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Abstract

Continual learning (CL) learns a sequence of tasks incrementally. There are two
popular CL settings, class incremental learning (CIL) and task incremental learn-
ing (TIL). A major challenge of CL is catastrophic forgetting (CF). While several
techniques are available to effectively overcome CF for TIL, CIL remains to be
challenging due to the additional difficulty of inter-task class separation. So far
little theoretical work has been done to provide a principled guidance and neces-
sary and sufficient conditions for solving the CIL problem. This paper performs
such a study. It first probabilistically decomposes the CIL problem into two sub-
problems: within-task prediction (WP) and task-id prediction (TP). It further proves
that TP is correlated with out-of-distribution (OOD) detection. The key result is
that regardless of whether WP and TP or OOD detection are defined explicitly
or implicitly by a CIL algorithm, good WP and good TP or OOD detection are
necessary and sufficient for good CIL performances. Additionally, TIL is simply
WP. Based on the theoretical result, new CIL methods are also designed, which
outperform strong baselines in both CIL and TIL settings by a large margin.4

1 Introduction

Continual learning aims to incrementally learn a sequence of tasks [1]. Each task consists of a set of
classes to be learned together. A major challenge of CL is catastrophic forgetting (CF). Although a
large number of CL techniques have been proposed, they are mainly empirical. Limited theoretical
research has done on how to solve CL. This paper performs such a theoretical study about the
necessary and sufficient conditions for effective CL. There are two main CL settings that have been
extensively studied: class incremental learning (CIL) and task incremental learning (TIL) [2]. In
CIL, the learning process builds a single classifier for all tasks/classes learned so far. In testing, a test
instance from any class may be presented for the model to classify. No prior task information (e.g.,
task-id) of the test instance is provided. Formally, CIL is defined as follows.

Class incremental learning (CIL). CIL learns a sequence of tasks, 1, 2, ..., T . Each task k has a
training dataset Dk = {(xi

k, y
i
k)

nk
i=1}, where nk is the number of data samples in task k, and xi

k ∈ X
is an input sample and yik ∈ Yk (the set of all classes of task k) is its class label. All Yk’s are disjoint
(Yk ∩Yk′ = ∅, ∀k ̸= k′) and

⋃T
k=1 Yk = Y. The goal of CIL is to construct a single predictive

function or classifier f : X → Y that can identify the class label y of each given test instance x.

In the TIL setup, each task is a separate classification problem. For example, one task could be to
classify different breeds of dogs and another task could be to classify different types of animals (the
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tasks may not be disjoint). One model is built for each task in a shared network. In testing, the task-id
of each test instance is provided and the system uses only the specific model for the task (dog or
animal classification) to classify the test instance. Formally, TIL is defined as follows.

Task incremental learning (TIL). TIL learns a sequence of tasks, 1, 2, ..., T . Each task k has a
training dataset Dk = {((xi

k, k), y
i
k)

nk
i=1}, where nk is the number of data samples in task k ∈ T =

{1, 2, ..., T}, and xi
k ∈ X is an input sample and yik ∈ Yk ⊂ Y is its class label. The goal of TIL is

to construct a predictor f : X×T → Y to identify the class label y ∈ Yk for (x, k) (the given test
instance x from task k).

Several techniques are available to effectively overcome CF for TIL (with almost no CF) [3, 4].
However, CIL remains to be highly challenging due to the additional problem of Inter-task Class
Separation (ICS) (establishing decision boundaries between the classes of the new task and the
classes of the previous tasks) because the previous task data are not accessible. Before discussing the
proposed work, we recall the closed-world assumption made by traditional machine learning, i.e.,
the classes seen in testing must have been seen in training [1, 5]. However, in many applications,
there are unknowns in testing, which is called the open world setting [1, 5]. In open world learning,
the training (or known) classes are called in-distribution (IND) classes. A classifier built for the
open world can (1) classify test instances of training/IND classes to their respective classes, which
is called IND prediction, and (2) detect test instances that do not belong to any of the IND/known
classes but some unknown or out-of-distribution (OOD) classes, which is called OOD detection.
Many OOD detection algorithms can perform both IND prediction and OOD detection [6, 7, 8, 9].
The commonality of OOD detection and CL is that they both need to consider future unknowns.

This paper conducts a theoretical study of CIL, which is applicable to any CIL classification model.
Instead of focusing on the traditional PAC generalization bound [10, 11], we focus on how to solve
the CIL problem. We first decompose the CIL problem into two sub-problems in a probabilistic
framework: Within-task Prediction (WP) and Task-id Prediction (TP). WP means that the prediction
for a test instance is only done within the classes of the task to which the test instance belongs,
which is basically the TIL problem. TP predicts the task-id. TP is needed because in CIL, task-id
is not provided in testing. This paper then proves based on the popular cross-entropy loss that (1)
the CIL performance is bounded by WP and TP performances, and (2) TP and task OOD detection
performance bound each other (which connects CL and OOD detection). The key result is that
regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL
algorithm, good WP and good TP or OOD detection are necessary and sufficient conditions for good
CIL performances. This result is applicable to both batch/offline and online CIL and to CIL problems
with blurry task boundaries. The intuition is also quite simple because if a CIL model is perfect at
detecting OOD samples for each task (which solves the ICS problem), then CIL is reduced to WP.

This theoretical result provides a principled guidance for solving the CIL problem, i.e., to help design
better CIL algorithms that can achieve strong WP and TP performances. Since WP is basically IND
prediction for each task and most OOD techniques perform both IND prediction and OOD detection,
to achieve good CIL accuracy, a strong OOD performance for each task is necessary.

Based on the theoretical guidance, several new CIL methods are designed, including techniques
based on the integration of a TIL method and an OOD detection method for CIL, which outperform
strong baselines in both the CIL and TIL settings by a large margin. This combination is particularly
attractive because TIL has achieved no forgetting, and we only need a strong OOD technique that can
perform both IND prediction and OOD detection to learn each task to achieve strong CIL results.

2 Related Work

Although numerous CL techniques have been proposed, little study has been done to provide a
theoretical guidance on how to solve the problem. Existing approaches mainly belong to several
categories. Using regularization [12, 13] to minimize changes to model parameters learned from
previous tasks is a popular approach [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Memorizing
some old examples and using them to jointly train the new task is another popular approach (called
replay) [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Some systems learn to generate pseudo
training data of old tasks and use them to jointly train the new task, called pseudo-replay [41, 42, 43,
44, 45, 46, 21, 47, 48]. Orthogonal projection learns each task in an orthogonal space to other tasks
[49, 50, 51]. Our theoretical study is applicable to any continually trained classification models.

2



Parameter isolation is yet another popular approach, which makes different subsets (which may
overlap) of the network parameters dedicated to different tasks using masks [3, 52, 53, 4, 54]. This
approach is particularly suited for TIL. Several methods have almost completely overcome forgetting.
HAT [3] and CAT [52] protect previous tasks by masking the important parameters to those tasks.
PackNet [53], CPG [54] and SupSup [4] find an isolated sub-network for each task. HyperNet [55]
initializes task-specific parameters conditioned on task-id. ADP [56] decomposes parameters into
shared and adaptive parts to construct an order robust TIL system. CCLL [57] uses task-adaptive
calibration in convolution layers. Our methods designed based on the proposed theory make use of two
parameter isolation-based TIL methods and two OOD detection methods. A strong OOD detection
method CSI in [6] helps produce very strong CIL results. CSI is based on data augmentation [58] and
contrastive learning [59]. Excellent surveys of OOD detection include [60, 61].

