimize
perturbations of the placement we move cells at most one
slot during a ripple move. Another motivation for this is that
embedder has a much stronger algorithm for optimizing cell
locations, so we want to keep cells as close to those locations
as possible. Note that best gain value could still be negative
(i.e. we may lose some quality/performance).

During ripple-moves it is possible that a cell may be moved
to a slot which contains one of its logically equivalent cells.
In that case we unify them and stop the current pass of a
single overlap legalization.

714

Algorithm: RT-Embedding(C,P)
C: Clircuit; P: Placement
al while(improvement)
a2 Static_Timing_Analysis(C, P)
a3 T — Extract_Replication_Tree(C, P)
ad Embed_Tree(T)
ab Post_Unify(C, P,T)
a6 Legalize(C, P)
a7 endwhile

Figure 9: Replication Tree Embedding.

5. OVERALL STRATEGY

Having introduced in previous sections the core compo-
nents of our approach to replication, we now give an overview
of how these components can be put together into a com-
plete optimization flow. As in [1], we begin from a valid
timing-driven placement produced by VPR [12].

Here is the top-level view of how our optimizer relates to
VPR: VPR is invoked to give an initial placement; we opti-
mize the placement by replication; we then give the result
to the VPR detailed router to accurately assess the results.

Thus, our approach is not currently intended to replace
any existing optimization steps in the flow but rather to
complement them. The core replication procedure is focused
on highly timing-critical sub-circuits and thus, while the em-
bedding algorithm is nontrivial, the runtime penalty for us-
ing such a sophisticated algorithm is very small in the scope
of the entire flow (this has been verified experimentally).

Figure 9 illustrates the pseudo-code of our main optimiza-
tion loop. In each iteration we start with static timing anal-
ysis to identify the most critical sink. From an e-SPT, we
extract a Replication Tree with the critical sink at its root.
Then we pass the tree to embedder which will produce a
family of solutions that trade off cost and delay. After
the embedding phase we analyze circuit for possible post-
process unifications (see section 6.2) since it is possible to
have equivalent cells that are not exactly on top of each
other, but close enough that unifying them would not harm
timing. As a final step we invoke placement legalizer to
resolve any possible cell overlaps that may have occurred.

6. DETAILS AND ENHANCEMENTS
6.1 Delay Model

In our experimental setup we use essentially the same
placement-level delay estimator as used by VPR [12] and
[1]. For the target FPGA architecture under consideration,
all the switches are buffered and interconnect resources are
uniform. As a result, RC effect are localized and thus the
interconnect delay is reasonably approximated by a linear
function of the Manhattan length of the interconnect. As
an aside, we note that in principle, the embedding algorithm
can use more general delay models.

6.2 Post-process Unification

Once we have an embedding of a replication tree, if we
seek a timing superior solution, some cells may be placed
close to logically equivalent cells but not quite on top of
them. In this case implicit cell unification will not occur.
However, it is possible that some of the equivalent cells lie
on non-critical paths and that their child cells could pick
up signal from the newly replicated cell without degrading
their arrival time (sometimes delay can even improve).

Before

Intermediate step

Figure 10: Example of cell unification.

As a post-process, for each newly replicated cell we ex-
amine all their logically equivalent cells. If any fanout cell
of those equivalent cells can improve its arrival time by tak-
ing the corresponding input from a newly replicated cell,
we reassign it to the new replica. In this way we can im-
prove delay on paths that were not explicitly captured by
the replication tree. It is possible that in this process some
of the equivalent cells remain without fanout (i.e., no cell
is using their output). In this case such cell is deleted as
redundant. Once we delete a cell we have to examine child
count of its parents since deleted cell could have been the
only child of its parent cell and then parent itself becomes
redundant. This test is applied recursively up the path.

