
Text Classification by Labeling Words

Bing Liu1, Xiaoli Li2, Wee Sun Lee2 and Philip S. Yu3

1 Department of Computer Science, University of Illinois at Chicago. liub@cs.uic.edu
2 Department of Computer Science, National University of Singapore. {lixl, leews}@comp.nus.edu.sg

3 IBM T. J. Watson Research Center. psyu@us.ibm.com

Abstract
Traditionally, text classifiers are built from labeled training
examples. Labeling is usually done manually by human
experts (or the users), which is a labor intensive and time
consuming process. In the past few years, researchers
investigated various forms of semi-supervised learning to
reduce the burden of manual labeling. In this paper, we
propose a different approach. Instead of labeling a set of
documents, the proposed method labels a set of
representative words for each class. It then uses these words
to extract a set of documents for each class from a set of
unlabeled documents to form the initial training set. The
EM algorithm is then applied to build the classifier. The key
issue of the approach is how to obtain a set of representative
words for each class. One way is to ask the user to provide
them, which is difficult because the user usually can only
give a few words (which are insufficient for accurate
learning). We propose a method to solve the problem. It
combines clustering and feature selection. The technique
can effectively rank the words in the unlabeled set
according to their importance. The user then selects/labels
some words from the ranked list for each class. This process
requires less effort than providing words with no help or
manual labeling of documents. Our results show that the
new method is highly effective and promising.

Introduction
The classic approach to building a text classifier is to first
(often manually) label a set of training documents, and
then apply a learning algorithm to build the classifier. This
method is called supervised learning.
Manual labeling of a large set of training documents is a
bottleneck of this approach as it is a time consuming
process. To deal with this problem, (Nigam et al., 2000;
Blum & Mitchell, 1998) propose the idea of using a small
labeled set of every class and a large unlabeled set for
classifier building. (Denis, 1998; Liu et al., 2002) also
propose to learn from positive and unlabeled examples
(without labeled negative examples). These research
efforts aim to reduce the burden of manual labeling.
In this paper, we explore an alternative approach. Instead
of asking the user to label a set of training documents, we
ask him/her to provide some representative words for each

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

class. These words and an unlabeled document set are then
used to build a classifier. The main idea of the proposed
approach is as follows: The user first provides a set of
representative words for each class. These words are
employed to identify a set of reliable documents for the
class from the unlabeled set. This set of documents acts as
the initial set of labeled training documents for the class. A
classification algorithm is then applied to build a classifier.
In this paper, we use the naïve Bayesian classification
method (Lewis & Gale, 1994; McCallum & Nigam 1998a)
and the Expectation Maximization (EM) algorithm
(Dempster, Laird & Rubin, 1977) for classifier building1.
The reason that this technique works is because the class
of a text document essentially depends on the words that it
contains. Most classification techniques use only words as
features. Hence, if we can obtain a set of representative
keywords for each class, we can extract an initial set of
documents for the class by comparing the similarity of a
document with the set of representative words of the class.
The key problem of the proposed approach is how to
obtain a set of representative words for each class. One
method is to ask the user to provide them. We tried this
method with some success. However, a problem also
revealed itself, i.e., it is hard for the user to provide a big
number of keywords that are required for accurate
learning. Thus, the issue is how to help users to provide a
sufficient number of representative words for each class.
Clearly, it is not appropriate to list all the distinctive words
in the unlabeled document set and to ask the user to select
from them because the number of words is often too large
(tens of thousand or more). It will be much better if the
words can be ranked according to their importance or
discriminative power. With this ranked list, it becomes a
much easier task to select those important words for each
class. The question is how to identify the set of important
words automatically for an unlabeled document set (with
no class information). We propose a novel approach to
tackle the problem, which consists of three steps:
1. Cluster the unlabeled documents. This step aims at

finding inherent clusters in the data. Each resulting
cluster is treated as a category or class.

1 The focus of this paper is to demonstrate the potential of learning

without any labeled training documents. We believe that other
classification techniques may also be used in this step.

2. Perform feature selection on the resulting clusters to
identify those important words of each cluster. The
result is a list of all words ranked according to their
discriminative power of all the clusters/classes.

3. The user (or human expert) then inspects the ranked list
of words to select a small set of representative words
for each class of documents that he/she is interested in.
We call this process word labeling.

