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Abstract 
Traditionally, text classifiers are built from labeled training 
examples. Labeling is usually done manually by human 
experts (or the users), which is a labor intensive and time 
consuming process. In the past few years, researchers 
investigated various forms of semi-supervised learning to 
reduce the burden of manual labeling. In this paper, we 
propose a different approach. Instead of labeling a set of 
documents, the proposed method labels a set of 
representative words for each class. It then uses these words 
to extract a set of documents for each class from a set of 
unlabeled documents to form the initial training set. The 
EM algorithm is then applied to build the classifier. The key 
issue of the approach is how to obtain a set of representative 
words for each class. One way is to ask the user to provide 
them, which is difficult because the user usually can only 
give a few words (which are insufficient for accurate 
learning). We propose a method to solve the problem. It 
combines clustering and feature selection. The technique 
can effectively rank the words in the unlabeled set 
according to their importance. The user then selects/labels 
some words from the ranked list for each class. This process 
requires less effort than providing words with no help or 
manual labeling of documents. Our results show that the 
new method is highly effective and promising.  

Introduction   
The classic approach to building a text classifier is to first 
(often manually) label a set of training documents, and 
then apply a learning algorithm to build the classifier. This 
method is called supervised learning.  
Manual labeling of a large set of training documents is a 
bottleneck of this approach as it is a time consuming 
process. To deal with this problem, (Nigam et al., 2000; 
Blum & Mitchell, 1998) propose the idea of using a small 
labeled set of every class and a large unlabeled set for 
classifier building. (Denis, 1998; Liu et al., 2002) also 
propose to learn from positive and unlabeled examples 
(without labeled negative examples). These research 
efforts aim to reduce the burden of manual labeling.  
In this paper, we explore an alternative approach. Instead 
of asking the user to label a set of training documents, we 
ask him/her to provide some representative words for each 
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class. These words and an unlabeled document set are then 
used to build a classifier. The main idea of the proposed 
approach is as follows: The user first provides a set of 
representative words for each class. These words are 
employed to identify a set of reliable documents for the 
class from the unlabeled set. This set of documents acts as 
the initial set of labeled training documents for the class. A 
classification algorithm is then applied to build a classifier. 
In this paper, we use the naïve Bayesian classification 
method (Lewis & Gale, 1994; McCallum & Nigam 1998a) 
and the Expectation Maximization (EM) algorithm 
(Dempster, Laird & Rubin, 1977) for classifier building1. 
The reason that this technique works is because the class 
of a text document essentially depends on the words that it 
contains. Most classification techniques use only words as 
features. Hence, if we can obtain a set of representative 
keywords for each class, we can extract an initial set of 
documents for the class by comparing the similarity of a 
document with the set of representative words of the class.  
The key problem of the proposed approach is how to 
obtain a set of representative words for each class. One 
method is to ask the user to provide them. We tried this 
method with some success. However, a problem also 
revealed itself, i.e., it is hard for the user to provide a big 
number of keywords that are required for accurate 
learning. Thus, the issue is how to help users to provide a 
sufficient number of representative words for each class.  
Clearly, it is not appropriate to list all the distinctive words 
in the unlabeled document set and to ask the user to select 
from them because the number of words is often too large 
(tens of thousand or more). It will be much better if the 
words can be ranked according to their importance or 
discriminative power. With this ranked list, it becomes a 
much easier task to select those important words for each 
class. The question is how to identify the set of important 
words automatically for an unlabeled document set (with 
no class information). We propose a novel approach to 
tackle the problem, which consists of three steps: 
1. Cluster the unlabeled documents. This step aims at 

finding inherent clusters in the data. Each resulting 
cluster is treated as a category or class.  

                                                 
1  The focus of this paper is to demonstrate the potential of learning 

without any labeled training documents. We believe that other 
classification techniques may also be used in this step. 



2. Perform feature selection on the resulting clusters to 
identify those important words of each cluster. The 
result is a list of all words ranked according to their 
discriminative power of all the clusters/classes.  

3. The user (or human expert) then inspects the ranked list 
of words to select a small set of representative words 
for each class of documents that he/she is interested in. 
We call this process word labeling.  

Our experimental results show that the proposed technique 
is highly effective. The time taken to select the set of 
representative words is small.  