Some methods have used a TIL method for CIL with an additional task-id prediction technique.
iTAML [62] requires each test batch to be from a single task. This is not practical as test samples
usually come one by one. CCG [63] builds a separate network to predict the task-id. Expert Gate [64]
constructs a separate autoencoder for each task. HyperNet [55] and PR-Ent [65] use entropy to
predict the task id. Since none of these papers is a theoretical study, they did not know that strong
OOD detection is the key. Our methods based on OOD detection perform dramatically better.

Several theoretical studies have been made on lifelong/continual learning. However, they focus on
traditional generalization bound. [10] proposes a PAC-Bayesian framework to provide a learning
bound on expected error in future tasks by the average loss on the observed tasks. The work in [66]
studies the generalization error by task similarity and [11] studies the dependence of generalization
error on sample size or number of tasks including forward and backward transfer. [67] shows that
orthogonal gradient descent gives a tighter generalization bound than SGD. Our work is very different
as we focus on how to solve the CIL problem, which is orthogonal to the existing theoretical analysis.

3 CIL by Within-Task Prediction and Task-ID Prediction

This section presents our theory. It first shows that the CIL performance improves if the within-task
prediction (WP) performance and/or the task-id prediction (TP) performance improve, and then shows
that TP and OOD detection bound each other, which indicates that CIL performance is controlled
by WP and OOD detection. This connects CL and OOD detection. Finally, we study the necessary
conditions for a good CIL model, which includes a good WP, and a good TP (or OOD detection).

3.1 CIL Problem Decomposition

This sub-section first presents the assumptions made by CIL based on its definition and then proposes
a decomposition of the CIL problem into two sub-problems. A CL system learns a sequence of tasks
{(Xk,Yk)}k=1,...,T , where Xk is the domain of task k and Yk are classes of task k as Yk = {Yk,j},
where j indicates the jth class in task k. Let Xk,j to be the domain of jth class of task k, where
Xk =

⋃
j Xk,j . For accuracy, we will use x ∈ Xk,j instead of Yk,j in probabilistic analysis. Based

on the definition of class incremental learning (CIL) (Sec. 1), the following assumptions are implied,
Assumption 1. The domains of classes of the same task are disjoint, i.e., Xk,j ∩Xk,j′ = ∅, ∀j ̸= j′.
Assumption 2. The domains of tasks are disjoint, i.e., Xk ∩Xk′ = ∅, ∀k ̸= k′.

For any ground event D, the goal of a CIL problem is to learn P(x ∈ Xk,j |D). This can be
decomposed into two probabilities, within-task IND prediction (WP) probability and task-id prediction
(TP) probability. WP probability is P(x ∈ Xk,j |x ∈ Xk, D) and TP probability is P(x ∈ Xk|D).
We can rewrite the CIL problem using WP and TP based on the two assumptions,

P(x ∈ Xk0,j0 |D) =
∑

k=1,...,n

P(x ∈ Xk,j0 |x ∈ Xk, D)P(x ∈ Xk|D) (1)

= P(x ∈ Xk0,j0 |x ∈ Xk0 , D)P(x ∈ Xk0 |D) (2)

where k0 means a particular task and j0 a particular class in the task.

Some remarks are in order about Eq. 2 and our subsequent analysis to set the stage.
Remark 1. Eq. 2 shows that if we can improve either the WP or TP performance, or both, we can
improve the CIL performance.
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Remark 2. It is important to note that our theory is not concerned with the learning algorithm or the
training process, but we will propose some concrete learning algorithms based on the theoretical
result in the experiment section.
Remark 3. Note that the CIL definition and the subsequent analysis are applicable to tasks with
any number of classes (including only one class per task) and to online CIL where the training data
for each task or class comes gradually in a data stream and may also cross task boundaries (blurry
tasks [68]) because our analysis is based on an already-built CIL model after training. Regarding
blurry task boundaries, suppose dataset 1 has classes {dog, cat, tiger} and dataset 2 has classes {dog,
computer, car}. We can define task 1 as {dog, cat, tiger} and task 2 as {computer, car}. The shared
class dog in dataset 2 is just additional training data of dog appeared after task 1.
Remark 4. Furthermore, CIL = WP * TP in Eq. 2 means that when we have WP and TP (defined
either explicitly or implicitly by implementation), we can find a corresponding CIL model defined by
WP * TP. Similarly, when we have a CIL model, we can find the corresponding underlying WP and
TP defined by their probabilistic definitions.

In the following sub-sections, we develop this further concretely to derive the sufficient and necessary
conditions for solving the CIL problem in the context of cross-entropy loss as it is used in almost all
supervised CL systems.

3.2 CIL Improves as WP and/or TP Improve

As stated in Remark 2 above, the study here is based on a trained CIL model and not concerned
with the algorithm used in training the model. We use cross-entropy as the performance measure
of a trained model as it is the most popular loss function used in supervised CL. For experimental
evaluation, we use accuracy following CL papers. Denote the cross-entropy of two probability
distributions p and q as

H(p, q)
def
= −Ep[log q] = −

∑
i

pi log qi. (3)

For any x ∈ X, let y to be the CIL ground truth label of x, where yk0,j0 = 1 if x ∈ Xk0,j0 otherwise
yk,j = 0, ∀(k, j) ̸= (k0, j0). Let ỹ be the WP ground truth label of x, where ỹk0,j0 = 1 if x ∈ Xk0,j0
otherwise ỹk0,j = 0, ∀j ̸= j0. Let ȳ be the TP ground truth label of x, where ȳk0

= 1 if x ∈ Xk0

otherwise ȳk = 0, ∀k ̸= k0. Denote
HWP (x) = H(ỹ, {P(x ∈ Xk0,j |x ∈ Xk0

, D)}j), (4)
HCIL(x) = H(y, {P(x ∈ Xk,j |D)}k,j), (5)
HTP (x) = H(ȳ, {P(x ∈ Xk|D)}k) (6)

where HWP , HCIL and HTP are the cross-entropy values of WP, CIL and TP, respectively. We now
present our first theorem. The theorem connects CIL to WP and TP, and suggests that by having a
good WP or TP, the CIL performance improves as the upper bound for the CIL loss decreases.
Theorem 1. If HTP (x) ≤ δ and HWP (x) ≤ ϵ, we have HCIL(x) ≤ ϵ+ δ.

The detailed proof is given in Appendix A.1. This theorem holds regardless of whether WP and
TP are trained together or separately. When they are trained separately, if WP is fixed and we let
ϵ = HWP (x), HCIL(x) ≤ HWP (x) + δ, which means if TP is better, CIL is better. Similarly, if
TP is fixed, we have HCIL(x) ≤ ϵ +HTP (x). When they are trained concurrently, there exists a
functional relationship between ϵ and δ depending on implementation. But no matter what it is, when
ϵ+ δ decreases, CIL gets better.

Theorem 1 holds for any x ∈ X =
⋃

k Xk that satisfies HTP (x) ≤ δ or HWP (x) ≤ ϵ. To measure
the overall performance under expectation, we present the following corollary.
Corollary 1. Let U(X) represents the uniform distribution on X. i) If Ex∼U(X)[HTP (x)] ≤ δ,
then Ex∼U(X)[HCIL(x)] ≤ Ex∼U(X)[HWP (x)] + δ. Similarly, ii) Ex∼U(X)[HWP (x)] ≤ ϵ, then
Ex∼U(X)[HCIL(x)] ≤ ϵ+ Ex∼U(X)[HTP (x)].