Our experimental results show that the proposed technique
is highly effective. The time taken to select the set of
representative words is small.

Related Work
Existing text classification techniques can be grouped into
three types, supervised learning, semi-supervised learning,
and unsupervised learning (or clustering). The proposed
technique is related to but significantly different from all
these existing approaches. We compare them below.
In supervised learning, a set of (often manually) labeled
training documents of every class is used by a learning
algorithm to build a classifier. Existing text classification
techniques include the naive Bayesian method (Lewis &
Gale 1994; McCallum & Nigam 1998a), support vector
machines (SVM) (Vapnik, 95) and many others. As
discussed in the Introduction, our technique is different.
We only ask the user to select a set of important words for
each class from a ranked list, rather than reading and
labeling a set of documents, which requires more effort.
Due to the problem of manual labeling, semi-supervised
learning is studied, which includes two main paradigms:
(1) learning from a small set of labeled examples and a
large set of unlabeled examples; and (2) learning from
positive and unlabeled examples (with no labeled negative
examples). Many researchers have studied learning in the
first paradigm (e.g., Nigam et al., 2000; Blum & Mitchell
1998; Bockhorst & Craven, 2002; Ghani, 2002; Goldman
& Zhou, 2000). These are different from our work as we
use no manually labeled examples.
In learning from positive and unlabeled examples, some
theoretical studies and practical algorithms are reported in
(Denis 1998, Liu et al, 2002; Yu, Han & Chang, 2002).
Again, our proposed technique is different as it does not
use any manually labeled documents.
Active learning is another method for reducing the number
of labeled documents (McCallum and Nigam, 1998b). In
active learning, the algorithm sequentially selects an
example to be labeled next after receiving the labels for the
previously selected examples. As in the other methods
above, active learning requires the user to label documents,
which is different from our approach.
The proposed work is also related to unsupervised learning
or clustering (Jain & Dubes, 1988) and constraint-based
clustering (e.g., Wagstaff et al, 2001). Although clustering
is not commonly used for classification, its results can be

employed as a classifier as follows: Given a new
document, it is classified to the cluster (which represents a
class) that is closest to it. This method, however, has two
major shortcomings: (1) the accuracy is often low, and (2)
the resulting clusters may not be what the user wants.
Recent work (e.g., (Basu, Banerjee & Monney, 2002)) tries
to bring clustering closer to classification by using a small
number of labeled documents as seeds to initialize k-means
clustering. The original k-means algorithm selects initial
seeds randomly. Again, our work is different. We only use
clustering (and also feature selection) to help us to identify
a set of important words in a text collection so that the user
can select a set of representative words for each class.
In (McCallum & Nigam, 1999), a method is proposed to
utilize user-specified keywords to help build classifiers.
However, as we found in our experiments, it was very hard
for the user to provide such keywords. This is similar to
the well known problem of knowledge acquisition in
building expert systems. Our technique can effectively
assist the user to select a set of representative words.

The Proposed Technique
This section presents the proposed technique. Given a set
U of unlabeled documents, our technique has five steps.
Step 1: Cluster the documents in U.
Step 2: Perform feature selection on the clusters.
Step 3: Identify (by the user) a set of representative words

for each class of documents that he/she is interested in.
Step 4: Automatically label an initial set of documents.
Step 5: Build the final classifier.
Below, we present these steps in turn.

Clustering the Documents in the Unlabeled Set
This step finds inherent clusters in the unlabeled set. We
use the popular k-means algorithm due to its efficiency,
although other methods can also be applied. The inputs to
k-means are the set U and the number of clusters k. Note
that the value of k does not matter much in our case as long
as it is not too small because we do not use the resulting
clusters as the classifier. We only use them to help us
identify some important words in U. In clustering, the
cosine similarity metric from information retrieval (Salton
& McGill, 1983) is used as the distance measure.

Feature Selection
After clustering, k document clusters are produced. We
treat each cluster as a distinctive class. This gives us a set
of labeled documents of k classes. A feature selection
technique from supervised learning is then applied to
identify important words in each cluster.
There are many feature selection techniques for supervised
learning (Yang & Pedersen, 1997). In this research, we
utilize the entropy-based method. This method computes

the information gain of each word and then ranks all the
words in U according to their gain values. Those words
with higher gain values have higher discriminative power
and are ranked higher. These top-ranked words are
regarded as the important words in the unlabeled set U.