Related Work 
Existing text classification techniques can be grouped into 
three types, supervised learning, semi-supervised learning, 
and unsupervised learning (or clustering). The proposed 
technique is related to but significantly different from all 
these existing approaches. We compare them below. 
In supervised learning, a set of (often manually) labeled 
training documents of every class is used by a learning 
algorithm to build a classifier. Existing text classification 
techniques include the naive Bayesian method (Lewis & 
Gale 1994; McCallum & Nigam 1998a), support vector 
machines (SVM) (Vapnik, 95) and many others. As 
discussed in the Introduction, our technique is different. 
We only ask the user to select a set of important words for 
each class from a ranked list, rather than reading and 
labeling a set of documents, which requires more effort.  
Due to the problem of manual labeling, semi-supervised 
learning is studied, which includes two main paradigms: 
(1) learning from a small set of labeled examples and a 
large set of unlabeled examples; and (2) learning from 
positive and unlabeled examples (with no labeled negative 
examples). Many researchers have studied learning in the 
first paradigm (e.g., Nigam et al., 2000; Blum & Mitchell 
1998; Bockhorst & Craven, 2002; Ghani, 2002; Goldman 
& Zhou, 2000). These are different from our work as we 
use no manually labeled examples.  
In learning from positive and unlabeled examples, some 
theoretical studies and practical algorithms are reported in 
(Denis 1998, Liu et al, 2002; Yu, Han & Chang, 2002). 
Again, our proposed technique is different as it does not 
use any manually labeled documents.  
Active learning is another method for reducing the number 
of labeled documents (McCallum and Nigam, 1998b). In 
active learning, the algorithm sequentially selects an 
example to be labeled next after receiving the labels for the 
previously selected examples. As in the other methods 
above, active learning requires the user to label documents, 
which is different from our approach.  
The proposed work is also related to unsupervised learning 
or clustering (Jain & Dubes, 1988) and constraint-based 
clustering (e.g., Wagstaff et al, 2001). Although clustering 
is not commonly used for classification, its results can be 

employed as a classifier as follows: Given a new 
document, it is classified to the cluster (which represents a 
class) that is closest to it. This method, however, has two 
major shortcomings: (1) the accuracy is often low, and (2) 
the resulting clusters may not be what the user wants.  
Recent work (e.g., (Basu, Banerjee & Monney, 2002)) tries 
to bring clustering closer to classification by using a small 
number of labeled documents as seeds to initialize k-means 
clustering. The original k-means algorithm selects initial 
seeds randomly. Again, our work is different. We only use 
clustering (and also feature selection) to help us to identify 
a set of important words in a text collection so that the user 
can select a set of representative words for each class.  
In (McCallum & Nigam, 1999), a method is proposed to 
utilize user-specified keywords to help build classifiers. 
However, as we found in our experiments, it was very hard 
for the user to provide such keywords. This is similar to 
the well known problem of knowledge acquisition in 
building expert systems. Our technique can effectively 
assist the user to select a set of representative words.  

The Proposed Technique 
This section presents the proposed technique. Given a set 
U of unlabeled documents, our technique has five steps.  
Step 1: Cluster the documents in U. 
Step 2: Perform feature selection on the clusters. 
Step 3: Identify (by the user) a set of representative words 

for each class of documents that he/she is interested in.  
Step 4: Automatically label an initial set of documents.  
Step 5: Build the final classifier.  
Below, we present these steps in turn.  

Clustering the Documents in the Unlabeled Set 
This step finds inherent clusters in the unlabeled set. We 
use the popular k-means algorithm due to its efficiency, 
although other methods can also be applied.  The inputs to 
k-means are the set U and the number of clusters k. Note 
that the value of k does not matter much in our case as long 
as it is not too small because we do not use the resulting 
clusters as the classifier. We only use them to help us 
identify some important words in U. In clustering, the 
cosine similarity metric from information retrieval (Salton 
& McGill, 1983) is used as the distance measure.  

Feature Selection 
After clustering, k document clusters are produced. We 
treat each cluster as a distinctive class. This gives us a set 
of labeled documents of k classes. A feature selection 
technique from supervised learning is then applied to 
identify important words in each cluster.  
There are many feature selection techniques for supervised 
learning (Yang & Pedersen, 1997). In this research, we 
utilize the entropy-based method. This method computes 



the information gain of each word and then ranks all the 
words in U according to their gain values. Those words 
with higher gain values have higher discriminative power 
and are ranked higher. These top-ranked words are 
regarded as the important words in the unlabeled set U.   