The proof is given in Appendix A.2. The corollary is a direct extension of Theorem 1 in expectation.
The implication is that given TP performance, CIL is positively related to WP. The better the WP is,
the better the CIL is as the upper bound of the CIL loss decreases. Similarly, given WP performance,
a better TP performance results in a better CIL performance. Due to the positive relation, we can
improve CIL by improving either WP or TP using their respective methods developed in each area.
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3.3 Task Prediction (TP) to OOD Detection

Building on Eq. 2, we have studied the relationship of CIL, WP and TP in Theorem 1. We now
connect TP and OOD detection. They are shown to be dominated by each other to a constant factor.

We again use cross-entropy H to measure the performance of TP and OOD detection of a trained
network as in Sec. 3.2 To build the connection between HTP (x) and OOD detection of each task,
we first define the notations of OOD detection. We use P′

k(x ∈ Xk|D) to represent the probability
distribution predicted by the kth task’s OOD detector. Notice that the task prediction (TP) probability
distribution P(x ∈ Xk|D) is a categorical distribution over T tasks, while the OOD detection
probability distribution P′

k(x ∈ Xk|D) is a Bernoulli distribution. For any x ∈ X, define

HOOD,k(x) =

{
H(1,P′

k(x ∈ Xk|D)) = − logP′
k(x ∈ Xk|D), x ∈ Xk,

H(0,P′
k(x ∈ Xk|D)) = − logP′

k(x /∈ Xk|D), x /∈ Xk.
(7)

In CIL, the OOD detection probability for a task can be defined using the output values corresponding
to the classes of the task. Some examples of the function is a sigmoid of maximum logit value or a
maximum softmax probability after re-scaling to 0 to 1. It is also possible to define the OOD detector
directly as a function of tasks instead of a function of the output values of all classes of tasks, i.e.
Mahalanobis distance. The following theorem shows that TP and OOD detection bound each other.

Theorem 2. i) If HTP (x) ≤ δ, let P′
k(x ∈ Xk|D) = P(x ∈ Xk|D), then HOOD,k(x) ≤ δ, ∀ k =

1, . . . , T . ii) If HOOD,k(x) ≤ δk, k = 1, . . . , T , let P(x ∈ Xk|D) =
P′

k(x∈Xk|D)∑
k P′

k(x∈Xk|D) , then

HTP (x) ≤ (
∑

k 1x∈Xk
eδk)(

∑
k 1− e−δk), where 1x∈Xk

is an indicator function.

See Appendix A.3 for the proof. As we use cross-entropy, the lower the bound, the better the
performance is. The first statement (i) says that the OOD detection performance improves if the
TP performance gets better (i.e., lower δ). Similarly, the second statement (ii) says that the TP
performance improves if the OOD detection performance on each task improves (i.e., lower δk).
Besides, since (

∑
k 1x∈Xk

eδk)(
∑

k 1 − e−δk) converges to 0 as δk’s converge to 0 in order of
O(|

∑
k δk|), we further know that HTP and

∑
k HOOD,k are equivalent in quantity up to a constant

factor.

In Theorem 1, we studied how CIL is related to WP and TP. In Theorem 2, we showed that TP and
OOD bound each other. Now we explicitly give the upper bound of CIL in relation to WP and OOD
detection of each task. The detailed proof can be found in Appendix A.4.

Theorem 3. If HOOD,k(x) ≤ δk, k = 1, . . . , T and HWP (x) ≤ ϵ, we have

HCIL(x) ≤ ϵ+ (
∑
k

1x∈Xk
eδk)(

∑
k

1− e−δk),

where 1x∈Xk
is an indicator function.

3.4 Necessary Conditions for Improving CIL

In Theorem 1, we showed that good performances of WP and TP are sufficient to guarantee a good
performance of CIL. In Theorem 3, we showed that good performances of WP and OOD are sufficient
to guarantee a good performance of CIL. For completeness, we study the necessary conditions of a
well-performed CIL in this sub-section.

Theorem 4. If HCIL(x) ≤ η, then there exist i) a WP, s.t. HWP (x) ≤ η, ii) a TP, s.t. HTP (x) ≤ η,
and iii) an OOD detector for each task, s.t. HOOD,k ≤ η, k = 1, . . . , T .

The detailed proof is given in Appendix A.5. This theorem tells that if a good CIL model is trained,
then a good WP, a good TP and a good OOD detector for each task are always implied. More
importantly, by transforming Theorem 4 into its contraposition, we have the following statements: If
for any WP, HWP (x) > η, then HCIL(x) > η. If for any TP, HTP (x) > η, then HCIL(x) > η. If
for any OOD detector, HOOD,k(x) > η, k = 1, . . . , T , then HCIL(x) > η. Regardless of whether
WP and TP (or OOD detection) are defined explicitly or implicitly by a CIL algorithm, the existence
of a good WP and the existence of a good TP or OOD detection are necessary conditions for a good
CIL performance.
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Remark 5. It is important to note again that our study in this section is based on a CIL model that
has already been built. In other words, our study tells the CIL designers what should be achieved in
the final model. Clearly, one would also like to know how to design a strong CIL model based on
the theoretical results, which also considers catastrophic forgetting (CF). One effective method is to
make use of a strong existing TIL algorithm, which can already achieve no or little forgetting (CF),
and combine it with a strong OOD detection algorithm (as mentioned earlier, most OOD detection
methods can also perform WP). Thus, any improved method from the OOD detection community can
be applied to CIL to produce improved CIL systems (see Sections 4.3 and 4.4).

Recall in Section 2, we reviewed prior works that have tried to use a TIL method for CIL with a
task-id prediction method [55, 64, 62, 63, 65]. However, since they did not know that the key to the
success of this approach is a strong OOD detection algorithm, they are quite weak (see Section 4).

4 New CIL Techniques and Experiments

Based on Theorem 3, we have designed several new CIL methods, each of which integrates an
existing CL algorithm and an OOD detection algorithm. The OOD detection algorithm that we use
can perform both within-task IND prediction (WP) and OOD detection. Our experiments have two
goals: (1) to show that a good OOD detection method can help improve the accuracy of an existing
CIL algorithm, and (2) to fully compare two of these methods (see some others in Sec. 4.5) with
strong baselines to show that they outperform the existing strong baselines considerably.

4.1 Datasets, CL Baselines and OOD Detection Methods

Datasets and CIL Tasks. Four popular benchmark image classification datasets are used, from which
six CIL problems are created following recent papers [25, 34, 26]. (1) MNIST consists of handwritten
images of 10 digits with 60,000/10,000 training/testing samples. We create a CIL problem (M-5T) of
5 tasks with 2 consecutive classes/digits as a task. (2) CIFAR-10 consists of 32x32 color images of
10 classes with 50,000/10,000 training/testing samples. We create a CIL problem (C10-5T) of 5 tasks
with 2 consecutive classes as a task. (3) CIFAR-100 consists of 60,000 32x32 color images with
50,000/10,000 training/testing samples. We create two CIL problems by splitting 100 classes into
10 tasks (C100-10T) and 20 tasks (C100-20T), where each task has 10 and 5 classes, respectively.
(4) Tiny-ImageNet has 120,000 64x64 color images of 200 classes with 500/50 images per class for
training/testing. We create two CIL problems by splitting 200 classes into 5 tasks (T-5T) and 10 tasks
(T-10T), where each task has 40 and 20 classes, respectively.