An example of this scenario in practice is when we have
a non-tree structure (DAG) on one side of the FPGA. Then
in each iteration a part of the DAG is extracted as a replica-
tion/fanin tree, optimized and placed further away so that
replication must occur. In consecutive iterations the other
parts of the DAG slowly migrate to the other side. Finally,
the entire DAG can migrate to the other side, in which case
replications, although necessary for intermediate solution,
are now completely redundant. Unification naturally han-
dles this anomaly. Figure 10 shows an example of unifica-
tion. Before optimization we had cell a and its replica a®.
Cell a gets relocated to proximity of cell a®. Timing analy-
sis reveals that children of a® can get signal from a without
degrading worst delay through it so we perform unification.

Figure 11 shows relation between replicated and unified
cells for circuit ex1010. The optimization took 106 loop
iterations and during that time 38 cells were replicated but
12 were unified giving total of 26 replications at the end.

6.3 «Slowest Paths Tree

As discussed previously, we use the e-SPT to guide repli-
cation tree construction. The value of € is initially set to
zero and is dynamically updated in the main loop of opti-
mization flow. Since our approach has no randomized com-
ponents, when no improvement is found for a tree rooted at
particular critical sink, we would not be able to improve any
further in subsequent iterations since the same sink will still
be critical and the same tree will be selected. We address
this problem by dynamically increasing the value of € when
non-improvement occurs. The intuition is that extracted
tree will become larger and larger solution space gives more
freedom in tree embedding optimization.

6.4 Flip-Flop relocation

If the circuit that we are optimizing contains FFs, it is
possible that placement of those FF's is the limiting factor
for further optimization. To address this issue we use a fea-
ture of the S-Tree algorithm [5] which performs simultane-
ous driver placement at no extra run-time overhead; in our
case, this translates to simultaneous sink placement. Due to

715

40 _ Cells

Replication

Unification

110
Iteration

0 10 20 30 40 50 60 70 80 g0 100

Figure 11: Replication statistics for circuit ex1010.

the deterministic nature of the approach, if we are not able
to improve timing of particular critical sink it will become
selected again as critical in next iteration of main optimiza-
tion loop. If this occurs and the critical sink is a FF, then
we allow it to move. We extract the trade-off curve which
is composed of solutions at all possible placement locations
for critical sink (not just the initial location) and choose
the solution minimizing the arrival time without introduc-
ing large delay penalty on other paths that touch the FF
that are not captured by the optimized tree (for example
nets for which this critical FF is a source). However we do
allow some degradation of solutions, and in the main loop
we save the best solution seen until this point, so that we
can always report the best solution encountered instead of
the last one which could saturate in a local optimum.

7. EXPERIMENTS

We have implemented the Replication Tree Embedding
algorithm and performed some initial experiments to eval-
uate its effectiveness. The experiments were conducted in
a LINUX environment on a PC with an Intel PentiumM
1.3GHz CPU and 256MB of RAM. The main criteria of in-
terest are the maximum delay through the circuit (i.e., clock
period), wire length and number of logic blocks. All such
statistics are reported by the VPR timing-driven router. We
compared our approach with Timing Driven VPR [12] and
with the local replication algorithm from [1]. Table 1 shows
the experimental results for 20 MCNC benchmark circuits.
As mentioned earlier, we used timing driven VPR to place
the circuits. In the first data set we did not perform any
additional optimizations. In the second data set we op-
timized placement by local replication® algorithm, and in
the third data set we optimized placement using our ap-
proach (RT-Embedding). All placements were routed using
VPR in timing driven mode. Since the local replication
algorithm is randomized, we ran it three times and took
the best result. The circuits were placed on the minimum
square FPGA able to contain the circuit. As in [12] we use
definition of low-stress routing as routing where FPGA has
about 20% more routing resources available then the min-
imum required to successfully route the circuit. Also from
[12], infinite-resource routing is when FPGA has unbounded
routing resources. It is argued in [12] that the former rep-
resents the situation how FPGA will be routed in practice
and the latter is a good placement evaluation metrics. For
post-place-and-route experiments we present both low-stress
(Wis) and infinite-resource (W) critical path delay num-
bers. Results for local replication and RT-Embedding are
normalized to VPR results.