Selecting Representatives Words for Each Class
This step is performed manually by the user. We assume
that the user is familiar with the topics of the documents
and also knows the classes that he/she is interested in.
Since the words are ranked according to their importance,
the user simply inspects the top ranked words and decides
which class each word belongs to. Note that a word can be
selected as a representative word for more than one class.
Although a word may be more important to one class than
another, we tried to assign a weight to each class, but it
was not effective. The user can also add additional words
for any class that are not found at the top of the rank.

Identifying Initial Documents for Each Class
Once a set of representative words is selected for each
class cj ∈ C (= {c1, c2, …, cn}), the set of words is regarded
as the representative document (rdj) of class cj. We then
compare the similarity of each document di in U with each
rdj using the popular cosine similarity metric (Salton &
McGill, 1983) to automatically produce a set Lj of
probabilistically labeled documents for each class cj.
The algorithm for this step is given in Figure 1. It works as
follows. In lines 1-3, each unlabeled document di in U is
compared with the representative document rdj of each
class cj using the function sim (the cosine metric). di is
assigned to the class whose representative document is
most similar to di if the maximum similarity sr is greater
than 0 (lines 4 and 5). That is, di is included in Lr.
Otherwise, di is included in RU (the set of remaining
unlabeled documents) in line 6. Each document in RU has
0 similarity with every rdj and is thus left unlabeled. In
lines 7-15, we assign a probabilistic class label, P(cj|di) ≤
1, to each document di in Lj. We first rank the documents
in Lj based on their similarities. Each of the top t percent of
the documents is given P(cj|di) = 1. Each of the remaining
documents is given a class probability proportionally (lines
12-15) as they may not be as reliable as those top-ranked
documents. t is a parameter here. In our experiments, we
tried t with 16%, 50%, 84% and 100% (to be explained
later) and found that its value does not matter much.

Building the Classifier Using NB or EM
We build the final classifier using the naïve Bayesian (NB)
technique and the EM algorithm. EM also uses NB as the
base classifier. Below, we introduce them in turn.
Naïve Bayesian (NB) Classification: The basic idea of
NB is to use the joint probabilities of words and classes to
estimate the probabilities of classes given a document
(McCallum & Nigan, 1998a; Lewis & Gale, 1994).

In the NB formulation, each document in the labeled
training set D is considered as an ordered list of words.
wdi,k denotes the word in position k of document di, where
each word is from the vocabulary V = {w1, w2, … , w|v|}.
The vocabulary is the set of all words considered in
classification. There is also a set of pre-defined classes, C
= {c1, c2, …, cn}. In order to perform classification, we
compute the posterior probability P(cj|di), where cj is a
class and di is a document. Based on the Bayesian
probability and the multinomial model, we have

and with Laplacian smoothing,

where N(wt,di) is the count of the number of times the
word wt occurs in document di and P(cj|di) ∈{0,1}
depending on the class label of the document.
Finally, assuming that the probabilities of words are
independent given the class, we obtain the NB classifier:

To build a classifier for our purpose, NB will only use the
set of labeled documents in each Li. Those remaining
unlabeled documents in RU could not be used. The EM
algorithm below is able to make use them.

The EM Algorithm: The EM algorithm is a popular class
of iterative algorithms for maximum likelihood estimation
for problems involving missing data (Dempster, Laird &
Rubin, 1977). It is often used to fill the missing values in

Inputs: RD = {rd1, rd2, …, rdn}, the set of representative
documents of the classes, c1, c2, …, cn.

 U = {d1, d2, …dm}, the set of unlabeled documents.
Output: L = {L1, L2, …, Ln}, where Lj is a set of labeled

documents for class cj. Lj is initialized to {}.
 RU, the set of remaining documents in U that are not

labeled with any class. It is initialized to {}.
1. for each di ∈ U do
2. for each rdj ∈ RD do
3. sj = sim(di, rdj);
4. sr = max({s1, s2, …, sn});
5. if sr > 0 then Lr = Lr ∪ {di};
6. else RU = RU ∪ {di};
7. for each Lj ∈ L do
8. Rank the documents in Lj according to their similarity

values in a descending order;
9. Let Tj be the set of t% top-ranked documents in Lj;
10. for each di in Tj do
11. P(cj|di) = 1;
12. Let ms be the minimal similarity of the documents in Tj;
13. for each document di in Lj – Tj do
14. P(cj|di) = di.sim / ms; // di.sim is the similarity of di
15. 1-P(cj|di) is shared by other classes;