Baseline CL Methods. We include different families of CL methods: regularization, replay,
orthogonal projection, and parameter isolation. MUC [25] and PASS [26] are regularization-based
methods. For replay methods, we use LwF [13], iCaRL [29], Mnemonics [69], BiC [32], DER++ [34],
and Co2L [37]. For orthogonal projection, we use OWM [49]. Finally, for parameter isolation, we use
CCG [63], HyperNet [55], HAT [3], SupSup [4] (Sup), and PR [65].5 We use the official codes for
the baselines except for Co2L, CCG, and PR. For these three systems, we copy the results from their
papers as the code for CCG is not released and we are unable to run Co2L and PR on our machines.

OOD Detection Methods. Two OOD detection methods are used. We combine them with the above
existing CL algorithms. Both these methods can also perform within-task IND prediction (WP).

(1). ODIN: Researchers have proposed several methods to improve the OOD detection performance
of a trained network by post-processing [7, 70, 71]. ODIN [7] is a representative method. It adds
perturbation to input and applies a temperature scaling to the softmax output of a trained network.

(2). CSI: It is a recently proposed OOD detection technique [6] that is highly effective. It is based
on data and class label augmentation and supervised contrastive learning [72]. Its rotation data

5iTAML [62] is not included as it requires a batch of test data from the same task to predict the task-id. When
each batch has only one test sample, which is our setting, it is very weak. For example, its CIL accuracy is only
33.5% on C100-10T. Expert Gate (EG) [64] is also very weak. Its CIL accuracy is only 43.2 on M-5T. They are
much weaker than many baselines. DER [38] is not included as it expands the network after each task, which is
somewhat unfair to other systems as all others do not expand the network. DER can generate a large number
of parameters after the last task, e.g., 117.6 millions (M) for C100-20T while our proposed methods require
44.6M (HAT+CSI) and 11.6M (Sup+CSI) (refer to Appendix H). The average accuracy of DER over the 6 CL
experiments is 61.4 while our methods achieve 67.9 (HAT+CSI+c) and 64.9 (Sup+CSI+c) (refer to Tab. 3).
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augmentations create distributional shifted samples to act as negative data for the original samples for
contrastive learning. The details of CSI is given in Appendix D.

4.2 Training Details and Evaluation Metrics

Training Details. For the backbone structure, we follow [4, 26, 34]. AlexNet-like architecture [73]
is used for MNIST and ResNet-18 [74] is used for CIFAR-10. For CIFAR-100 and Tiny-ImageNet,
ResNet-18 is also used as CIFAR-10, but the number of channels are doubled to fit more classes. All
the methods use the same backbone architecture except for OWM and HyperNet, for which we use
their original architectures. OWM uses AlexNet. It is not obvious how to apply the technique to the
ResNet structure. HyperNet uses a fully-connected network and ResNet-32 for MNIST and other
datasets, respectively. We are unable to change the structure due to model initialization arguments
unexplained in the original paper. For the replay methods, we use memory buffer 200 for MNIST and
CIFAR-10 and 2000 for CIFAR-100 and Tiny-ImageNet as in [29, 34]. We use the hyper-parameters
suggested by the authors. If we could not reproduce any result, we use 10% of the training data as a
validation set to grid-search for good hyper-parameters. For our proposed methods, we report the
hyper-parameters in Appendix G. All the results are averages over 5 runs with random seeds.

Evaluation Metrics.

(1). Average classification accuracy over all classes after learning the last task. The final class
prediction depends prediction methods (see below). We also report forgetting rate in Appendix J.

(2). Average AUC (Area Under the ROC Curve) over all task models for the evaluation of OOD
detection. AUC is the main measure used in OOD detection papers. Using this measure, we show
that a better OOD detection method will result in a better CIL performance. Let AUCk be the AUC
score of task k. It is computed by using only the model (or classes) of task k to score the test data of
task k as the in-distribution (IND) data and the test data from other tasks as the out-of-distribution
(OOD) data. The average AUC score is: AUC =

∑
k AUCk/n, where n is the number of tasks.

It is not straightforward to change existing CL algorithms to include a new OOD detection method
that needs training, e.g., CSI, except for TIL (task incremental learning) methods, e.g., HAT and Sup.
For HAT and Sup, we can simply switch their methods for learning each task with CSI (see Sec.4.4).

Prediction Methods. The theoretical result in Sec. 3 states that we use Eq. 2 to perform the final
prediction. The first probability (WP) in Eq. 2 is easy to get as we can simply use the softmax values
of the classes in each task. However, the second probability (TP) in Eq. 2 is tricky as each task is
learned without the data of other tasks. There can be many options. We take the following approaches
for prediction (which are a special case of Eq. 2, see below):

(1). For those approaches that use a single classification head to include all classes learned so far, we
predict as follows (which is also the approach taken by the existing papers.)

ŷ = argmax f(x) (8)

where f(x) is the logit output of the network.

(2). For multi-head methods (e.g., HAT, HyperNet, and Sup), which use one head for each task, we
use the concatenated output as

ŷ = argmax
⊕
k

f(x)k (9)

where
⊕

indicate concatenation and f(x)k is the output of task k.6

These methods (in fact, they are the same method used in two different settings) is a special case of
Eq. 2 if we define OODk as σ(max f(x)k), where σ is the sigmoid. Hence, the theoretical results in
Sec. 3 are still applicable. We present a detailed explanation about this prediction method and some
other options in Appendix C. These two approaches work quite well.

6The Sup paper proposed an one-shot task-id prediction assuming that the test instances come in a batch
and all belong to the same task like iTAML. We assume a single test instance per batch. Its task-id prediction
results in accuracy of 50.2 on C10-5T, which is much lower than 62.6 by using Eq. 9. The task-id prediction of
HyperNet also works poorly. The accuracy by its id prediction is 49.34 on C10-5T while it is 53.4 using Eq. 9.
PR uses entropy to find task-id. Among many variations of PR, we use the variations that perform the best for
each dataset with exemplar-free and single sample per batch at testing (i.e., no PR-BW).
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4.3 Better OOD Detection Produces Better CIL Performance

The key theoretical result in Sec. 3 is that better OOD detection will produce better CIL performance.
Recall our considered methods ODIN and CSI can perform both WP and OOD detection.

Applying ODIN. We first train the baseline models using their original algorithms, and then apply
temperature scaling and input noise of ODIN at testing for each task (no training data needed). More
precisely, the output of class j in task k changes by temperature scaling factor τk of task k as

s(x; τk)j = ef(x)kj/τk/
∑
j

ef(x)kj/τk (10)

and the input changes by the noise factor ϵk as
x̃ = x− ϵksign(−∇x log s(x; τk)ŷ) (11)

where ŷ is the class with the maximum output value in task k. This is a positive adversarial example
inspired by [75]. The values τk and ϵk are hyper-parameters and we use the same values for all tasks
except for PASS, for which we had to use a validation set to tune τk (see Appendix B).

Table 1: Performance comparison based
on C100-10T between the original out-
put and the output post-processed with
OOD detection technique ODIN. Note
that ODIN is not applicable to iCaRL and
Mnemonics as they are not based on soft-
max but some distance functions. The
results for other datasets are reported in
Appendix B.