3We have verified with the authors of [1] that results reported in
[1] were based on wire-length-driven VPR (by mistake) while it
was reported that comparisons were based on timing-driven VPR.

Table 1: Comparison between Timing-Driven VPR, local replication and RT-Embedding

Circuit Timing Driven VPR local replication RT-Embedding
normalized to VPR normalized to VPR
crit path [ns] wire crit path wire crit path wire
o Wig length blk Weo Wi length blk Woo Wig length blk

ex5p 80.59 81.99 20020 | 1135 || 0.792 | 0.806 1.027 1.004 0.764 | 0.774 1.090 1.011
tseng 50.54 53.65 10495 | 1221 || 0.987 | 0.955 1.012 1.004 0.987 | 0.978 1.060 1.002
apex4 72.12 75.41 22332 | 1290 || 0.912 | 0.913 1.042 1.012 0.888 | 0.913 1.107 1.011
misex3 64.44 65.87 21784 | 1425 || 0.914 | 0.937 | 1.013 1.007 0.852 | 0.891 1.148 1.010
alu4 77.20 81.07 20796 | 1544 || 0.987 | 0.963 1.004 1.000 0.922 | 0.925 1.053 1.002
diffeq 55.29 57.49 15560 | 1600 1.004 | 1.000 1.002 1.003 0.989 | 0.969 1.026 1.001
dsip 65.38 67.21 17237 | 1796 || 0.924 | 0.938 1.024 1.001 0.793 | 0.804 1.277 1.001
seq 76.93 77.82 28493 | 1826 || 0.939 | 0.969 1.011 1.002 0.870 | 0.885 1.048 1.003
apex2 94.61 95.47 30998 | 1919 1.000 | 1.000 1.000 1.000 0.811 | 0.838 1.120 1.010
5298 124.20 | 127.35 | 22762 | 1941 || 0.937 | 0.937 1.029 1.003 0.915 | 0.903 1.034 1.001
des 90.44 91.31 27415 | 2092 || 0.898 | 0.895 1.044 1.003 0.876 | 0.876 1.039 1.001
bigkey 59.69 60.65 21074 | 2133 1.000 | 1.000 1.000 1.000 0.855 | 0.892 1.190 1.000
frisc 119.02 | 124.61 | 61109 | 3692 1.007 | 0.997 1.007 1.001 0.999 | 0.983 1.018 1.001
spla 111.03 | 113.57 | 68308 | 3752 || 0.874 | 0.889 1.035 1.005 0.812 | 0.824 1.108 1.008
elliptic | 105.96 | 108.50 | 47456 | 3849 || 0.926 | 0.934 1.040 1.003 0.853 | 0.838 1.030 1.001
ex1010 184.84 | 185.56 | 70300 | 4618 || 0.861 | 0.882 1.044 1.003 0.818 | 0.847 1.148 1.006
pdc 167.81 | 169.33 | 105073 | 4631 || 0.707 | 0.728 1.031 1.003 0.641 | 0.707 1.072 1.005
s38417 97.20 | 100.61 | 64490 | 6541 || 0.974 | 0.961 1.004 1.000 0.930 | 0.944 1.017 1.000
s38584.1 | 99.74 | 102.10 | 58869 | 6789 || 0.919 | 0.927 1.002 1.000 0.842 | 0.839 1.048 1.001
clma 211.78 | 217.24 | 145551 | 8527 || 0.926 | 0.915 1.021 1.003 0.746 | 0.745 1.053 1.005
average 0.925 | 0.927 | 1.020 | 1.003 || 0.858 | 0.869 | 1.084 | 1.004

We are able to improve critical path delay over VPR for
all circuits in the test suite. The best delay reduction of