Figure 1: Labeling a set of documents automatically

∑ ∏
∏

= =

=

ΡΡ

ΡΡ
=Ρ ||

1

||

1 ,

||

1 ,

)|()(

)|()(
)|(C

r

d

k rkdr

d

k jkdj
ij i

i

i

i

cwc

cwc
dc

∑ ∑ Ρ+
∑ Ρ+

=Ρ
= =

=
||
1

||
1

||
1

)|(),(||
)|(),(1

)|(V
s

D
i ijis

D
i ijit

jt dcdwNV
dcdwN

cw

||
)|(

)(
||

1

D
dc

c
D

i ij
j

∑ =
Ρ

=Ρ

(2)

(3)

(1)

the data using existing values. Each iteration of EM
consists of two steps, the E step and the M step. The E step
basically fills in the missing values. The parameters are
estimated in the M step after the missing data are filled.
This leads to the next iteration of the algorithm. EM can be
applied to our problem because the classes of the
documents in RU (the remaining unlabeled documents) can
be regarded as missing. The steps used by EM are identical
to those used to build a NB classifier, equations (3) for the
E step and equations (1) and (2) for the M step. Note that
the probability of the class given the document takes the
value in [0, 1] instead of {0, 1}.
Our algorithm, called NB-EM, is given in Figure 2.
Initially, we use the labeled documents in L to build a NB
classifier NB-C (line 1), which is then applied to classify
the documents in RU. In particular, NB-C computes P(ci|dj)
of each document in RU (using equation (3)), which is
assigned to dj as its new probabilistic class label. After
every P(ci|dj) is revised, a new classifier NB-C is built
based on the new P(ci|dj) values of the documents in RU,
and the initially labeled documents in L. The next iteration
starts. This iterative process goes on until EM converges
(when the probability parameters stabilize).
NB-EM(L, RU)
1. Build an initial naive Bayesian classifier NB-C using the

document set L;
2. Loop while classifier parameters change
3. for each document dj ∈ RU
4. Compute P(ci | dj) using the current NB-C;
5. Update P(wt|ci) and P(ci) with the probabilistically

assigned class for dj (P(ci|dj)) and L (a new NB-C
is being built in the process);

Figure 2: The NB-EM algorithm

Empirical Evaluations
Datasets: We used the 20 newsgroup collection1 in our
experiments, which are Usenet articles from 20 different
newsgroups. The reason for using this collection is that its
topics are general. We can find graduate students to act as
human experts to select keywords. Each newsgroup in the
collection has approximately 1000 articles. There are four
(4) main categories, namely, Science (SCI), Recreation
(REC), Talk (TALK) and Computing (COMP). Within
each main category, there are 4 to 5 sub-categories. We
build a classifier for the sub-categories within each main
category. That is, each sub-category within a main
category is regarded as a class. This gives us four (4)
datasets, and each dataset has 4 or 5 classes.
For each dataset, we randomly selected 30% of the
documents for testing, and the rest 70% for training.
Evaluation measures: We use accuracy as the main
evaluation measure. Accuracy is adequate because every
class in our four datasets has the same number (1000) of