Selecting Representatives Words for Each Class 
This step is performed manually by the user. We assume 
that the user is familiar with the topics of the documents 
and also knows the classes that he/she is interested in.  
Since the words are ranked according to their importance, 
the user simply inspects the top ranked words and decides 
which class each word belongs to. Note that a word can be 
selected as a representative word for more than one class. 
Although a word may be more important to one class than 
another, we tried to assign a weight to each class, but it 
was not effective. The user can also add additional words 
for any class that are not found at the top of the rank.  

Identifying Initial Documents for Each Class 
Once a set of representative words is selected for each 
class cj ∈ C (= {c1, c2, …, cn}), the set of words is regarded 
as the representative document (rdj) of class cj. We then 
compare the similarity of each document di in U with each 
rdj using the popular cosine similarity metric (Salton & 
McGill, 1983) to automatically produce a set Lj of 
probabilistically labeled documents for each class cj.  
The algorithm for this step is given in Figure 1. It works as 
follows. In lines 1-3, each unlabeled document di in U is 
compared with the representative document rdj of each 
class cj using the function sim (the cosine metric). di is 
assigned to the class whose representative document is 
most similar to di if the maximum similarity sr is greater 
than 0 (lines 4 and 5). That is, di is included in Lr. 
Otherwise, di is included in RU (the set of remaining 
unlabeled documents) in line 6. Each document in RU has 
0 similarity with every rdj and is thus left unlabeled. In 
lines 7-15, we assign a probabilistic class label, P(cj|di) ≤ 
1, to each document di in Lj. We first rank the documents 
in Lj based on their similarities. Each of the top t percent of 
the documents is given P(cj|di) = 1. Each of the remaining 
documents is given a class probability proportionally (lines 
12-15) as they may not be as reliable as those top-ranked 
documents. t is a parameter here. In our experiments, we 
tried t with 16%, 50%, 84% and 100% (to be explained 
later) and found that its value does not matter much.  

Building the Classifier Using NB or EM 
We build the final classifier using the naïve Bayesian (NB) 
technique and the EM algorithm. EM also uses NB as the 
base classifier. Below, we introduce them in turn.  
Naïve Bayesian (NB) Classification: The basic idea of 
NB is to use the joint probabilities of words and classes to 
estimate the probabilities of classes given a document 
(McCallum & Nigan, 1998a; Lewis & Gale, 1994).  

In the NB formulation, each document in the labeled 
training set D is considered as an ordered list of words. 
wdi,k denotes the word in position k of document di, where 
each word is from the vocabulary V = {w1, w2, … , w|v|}. 
The vocabulary is the set of all words considered in 
classification. There is also a set of pre-defined classes, C 
= {c1, c2, …, cn}. In order to perform classification, we 
compute the posterior probability P(cj|di), where cj is a 
class and di is a document. Based on the Bayesian 
probability and the multinomial model, we have 
 
 

and with Laplacian smoothing, 
 
 
 
where N(wt,di) is the count of the number of times the 
word wt occurs in document di and P(cj|di) ∈{0,1} 
depending on the class label of the document. 
Finally, assuming that the probabilities of words are 
independent given the class, we obtain the NB classifier:  

 
 

To build a classifier for our purpose, NB will only use the 
set of labeled documents in each Li. Those remaining 
unlabeled documents in RU could not be used. The EM 
algorithm below is able to make use them.  

The EM Algorithm: The EM algorithm is a popular class 
of iterative algorithms for maximum likelihood estimation 
for problems involving missing data (Dempster, Laird & 
Rubin, 1977). It is often used to fill the missing values in 

Inputs: RD = {rd1, rd2, …, rdn}, the set of representative 
documents of the classes, c1, c2, …, cn.  

 U = {d1, d2, …dm}, the set of unlabeled documents.  
Output: L = {L1, L2, …, Ln}, where Lj is a set of labeled 

documents for class cj. Lj is initialized to {}.  
 RU, the set of remaining documents in U that are not 

labeled with any class. It is initialized to {}.  
1.  for each di ∈ U do 
2. for each rdj  ∈ RD do  
3.   sj = sim(di, rdj); 
4. sr = max({s1, s2, …, sn}); 
5. if sr > 0 then  Lr = Lr ∪ {di}; 
6. else RU = RU  ∪ {di};  
7. for each Lj ∈ L do  
8.  Rank the documents in Lj according to their similarity 

values in a descending order; 
9. Let Tj be the set of t% top-ranked documents in Lj; 
10. for each di in Tj do   
11.  P(cj|di) = 1;  
12. Let ms be the minimal similarity of the documents in Tj;  
13. for each document di in Lj – Tj do  
14.  P(cj|di) = di.sim / ms;  // di.sim is the similarity of di 
15.  1-P(cj|di) is shared by other classes; 