Method OOD AUC CIL

OWM Original 71.31 28.91
ODIN 70.06 28.88

MUC Original 72.69 30.42
ODIN 72.53 29.79

PASS Original 69.89 33.00
ODIN 69.60 31.00

LwF Original 88.30 45.26
ODIN 87.11 51.82

BiC Original 87.89 52.92
ODIN 86.73 48.65

DER++ Original 85.99 53.71
ODIN 88.21 55.29

HAT Original 77.72 41.06
ODIN 77.80 41.21

HyperNet Original 71.82 30.23
ODIN 72.32 30.83

Sup Original 79.16 44.58
ODIN 80.58 46.74

Tab. 1 gives the results for C100-10T. The CIL results
clearly show that the CIL performance increases if the
AUC increases with ODIN. For instance, the CIL of
DER++ and Sup improves from 53.71 to 55.29 and 44.58
to 46.74, respectively, as the AUC increases from 85.99
to 88.21 and 79.16 to 80.58. It shows that when this
method is incorporated into each task model in exist-
ing trained CIL network, the CIL performance of the
original method improves. We note that ODIN does not
always improve the average AUC. For those experienced
a decrease in AUC, the CIL performance also decreases
except LwF. The inconsistency of LwF is due to its se-
vere classification bias towards later tasks as discussed
in BiC [32]. The temperature scaling in ODIN has a
similar effect as the bias correction in BiC, and the CIL
of LwF becomes close to that of BiC after the correction.
Regardless of whether ODIN improves AUC or not, the
positive correlation between AUC and CIL (except LwF)
verifies the efficacy of Theorem 3, indicating better OOD
detection results in better CIL performances.

Applying CSI. We now apply the OOD detection
method CSI. Due to its sophisticated data augmentation,
supervised constrative learning and results ensemble, it
is hard to apply CSI to other baselines without fundamen-
tally change them except for HAT and Sup (SupSup) as
these methods are parameter isolation-based TIL meth-
ods. We can simply replace their model for training each
task with CSI wholesale (the full detail is given in Ap-
pendix D). As mentioned earlier, both HAT and SupSup
as TIL methods have almost no forgetting.

Tab. 2 reports the results of using CSI and ODIN. ODIN is a weaker OOD method than CSI. Both
HAT and Sup improve greatly as the systems are equipped with a better OOD detection method
CSI. These experiment results empirically demonstrate the efficacy of Theorem 3, i.e., the CIL
performance can be improved if a better OOD detection method is used.

4.4 Full Comparison of HAT+CSI and Sup+CSI with Baselines

We now make a full comparison of the two strong systems (HAT+CSI and Sup+CSI) designed based
on the theoretical results. These combinations are particularly attractive because both HAT and Sup
are TIL systems and have little or no CF. Then a strong OOD method (that can also perform WP
(within-task/IND prediction) will result in a strong CIL method. Since HAT and Sup are exemplar-
free CL methods, HAT+CSI and Sup+CSI also do not need to save any previous task data. Tab. 3
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Table 2: Average CIL and AUC of HAT and Sup with OOD detection methods ODIN and CSI. ODIN
is a traditional OOD detection method while CSI is a recent OOD detection method known to be
better than ODIN. As CL methods produce better OOD detection performance by CSI, their CIL
performances are better than the ODIN counterparts.

CL OOD C10-5T C100-10T C100-20T T-5T T-10T
AUC CIL AUC CIL AUC CIL AUC CIL AUC CIL

HAT ODIN 82.5 62.6 77.8 41.2 75.4 25.8 72.3 38.6 71.8 30.0
CSI 91.2 87.8 84.5 63.3 86.5 54.6 76.5 45.7 78.5 47.1

Sup ODIN 82.4 62.6 80.6 46.7 81.6 36.4 74.0 41.1 74.6 36.5
CSI 91.6 86.0 86.8 65.1 88.3 60.2 77.1 48.9 79.4 45.7

Table 3: Average accuracy after all tasks are learned. Exemplar-free methods are italicized. † indicates
that in their original papers, PASS and Mnemonics are pre-trained with the first half of the classes.
Their results with pre-train are 50.1 and 53.5 on C100-10T, respectively, which are still much lower
than the proposed HAT+CSI and Sup+CSI without pre-training. We do not use pre-training in our
experiment for fairness. ∗ indicates that iCaRL and Mnemonics report average incremental accuracy
in their original papers. We report average accuracy over all classes after all tasks are learned.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 95.8±0.13 51.8±0.05 28.9±0.60 24.1±0.26 10.0±0.55 8.6±0.42
MUC 74.9±0.46 52.9±1.03 30.4±1.18 14.2±0.30 33.6±0.19 17.4±0.17
PASS† 76.6±1.67 47.3±0.98 33.0±0.58 25.0±0.69 28.4±0.51 19.1±0.46
LwF 85.5±3.11 54.7±1.18 45.3±0.75 44.3±0.46 32.2±0.50 24.3±0.26
iCaRL∗ 96.0±0.43 63.4±1.11 51.4±0.99 47.8±0.48 37.0±0.41 28.3±0.18
Mnemonics†∗ 96.3±0.36 64.1±1.47 51.0±0.34 47.6±0.74 37.1±0.46 28.5±0.72
BiC 94.1±0.65 61.4±1.74 52.9±0.64 48.9±0.54 41.7±0.74 33.8±0.40
DER++ 95.3±0.69 66.0±1.20 53.7±1.30 46.6±1.44 35.8±0.77 30.5±0.47
Co2L 65.6
CCG 97.3 70.1
HAT 81.9±3.74 62.7±1.45 41.1±0.93 25.6±0.51 38.5±1.85 29.8±0.65
HyperNet 56.6±4.85 53.4±2.19 30.2±1.54 18.7±1.10 7.9±0.69 5.3±0.50
Sup 70.1±1.51 62.4±1.45 44.6±0.44 34.7±0.30 41.8±1.50 36.5±0.36
PR-Ent 74.1 61.9 45.2
HAT+CSI 94.4±0.26 87.8±0.71 63.3±1.00 54.6±0.92 45.7±0.26 47.1±0.18
Sup+CSI 80.7±2.71 86.0±0.41 65.1±0.39 60.2±0.51 48.9±0.25 45.7±0.76
HAT+CSI+c 96.9±0.30 88.0±0.48 65.2±0.71 58.0±0.45 51.7±0.37 47.6±0.32
Sup+CSI+c 81.0±2.30 87.3±0.37 65.2±0.37 60.5±0.64 49.2±0.28 46.2±0.53

shows that HAT and Sup equipped with CSI outperform the baselines by large margins. DER++, the
best replay method, achieves 66.0 and 53.7 on C10-5T and C100-10T, respectively, while HAT+CSI
achieves 87.8 and 63.3 and Sup+CSI achieves 86.0 and 65.1. The large performance gap remains
consistent in more challenging problems, T-5T and T-10T. We note that Sup works very poorly on
M-5T, but Sup+CSI improved it drastically, although still very weak compared to HAT+CSI.