2 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes/20_newsgroups.tar.gz

documents. We also used the F-score. However, its trends
are similar to accuracy. Thus, its results are not included.
We now present the settings for each step of our technique.
Clustering (step 1): We use the k-means algorithm. As
mentioned earlier, the number of clusters k does not matter
much for our technique. We purposely used k = 7 for every
dataset, which is different from the actual number of
classes of each dataset. We also experimented with k being
the actual number of classes of each dataset. Those top-
ranked words are very much the same as for k = 7.
Feature selection and word ranking (step 2): We used
the information gain (or entropy) based approach.
Selecting representative words (step 3): Choosing
representative words is a subjective task. Two students and
one researcher were asked to serve as experts to choose
representative words. Although they choose words
independently, there is little difference in the words that
they choose because they use the same ranking and most
top keywords are obvious. Our experiments also show that
slight differences in the selected words have almost no
effect on the final classification results.
To test how many words are needed to produce good
classifiers, we tried 5, 15, 20, and 30 words per class. We
will see that additional words will not help.
Labeling some training documents (step 4): We
experimented with different t settings (percent of
documents in Lj for each class cj that are given the class
probability of 1, P(cj|di) = 1). The rest of the documents in
Lj are given P(cj|di) < 1 according to their similarity values.
Those documents with P(cj|di) = 0 for every class are in
RU (the set of remaining unlabeled documents). We
experimented with t = 16%, 50%, 84%, and 100%. t =
16% covers documents whose similarities are greater than
one standard deviation above the mean similarity (these
documents have the highest similarities). t = 84% covers
documents whose similarities are greater than one standard
deviation below the mean similarity.
Classifier building (step 5): Two classification methods,
NB and EM, were experimented. EM was run 8 iterations
for each dataset. After that, the results rarely change.
EM-Hard and EM-Soft: We experimented with two EM
variations. (1) In each iteration of EM, we do not allow the
class probability P(cj|di) of each document di in Lj (the set
of labeled documents of class cj) to change, but only allow
the class probability of each document in RU to change.
This method is called EM-Hard. (2) In each iteration, we
allow P(cj|di) of each document di in both Lj and RU to
change. This method is called EM-Soft.
Experimental results: Figure 3 shows the accuracy results
of all datasets. In each chart (each dataset), the results are
grouped according to different t values, 16%, 50%, 84%
and 100%. For each t, we give the results of NB, EM-Hard
and EM-Soft. The 4 bars in each group are the results of
using 5, 15, 20, 30 representative words respectively.

NB, EM-hard and EM-Soft: We observe that these three
methods all have similar results for all t settings. Using
15 or 20 words for each class gives slightly better results
in general with t = 50%, 84% and 100%. For all t values,
the accuracy stabilizes or worsens after 20 words. This is
because the additional words may not be as
representative as the earlier words for each class.
EM based methods slightly outperform NB for the first
three datasets. For dataset COMP, EM methods are
slightly worse because the representative words for
COMP are not as reliable as for other datasets. The

representative words of COMP were the hardest to select
because some classes of the dataset are similar. Thus,
more EM iterations further blur the decision boundaries.

k-means: We also give two results for k-means. “original”
standards for the original k-means with its initial k seeds
selected randomly. To allow fair comparison, we use the
correct number of clusters k for each dataset. The
accuracy on the test set is obtained as follows. After k-
means ends, for each test document d, we compute the
similarity of d with each cluster center. d is assigned to
the cluster that gives the highest similarity (using the
cosine measure). After all test documents are assigned to

0.50

0.60

0.70

0.80

0.90

1.00

NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft Orignal R-w ords W. sim pure NB

5 w ords

15 w ords

20 w ords

30 w ords

SCI <-----t = 16%------> <------t = 50%------> <-----t = 84%------> <-----t = 100%-----> < k-means >

0.50

0.60

0.70

0.80

0.90

1.00

NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft Orignal R-w ords W. sim pure NB

5 w ords

15 w ords

20 w ords

30 w ords

REC <------t = 16%------> <-----t = 50%------> <-----t = 84%------> <-----t = 100%-----> < k-means >

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft Orignal R-w ords W. sim pure NB

5 w ords

15 w ords

20 w ords

30 w ords

TALK<-----t = 16%-----> <------t = 50%------> <------t = 84%------> <-----t = 100%-----> < k-means >

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft NB EM-Hard EM-Soft Orignal R-w ords W. sim pure NB

5 w ords

15 w ords

20 w ords

30 w ords

COMP<-----t = 16%-----> <-----t = 50%------> <------t = 84%------> <-----t = 100%-----> < k-means >

Figure 3: The accuracy results

clusters, we match the classes of the dataset with the
clusters in such a way that gives the best accuracy. Due
to the random nature of k-means the accuracies are the
averaged values of 10 runs. Note that each row has the
same value because representative words are not used.
“R-words” gives the results of k-means using the set of
representative words as the initial cluster centers. From
these two sets of results of k-means, we see that R-words
outperforms the original k-means by a large margin.
Comparing with the results of NB and EM, we see that
NB and EM methods are superior to clustering. This is
especially true for smaller numbers of representative
words. For dataset COMP, the results are similar. We
believe that the selected representative words for this
dataset are not as reliable as for the other datasets.