Figure 1: Labeling a set of documents automatically 
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the data using existing values. Each iteration of EM 
consists of two steps, the E step and the M step. The E step 
basically fills in the missing values. The parameters are 
estimated in the M step after the missing data are filled. 
This leads to the next iteration of the algorithm. EM can be 
applied to our problem because the classes of the 
documents in RU (the remaining unlabeled documents) can 
be regarded as missing. The steps used by EM are identical 
to those used to build a NB classifier, equations (3) for the 
E step and equations (1) and (2) for the M step. Note that 
the probability of the class given the document takes the 
value in [0, 1] instead of {0, 1}.   
Our algorithm, called NB-EM, is given in Figure 2. 
Initially, we use the labeled documents in L to build a NB 
classifier NB-C (line 1), which is then applied to classify 
the documents in RU. In particular, NB-C computes P(ci|dj) 
of each document in RU (using equation (3)), which is 
assigned to dj as its new probabilistic class label. After 
every P(ci|dj) is revised, a new classifier NB-C is built 
based on the new P(ci|dj) values of the documents in RU, 
and the initially labeled documents in L. The next iteration 
starts. This iterative process goes on until EM converges 
(when the probability parameters stabilize).  
NB-EM(L, RU) 
1.  Build an initial naive Bayesian classifier NB-C using the 

document set L; 
2.  Loop while classifier parameters change 
3.   for each document dj ∈ RU 
4.   Compute P(ci | dj) using the current NB-C; 
5.  Update P(wt|ci) and P(ci) with the probabilistically 

assigned class for dj (P(ci|dj)) and L (a new NB-C 
is being built in the process);  

Figure 2: The NB-EM algorithm  

Empirical Evaluations 
Datasets: We used the 20 newsgroup collection1 in our 
experiments, which are Usenet articles from 20 different 
newsgroups. The reason for using this collection is that its 
topics are general. We can find graduate students to act as 
human experts to select keywords. Each newsgroup in the 
collection has approximately 1000 articles. There are four 
(4) main categories, namely, Science (SCI), Recreation 
(REC), Talk (TALK) and Computing (COMP). Within 
each main category, there are 4 to 5 sub-categories. We 
build a classifier for the sub-categories within each main 
category. That is, each sub-category within a main 
category is regarded as a class. This gives us four (4) 
datasets, and each dataset has 4 or 5 classes.  
For each dataset, we randomly selected 30% of the 
documents for testing, and the rest 70% for training. 
Evaluation measures: We use accuracy as the main 
evaluation measure. Accuracy is adequate because every 
class in our four datasets has the same number (1000) of 
                                                 
2 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes/20_newsgroups.tar.gz 

documents. We also used the F-score. However, its trends 
are similar to accuracy. Thus, its results are not included.  
We now present the settings for each step of our technique.  
Clustering (step 1): We use the k-means algorithm. As 
mentioned earlier, the number of clusters k does not matter 
much for our technique. We purposely used k = 7 for every 
dataset, which is different from the actual number of 
classes of each dataset. We also experimented with k being 
the actual number of classes of each dataset. Those top-
ranked words are very much the same as for k = 7.  
Feature selection and word ranking (step 2): We used 
the information gain (or entropy) based approach.  
Selecting representative words (step 3): Choosing 
representative words is a subjective task. Two students and 
one researcher were asked to serve as experts to choose 
representative words. Although they choose words 
independently, there is little difference in the words that 
they choose because they use the same ranking and most 
top keywords are obvious. Our experiments also show that 
slight differences in the selected words have almost no 
effect on the final classification results.   
To test how many words are needed to produce good 
classifiers, we tried 5, 15, 20, and 30 words per class. We 
will see that additional words will not help.  
Labeling some training documents (step 4): We 
experimented with different t settings (percent of 
documents in Lj for each class cj that are given the class 
probability of 1, P(cj|di) = 1). The rest of the documents in 
Lj are given P(cj|di) < 1 according to their similarity values. 
Those documents with P(cj|di) = 0 for every class are in 
RU (the set of remaining unlabeled documents). We 
experimented with t = 16%, 50%, 84%, and 100%. t = 
16% covers documents whose similarities are greater than 
one standard deviation above the mean similarity (these 
documents have the highest similarities). t = 84% covers 
documents whose similarities are greater than one standard 
deviation below the mean similarity.  
Classifier building (step 5): Two classification methods, 
NB and EM, were experimented. EM was run 8 iterations 
for each dataset. After that, the results rarely change.  
EM-Hard and EM-Soft: We experimented with two EM 
variations. (1) In each iteration of EM, we do not allow the 
class probability P(cj|di) of each document di in Lj (the set 
of labeled documents of class cj) to change, but only allow 
the class probability of each document in RU to change. 
This method is called EM-Hard. (2) In each iteration, we 
allow P(cj|di) of each document di in both Lj and RU to 
change. This method is called EM-Soft.  
Experimental results: Figure 3 shows the accuracy results 
of all datasets. In each chart (each dataset), the results are 
grouped according to different t values, 16%, 50%, 84% 
and 100%. For each t, we give the results of NB, EM-Hard 
and EM-Soft. The 4 bars in each group are the results of 
using 5, 15, 20, 30 representative words respectively.  