Due to the definition of OOD in the prediction method and the fact that each task is trained separately
in HAT and Sup, the outputs f(x)k from different tasks can be in different scales, which will result in
incorrect predictions. To deal with the problem, we can calibrate the output as αkf(x)k + βk and use
OODk = σ(αkf(x)k + βk). The optimal α∗

k and β∗
k for each task k can be found by optimization

with a memory buffer to save a very small number of training examples from previous tasks like that
in the replay-based methods. We refer the calibrated methods as HAT+CSI+c and Sup+CSI+c. They
are trained by using the memory buffer of the same size as the replay methods (see Sec. 4.2). Tab. 3
shows that the calibration improves from their memory free versions, i.e., without calibration. We
provide the details about how to train the calibration parameters αk and βk in Appendix E.

As shown in Theorem 1, the CIL performance also depends on the TIL (WP) performance. We
compare the TIL accuracies of the baselines and our methods in Tab. 4. Our systems again outperform
the baselines by large margins on more challenging datasets (e.g., CIFAR100 and Tiny-ImageNet).
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Table 4: TIL (WP) results of 3 best performing baselines and our methods. The full results are given
in Appendix F. The calibrated versions (+c) of our methods are omitted as calibration does not affect
TIL performances.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

DER++ 99.7±0.08 92.0±0.54 84.0±9.43 86.6±9.44 57.4±1.31 60.0±0.74
HAT 99.9±0.02 96.7±0.18 84.0±0.23 85.0±0.98 61.2±0.72 63.8±0.41
Sup 99.6±0.01 96.6±0.21 87.9±0.27 91.6±0.15 64.3±0.24 68.4±0.22
HAT+CSI 99.9±0.00 98.7±0.06 92.0±0.37 94.3±0.06 68.4±0.16 72.4±0.21
Sup+CSI 99.0±0.08 98.7±0.07 93.0±0.13 95.3±0.20 65.9±0.25 74.1±0.28

4.5 Implications for Existing CL Methods, Open-World Learning and Future Research

Implication for regularization and replay methods. Regularization-based (exemplar-free) methods
try to protect important parameters of old tasks to mitigate CF. However, since the training of each
task does not consider OOD detection, TP will be weak, which causes difficulty for inter-task class
separation (ICS) and thus low CL accuracy. Replay-based methods are better as the replay data from
old tasks can be naturally regarded as OOD data for the current task, then a better OOD model is
built, which improves TP. However, since the replay data is small. the OOD model is sub-optimal,
especially for earlier tasks as their training cannot see any future task data. Thus for both approaches,
it will be beneficial to consider CF and OOD together in learning each task (e.g., [76]).

Implication for open-world learning. Since our theory says that CL needs OOD detection, and OOD
detection is also the first step in open-world learning (OWL), CL and OWL naturally work together
to achieve self-motivated open-world continual learning [5] for autonomous learning or AI autonomy.
That is, the AI agent can continually discover new tasks (OOD detection) and incrementally learn the
tasks (CL) all on its own with no involvement of human engineers. Further afield, this work is also
related to curiosity-driven self-supervised learning [77] in reinforcement learning and 3D navigation.

Limitation and future work. The proposed theory provides a principled guidance on what needs
to be done in order to achieve good CIL results, but it gives no guidance on how to do it. Although
two example techniques are presented and evaluated, they are empirical. There are many options
to define WP and TP (or OOD). An idea in [40] may be helpful in this regard. [40] argues that a
continual learner should learn holistic feature representations of the input data, meaning to learn as
many features as possible from the input data. The rationale is that if the system can learn all possible
features from each task, then a future task does not have to learn those shared/intersecting features
by modifying the parameters, which will result in less CF and also better ICS. A full representation
of the IND data also improves OOD detection because the OOD score of a data point is basically
the distance between the data point and the IND distribution. Only capturing a subset of features
(e.g., by cross entropy) will result in poor OOD detection [78] because those missing features may be
necessary to separate IND and some OOD data. In our future work, we will study how to optimize
WP and TP/OOD and find the necessary conditions for them to do well.

5 Conclusion

This paper proposed a theoretical study on how to solve the highly challenging continual learning (CL)
problem. class incremental learning (CIL) (the other popular CL setting is task incremental learning
(TIL)). The theoretical result provides a principled guidance for designing better CIL algorithms. The
paper first decomposed the CIL prediction into within-task prediction (WP) and task-id prediction
(TP). WP is basically TIL. The paper further theoretically demonstrated that TP is correlated with
out-of-distribution (OOD) detection. It then proved that a good performance of the two is both
necessary and sufficient for good CIL performances. Based on the theoretical result, several new CIL
methods were designed. They outperform strong baselines in CIL and also in TIL by a large margin.
Finally, we also discussed the implications for existing CL techniques and open-world learning.
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A Proof of Theorems and Corollaries

A.1 Proof of Theorem 1

Proof. Since
HCIL(x) = H(y, {P(x ∈ Xk,j |D)}k,j)

= −
∑
k,j

yk,j logP(x ∈ Xk,j |D)

= − logP(x ∈ Xk0,j0 |D),

HWP (x) = H(ỹ, {P(x ∈ Xk0,j |x ∈ Xk0
, D)}j)

= −
∑
j

yk0,j logP(x ∈ Xk0,j |x ∈ Xk0 , D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D),

and
HTP (x) = H(ȳ, {P(x ∈ Xk|D)}k)

= −
∑
k

ȳk logP(x ∈ Xk|D)

= − logP(x ∈ Xk0 |D),

we have
HCIL(x) = − logP(x ∈ Xk0,j0 |D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D)− logP(x ∈ Xk0

|D)

= HWP (x) +HTP (x)

≤ ϵ+ δ.

A.2 Proof of Corollary 1.

Proof. By proof of Theorem 1, we have
HCIL(x) = HWP (x) +HTP (x).

Taking expectations on both sides, we have i)
Ex∼U(X)[HCIL(x)] = Ex∼U(X)[HWP (x)] + Ex∼U(X)[HTP (x)]

≤ Ex∼U(X)[HWP (x)] + δ.

and ii)
Ex∼U(X)[HCIL(x)] = Ex∼U(X)[HWP (x)] + Ex∼U(X)[HTP (x)]

≤ ϵ+ Ex∼U(X)[HTP (x)].

A.3 Proof of Theorem 2.

Proof. i) Assume x ∈ Xk0
.

For k = k0, we have
HOOD,k0

(x) = − logP′
k0
(x ∈ Xk0

|D)

= − logP(x ∈ Xk0
|D)

= HTP (x) ≤ δ.

For k ̸= k0, we have
HOOD,k(x) = − logP′

k(x /∈ Xk|D)

= − log(1−P′
k(x ∈ Xk|D))

= − log(1−P(x ∈ Xk|D))

= − logP(x ∈ ∪k′ ̸=kXk′ |D)

≤ − logP(x ∈ Xk0 |D)

= HTP (x) ≤ δ.
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ii) Assume x ∈ Xk0 .

For k = k0, by HOOD,k0
(x) ≤ δk0

, we have

− logP′
k0
(x ∈ Xk0

|D) ≤ δk0
,

which means
P′

k0
(x ∈ Xk0 |D) ≥ e−δk0 .

For k ̸= k0, by HOOD,k(x) ≤ δk, we have

− logP′
k(x /∈ Xk|D) ≤ δk,

which means
P′

k(x ∈ Xk|D) ≤ 1− e−δk .

Therefore, we have

P(x ∈ Xk0
|D) =

P′
k0
(x ∈ Xk0 |D)∑

k′ P′
k′(x ∈ Xk′ |D)

≥ e−δk0

1 +
∑

k ̸=k0
1− e−δk

=
e−δk0

e−δk0 +
∑

k 1− e−δk

=
1

1 + eδk0

∑
k 1− e−δk

.