W. sim: It gives the accuracy results of using only the
cosine similarity comparison with the representative
words of each class. We compare the similarity of each
test document d with the set of representative words of
each class. d is assigned the class that gives the highest
similarity value. If d’s similarity with every set of
representative words is 0, d is assigned a random class.
We observe that this technique is significantly worse
than k-means using representative words as seeds, but
better than the original k-means. It is also dramatically
worse than the NB and EM-based approaches.

Pure NB: These are NB’s accuracies in traditional
classification, i.e., all the training documents are labeled
with their original classes. Since we used fully labeled
training data, thus all the results for each dataset are the
same as they are not affected by the number of
representative words. We observe that the accuracies of
our proposed methods are very close to pure NB’s
accuracies. For datasets SCI, REC and COMP, the
proposed methods are only about 2-3% worse and for
dataset TALK, it is about 5% worse. This shows that our
methods are highly effective considering that no
manually labeled document is used.

Time spent to select representative words: The process
of selecting representative words is not linear in the
number of words. It gets harder with increasing number of
words. The first 10 representative words for each class are
generally easy to select. It takes around 5-10 minutes to
choose 30 representative words for each class of a dataset.
The time needed also depends on how different the classes
are in the dataset. For example, for the first three datasets,
it was very easy, and for the last dataset it was harder.

Conclusions
This paper proposed a new approach to constructing text
classifiers. Instead of labeling a large set of training
documents as in traditional learning, the new method asks
the user to label or select a set of representative words for
each class from a list of ranked words. The ranking
technique is based on clustering and feature selection. The
set of words for each class and a set of unlabeled

documents are used to build a classifier. We believe that
selecting these words from a ranked list requires less user
effort than labeling of a large set of documents. Our results
demonstrated the effectiveness of this approach.

Acknowledgments: The work of Bing Liu is partially
supported by the National Science Foundation under the
NSF grant IIS-0307239.

References
Basu, S., Banerjee, A., and Mooney, R. (2002). Semi-supervised

clustering by seeding. ICML-02.
Blum, A., and Mitchell, T. (1998). Combining labeled and

unlabeled data with co-training. COLT-98.
Bockhorst, J., and Craven, M. (2002). Exploiting relations among

concepts to acquire weakly labeled training data. ICML-02.
Dempster, A., Laird, N. M. and Rubin. D. (1977). Maximum

likelihood from incomplete data via the EM algorithm. J. of
the Royal Stat. Society, B:39, 1-38.

Denis, F. (1998). PAC learning from positive statistical queries.
ALT-1998.

Ghani, R. (2002). Combining labeled and unlabeled data for
multiclass text categorization. ICML-02.

Goldman, S. and Zhou, Y. (2000). Enhancing supervised learning
with unlabeled data. ICML-00.

Jain, A. K., and Dubes, R. C. (1988). Algorithms for clustering
data. Englewood Cliffs, NJ: Prentice Hall.

Joachims, T. (1998). Text categorization with support vector
machines: Learning with many relevant features. ECML-98.

Lewis, D., and Gale, W. (1994). A sequential algorithm for
training text classifiers. SIGIR-94.

Liu, B., Lee, W. S., Yu, P., and Li, X. (2002). Partially
supervised classification of text documents. ICML-02.

McCallum, A., and Nigam, K. (1998a). A comparison of event
models for naïve Bayes text classification. AAAI-98 Workshop
on Learning for Text Categorization.

McCallum, A., and Nigam. K. (1998b). Employing EM and pool-
based active learning for text classification. ICML-98.

McCallum, A., and Nigam. K. (1999) “Text classification by
bootstrapping with keywords, EM and shrinkage.” ACL
Workshop on Unsupervised Learning in Natural Language
Processing.

Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. (2000).
Text classification from labeled and unlabeled documents
using EM. Machine Learning, 39.

Salton, G. and McGill, M. (1983). Introduction to Modern
Information Retrieval. McGraw-Hill.

Vapnik, V. The nature of statistical learning theory, 1995.
Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S. (2001).

Constrained k-means clustering with background knowledge.
ICML-01.

Yang, Y. and Pedersen J. P. (1997). A comparative study on
feature selection in text categorization. ICML-97.

Yu, H., Han, J., Chang, K. (2002). PEBL: Positive example based
learning for Web page classification using SVM. KDD-02.