NB, EM-hard and EM-Soft: We observe that these three 
methods all have similar results for all t settings. Using 
15 or 20 words for each class gives slightly better results 
in general with t = 50%, 84% and 100%. For all t values, 
the accuracy stabilizes or worsens after 20 words. This is 
because the additional words may not be as 
representative as the earlier words for each class.   
EM based methods slightly outperform NB for the first 
three datasets. For dataset COMP, EM methods are 
slightly worse because the representative words for 
COMP are not as reliable as for other datasets. The 

representative words of COMP were the hardest to select 
because some classes of the dataset are similar. Thus, 
more EM iterations further blur the decision boundaries.  

k-means: We also give two results for k-means. “original” 
standards for the original k-means with its initial k seeds 
selected randomly. To allow fair comparison, we use the 
correct number of clusters k for each dataset. The 
accuracy on the test set is obtained as follows. After k-
means ends, for each test document d, we compute the 
similarity of d with each cluster center. d is assigned to 
the cluster that gives the highest similarity (using the 
cosine measure). After all test documents are assigned to 
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Figure 3: The accuracy results 



clusters, we match the classes of the dataset with the 
clusters in such a way that gives the best accuracy. Due 
to the random nature of k-means the accuracies are the 
averaged values of 10 runs. Note that each row has the 
same value because representative words are not used.  
“R-words” gives the results of k-means using the set of 
representative words as the initial cluster centers. From 
these two sets of results of k-means, we see that R-words 
outperforms the original k-means by a large margin.  
Comparing with the results of NB and EM, we see that 
NB and EM methods are superior to clustering. This is 
especially true for smaller numbers of representative 
words. For dataset COMP, the results are similar. We 
believe that the selected representative words for this 
dataset are not as reliable as for the other datasets.   

W. sim: It gives the accuracy results of using only the 
cosine similarity comparison with the representative 
words of each class. We compare the similarity of each 
test document d with the set of representative words of 
each class. d is assigned the class that gives the highest 
similarity value. If d’s similarity with every set of 
representative words is 0, d is assigned a random class. 
We observe that this technique is significantly worse 
than k-means using representative words as seeds, but 
better than the original k-means. It is also dramatically 
worse than the NB and EM-based approaches. 

Pure NB: These are NB’s accuracies in traditional 
classification, i.e., all the training documents are labeled 
with their original classes. Since we used fully labeled 
training data, thus all the results for each dataset are the 
same as they are not affected by the number of 
representative words. We observe that the accuracies of 
our proposed methods are very close to pure NB’s 
accuracies. For datasets SCI, REC and COMP, the 
proposed methods are only about 2-3% worse and for 
dataset TALK, it is about 5% worse. This shows that our 
methods are highly effective considering that no 
manually labeled document is used.  

Time spent to select representative words: The process 
of selecting representative words is not linear in the 
number of words. It gets harder with increasing number of 
words. The first 10 representative words for each class are 
generally easy to select. It takes around 5-10 minutes to 
choose 30 representative words for each class of a dataset. 
The time needed also depends on how different the classes 
are in the dataset. For example, for the first three datasets, 
it was very easy, and for the last dataset it was harder.  

Conclusions 
This paper proposed a new approach to constructing text 
classifiers. Instead of labeling a large set of training 
documents as in traditional learning, the new method asks 
the user to label or select a set of representative words for 
each class from a list of ranked words. The ranking 
technique is based on clustering and feature selection. The 
set of words for each class and a set of unlabeled 

documents are used to build a classifier. We believe that 
selecting these words from a ranked list requires less user 
effort than labeling of a large set of documents. Our results 
demonstrated the effectiveness of this approach.  
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