Hence,
HTP (x) = − logP(x ∈ Xk0

|D)

≤ − log
1

1 + eδk0

∑
k 1− e−δk

= log[1 + eδk0

∑
k

1− e−δk ]

≤ eδk0 (
∑
k

1− e−δk)

= (
∑
k

1x∈Xk
eδk)(

∑
k

1− e−δk).

A.4 Proof of Theorem 3.

Proof. Using Theorem 1 and 2,

HCIL(x) = − logP(x ∈ Xk0,j0 |D)

= − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D)− logP(x ∈ Xk0

|D)

= HWP (x) +HTP (x)

≤ ϵ+HTP (x)

≤ ϵ+ (
∑
k

1x∈Xk
eδk)(

∑
k

1− e−δk)

A.5 Proof of Theorem 4.

Proof. i) Assume x ∈ Xk0,j0 ⊂ Xk0
.

Define P(x ∈ Xk,j |x ∈ Xk, D) = P(x ∈ Xk,j |D).
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According to proof of Theorem 1,

HWP (x) = − logP(x ∈ Xk0,j0 |x ∈ Xk0
, D),

HCIL(x) = − logP(x ∈ Xk0,j0 |D).

Hence, we have
HWP (x) = − logP(x ∈ Xk0,j0 |x ∈ Xk0 , D)

= − logP(x ∈ Xk0,j0 |D)

= HCIL(x) ≤ η.

ii) Assume x ∈ Xk0,j0 ⊂ Xk0
.

Define P(x ∈ Xk|D) =
∑

j P(x ∈ Xk,j |D).

According to proof of Theorem 1,

HTP (x) = − logP(x ∈ Xk0
|D),

HCIL(x) = − logP(x ∈ Xk0,j0 |D).

Hence, we have
HTP (x) = − logP(x ∈ Xk0

|D)

= − log
∑
j

P(x ∈ Xk0,j |D)

≤ − logP(x ∈ Xk0,j0 |D)

= HCIL(x) ≤ η.

iii) Assume x ∈ Xk0,j0 ⊂ Xk0 .

Define P′
i(x ∈ Xk|D) = P(x ∈ Xk|D) =

∑
j P(x ∈ Xk,j |D).

According to proof of Theorem 4 ii), we have

HTP (x) ≤ η.

According to proof of Theorem 2 i), we have

HOOD,i(x) ≤ HTP (x).

Therefore,
HOOD,i(x) ≤ HTP (x) ≤ η.

B Additional Results and Explanation Regarding Table 1 in the Main Paper

In Sec. 4.3, we showed that a better OOD detection improves CIL performance. For the post-
processing method ODIN, we only reported the results on C100-10T due to space limitations. Tab. 5
shows the results on the other datasets.

A continual learning method with a better AUC shows a better CIL performance than other methods
with lower AUC. For instance, original HAT achieves AUC of 82.47 while HyperNet achieves 78.54
on C10-5T. The CIL for HAT is 62.67 while it is 53.40 for HyperNet. However, there are some
exceptions that this comparison does not hold. An example is LwF. Its AUC and CIL are 89.39 and
54.67 on C10-5T. Although its AUC is better than HAT, the CIL is lower. This is due to the fact that
CIL improves with WP and TP according to Theorem 1. The contraposition of Theorem 4 also says if
the cross-entropy of TIL is large, that of CIL is also large. Indeed, the average within-task prediction
(WP) accuracy for LwF on C10-5T is 95.2 while the same for HAT is 96.7. Improving WP is also
important in achieving good CIL performances.

For PASS, we had to tune τk using a validation set. This is because the softmax in Eq. 10 improves
AUC by making the IND (in-distribution) and OOD scores more separable within a task, but
deteriorates the final scores across tasks. To be specific, the test instances are predicted as one of
the classes in the first task after softmax because the relative values between classes in task 1 is
larger than the other tasks in PASS. Therefore, larger τ1 and smaller τk, for k > 1, are chosen to
compensate the relative values.
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Table 5: Performance comparison between the original output and output post-processed with OOD
detection technique ODIN. Note that ODIN is not applicable to iCaRL and Mnemonics as they are
not based on softmax but some distance functions. The result for C100-10T are reported in the main
paper.

M-5T C10-5T C100-20T T-5T T-10T
Method OOD AUC CIL AUC CIL AUC CIL AUC CIL AUC CIL

OWM Original 99.13 95.81 81.33 51.79 71.90 24.15 58.49 10.00 59.48 8.57
ODIN 98.86 95.16 71.72 40.65 68.52 23.05 58.46 10.77 59.38 9.52

MUC Original 92.27 74.90 79.49 52.85 66.20 14.19 68.42 33.57 62.63 17.39
ODIN 92.67 75.71 79.54 53.22 65.72 14.11 68.32 33.45 62.17 17.27

PASS Original 98.74 76.58 66.51 47.34 70.26 24.99 65.18 28.40 63.27 19.07
ODIN 90.40 74.33 63.08 35.20 69.81 21.83 65.93 29.03 62.73 17.78

LwF Original 99.19 85.46 89.39 54.67 89.84 44.33 78.20 32.17 79.43 24.28
ODIN 98.52 90.39 88.94 63.04 88.68 47.56 76.83 36.20 77.02 28.29

BiC Original 99.40 94.11 90.89 61.41 89.46 48.92 80.17 41.75 80.37 33.77
ODIN 98.57 95.14 91.86 64.29 87.89 47.40 74.54 37.40 76.27 29.06

DER++ Original 99.78 95.29 90.16 66.04 85.44 46.59 71.80 35.80 72.41 30.49
ODIN 99.09 94.96 87.08 63.07 87.72 49.26 73.92 37.87 72.91 32.52

HAT Original 94.46 81.86 82.47 62.67 75.35 25.64 72.28 38.46 71.82 29.78
ODIN 94.56 82.06 82.45 62.60 75.36 25.84 72.31 38.61 71.83 30.01

HyperNet Original 85.83 56.55 78.54 53.40 72.04 18.67 54.58 7.91 55.37 5.32
ODIN 86.89 64.31 79.39 56.72 73.89 23.8 54.60 8.64 55.53 6.91

Sup Original 90.70 70.06 79.16 62.37 81.14 34.70 74.13 41.82 74.59 36.46
ODIN 90.68 69.70 82.38 62.63 81.48 36.35 73.96 41.10 74.61 36.46

C Definitions of TP

As noted in the main paper, the class prediction in Eq. 2 varies by definition of WP and TP. The
precise definition of WP and TP depends on implementation. Due to this subjectivity, we follow
the prediction method as the existing methods in continual learning, which is the argmax over the
output. In this section, we show that the argmax over output is a special case of Eq. 2. We also
provide CIL results using different definitions of TP.

We first establish another theorem. This is an extension of Theorem 2 and connects the standard
prediction method to our analysis.

Theorem 5 (Extension of Theorem 2). i) If HTP (x) ≤ δ, let P′
k(x ∈ Xk|D) = P(x ∈ Xk|D)1/τk ,

∀τk > 0, then HOOD,k(x) ≤ max(δ/τk,− log(1− (1− e−δ)1/τk),∀ k = 1, . . . , T .

ii) If HOOD,k(x) ≤ δk, k = 1, . . . , T , let P(x ∈ Xk|D) =
P′

k(x∈Xk|D)1/τk∑
j P′

j(x∈Xj |D)1/τj
, ∀τk > 0, then

HTP (x) ≤
∑

k

1x∈Xk
δk

τk
+

∑
k(1−e−δk )1/τk∑

k 1x∈Xk
(1−(1−e−δk )1/τk )

, where 1x∈Xk
is an indicator function.