36% was achieved for circuit pdc. Average delay reduction is

14.2%, which almost doubles the average delay improvement

of the local replication algorithm. The largest improvement
over local replication is almost 19% for circuit apex2, for
which local replication was not able to improve critical path

9. REFERENCES

[1] G. Beraudo, J. Lillis, “Timing Optimization of FPGA

graph-based modeling of the placement target would seem
ideally suited to many practical problems (e.g., placement in
the context of heterogeneous FPGA routing architectures).

delay at all. Observe that wire-length degradation of our
approach is 8.4% on average, and average number of newly
introduced cells by replication is only 0.4% of the total num-
ber of cells. One may argue that the increase in wire length

is not negligible.

However, perhaps more important than

wire length is routability and our designs were always suc-

cessfully routed (this is most relevant in the case of Wy).

Runtime overhead of our approach is very modest — under
5% of the time of VPR flow (place and route). Note that
low-stress routing critical path delay is slightly worse that
the case with infinite routing resources. Degradation is con-
sistent for all circuits in the test suites and also correlates

with low-stress routing behavior conclusions from [12].

8. CONCLUSIONS

‘We have presented a general and robust approach to timing-
driven, placement-coupled replication. Two items form the
core of the approach. First we presented an efficient algo-
rithm for optimal fanin tree embedding under a general cost
model. Second we proposed the replication tree for inducing
large sub-circuits which can be optimized by the embedder.
The approach has a number of interesting properties includ-

ing implicit unification of logically equivalent cells.

Around these core ideas we have built an optimization en-
gine for the FPGA domain and demonstrated very promising

preliminary experimental results.

Finally, we argue that the general ideas in this paper hold

great promise beyond the context studied here.

We sug-

gest that the techniques can provide useful bridges between

placement, routing and logic (re-)synthesis.

Further, the

716

Placements by Logic Replication,” DAC, 2003.

[2] W. Gosti, A. Narayan, R.K. Brayton, A.L.

Sangiovanni-Vincentelli, “Wireplanning in logic Synthesis,”
ICCAD, 1998.

[3] W. Gosti, S.P. Khatri, A.L. Sangiovanni-Vincentelli,

[4

[5]
[6]

[7]

(8]

9

(10]

(13]

“Addressing The Timing Closure Problem By Integrating
Logic Optimization and Placement,” ICCAD, 2001.

] S. Devadas, A. Ghosh, K. Keutzer, “Logic Synthesis,”

McGraw-Hill, 1994.

M. Hrkié¢, J. Lillis, “S-Tree: A Technique for Buffered
Routing Tree Synthesis,” DAC, 2002.

M. Hrki¢, J. Lillis, “Buffer Tree Synthesis With
Consideration of Temporal Locality, Sink Polarity
Requirements, Solution Cost, Congestion and Blockages,”
IEEE Transactions on CAD, 2003.

S.W. Hur, J. Lillis, “Mongrel: Hybrid Techniques for
Standard Cell Placement,” ICCAD, 2000.

M. Jackson, E. Kuh, “Performance-driven Placement of
Cell Based IC’s,” DAC, 1989.

J. Lillis, C.K. Cheng, T.T.Y. Lin, “Algorithms for Optimal
Introduction of Redundant Logic for Timing and Area
Optimization,” Proc. IEEE International Symposium on
Circuits and Systems, 1996.

L.T. Liu, M.T. Kuo, C.K. Cheng, T.C. Hu, “A Replication
Cut for Two-Way Partitioning,” IEEE Transactions on
CAD, 1995.

[11] W.K. Mak, D.F. Wong, “Minimum Replication Min-Cut

Partitioning,” IEEE Transactions on CAD, October 1997.

[12] A. Marquardt, V. Betz, J. Rose, “Timing-Driven Placement

for FPGAs,” International Symposium on FPGAs, 2000.
A. Srivastava, R. Kastner, M. Sarrafzadeh, “Timing Driven

Gate Duplication: Complexity Issues and Algorithms,”
ICCAD, 2000.