In Theorem 5 (proof appears later), we can observe that δ/τk decreases with the increase of τk, while
− log(1 − (1 − e−δ)1/τk) increases. Hence, when TP is given, let δ = HTP (x), we can find the
optimal τi to define OOD by solving δ/τk = − log(1− (1− e−δ)1/τk). Similarly, given OOD, let
δk = HOOD,k(x), we can find the optimal τ1, . . . , τT to define TP by finding the global minima of∑

k

1x∈Xk
δk

τk
+

∑
k(1−e−δk )1/τk∑

k 1x∈Xk
(1−(1−e−δk )1/τk )

. The optimal τk can be found using a memory buffer to
save a small number of previous data like that in a replay-based continual learning method.

In Theorem 5 (ii), let P′
k(x ∈ Xk|D) = σ(max f(x)k), where σ is the sigmoid and f(x)k is the

output of task k and choose τk ≈ 0 for each k. Then P(x ∈ Xk|D) becomes approximately 1 for the
task k where the maximum logit value appears and 0 for the rest tasks. Therefore, Eq. 2 in the paper

P(x ∈ Xk,j |D) = P(x ∈ Xk,j |x ∈ Xk, D)P(x ∈ Xk|D)

is zero for all classes in tasks k′ ̸= k. Since only the probabilities of classes in task k are non-zero,
taking argmax over all class probabilities gives the same class as argmax over output logits.
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Table 6: Average classification accuracy. The results are based on class prediction method defined
with WP and TP in Eq. 12 and Eq. 13, respectively. The results can improve by finding optimal
temperature scaling parameters.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 95.1±0.11 40.6±0.47 28.6±0.82 22.9±0.32 10.4±0.54 9.2±0.35
MUC 75.7±0.51 53.2±1.32 30.6±1.21 14.0±0.12 33.1±0.18 17.2±0.13
PASS† 64.5±2.64 33.6±0.71 18.5±1.85 20.8±0.85 21.4±0.44 13.0±0.55
LwF 90.4±1.18 63.0±0.34 51.9±0.88 47.5±0.62 35.9±0.32 27.8±0.29
iCaRL∗ 87.4±4.89 65.3±0.83 52.9±0.39 48.2±0.70 34.8±0.34 27.3±0.17
Mnemonics†∗ 91.8±1.03 65.6±1.55 50.7±0.72 47.9±0.71 36.3±0.30 27.7±0.78
BiC 95.1±0.47 65.5±0.81 50.8±0.69 47.2±0.71 37.0±0.58 29.1±0.34
DER++ 94.9±0.50 63.1±1.12 54.6±1.21 48.9±1.18 37.4±0.72 32.1±0.44
HAT 82.1±3.77 62.6±1.31 41.5±0.80 25.9±0.56 38.9±1.62 30.1±0.52
HyperNet 64.3±2.98 56.7±1.23 32.4±1.07 24.5±1.12 8.9±0.58 7.0±0.52
Sup 69.7±0.97 62.6±1.11 46.8±0.34 36.0±0.32 41.5±1.17 35.7±0.40
HAT+CSI 88.7±1.27 85.2±0.92 62.9±1.07 53.6±0.84 47.0±0.38 46.2±0.30
Sup+CSI 64.9±1.95 87.4±0.40 66.6±0.23 60.5±0.89 47.7±0.30 46.3±0.30
HAT+CSI+c 93.4±0.43 85.2±0.94 63.6±0.69 55.4±0.79 51.4±0.38 46.5±0.26
Sup+CSI+c 62.2±3.49 86.2±0.79 67.0±0.14 60.4±1.04 48.2±0.35 46.1±0.32

We have also tried another definition of WP and TP. The considered WP is

P(x ∈ Xk,j |x ∈ Xk, D) =
ef(x)kj/νk∑
j e

f(x)kj/νk
, (12)

where νk is a temperature scaling parameter for task k, and the TP is

P(x ∈ Xk|D) =
P′

k(x ∈ Xk|D)∑
k P

′
k(x ∈ Xk|D)

, (13)

where P′
k(x ∈ Xk|D) = maxj e

f(x)kj/τk/
∑

j e
f(x)kj/τk and τk is a temperature scaling parameter.

This is the maximum softmax of task k. We choose νk = 0.1 and τk = 5 for all k. A good τ and ν
can be found using grid search on a validation set. However, one can also find the optimal values by
optimization using some past data saved for memory buffer. The CIL results for the new prediction
method is in Tab. 6.

Proof of Theorem 5. i) Assume x ∈ Xk0
.

For k = k0, we have
HOOD,k0

(x) = − logP′
k0
(x ∈ Xk0

|D)

= − 1

τk0

logP(x ∈ Xk0
|D)

=
1

τk0

HTP (x) ≤
δ

τk0

.

For k ̸= k0, we have

HOOD,k(x) = − logP′
k(x /∈ Xk|D)

= − log(1−P′
k(x ∈ Xk|D))

= − log(1−P(x ∈ Xk|D)1/τk)

= − log(1− (1−P(x ∈ ∪k′ ̸=kXk′ |D))1/τk)

≤ − log(1− (1−P(x ∈ Xk0
|D))1/τk)

= − log(1− (1− e−HTP (x))1/τk)

≤ − log(1− (1− e−δ)1/τk).
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ii) Assume x ∈ Xk0 .

For k = k0, by HOOD,k0
(x) ≤ δk0

, we have

− logP′
k0
(x ∈ Xk0

|D) ≤ δk0
,

which means
P′

k0
(x ∈ Xk0 |D) ≥ e−δk0 .

For k ̸= k0, by HOOD,k(x) ≤ δk, we have

− logP′
k(x /∈ Xk|D) ≤ δk,

which means
P′

k(x ∈ Xk|D) ≤ 1− e−δk .

Therefore, we have

P(x ∈ Xk0
|D) =

P′
k0
(x ∈ Xk0

|D)1/τk0∑
k P

′
k(x ∈ Xk|D)1/τk

≥ e−δk0
/τk0

1 +
∑

k ̸=k0
(1− e−δk)1/τk

=
e−δk0

/τk0

1− (1− e−δk0 )1/τk0 +
∑

k(1− e−δk)1/τk

=
e−δk0

/τk0

1− (1− e−δk0 )1/τk0

· 1

1 +
∑

k(1−e−δk )1/τk

1−(1−e
−δk0 )

1/τk0

.

Hence,

HTP (x) = − logP(x ∈ Xk0
|D)

≤ − log
e−δk0

/τk0

1− (1− e−δk0 )1/τk0

· 1

1 +
∑

k(1−e−δk )1/τk

1−(1−e
−δk0 )

1/τk0

=
δk0

τk0

+ log[1− (1− e−δk0 )1/τk0 ] + log

[
1 +

∑
k(1− e−δk)1/τk

1− (1− e−δk0 )1/τk0

]
≤ δk0

τk0

+

∑
k(1− e−δk)1/τk

1− (1− e−δk0 )1/τk0

=
∑
k

1x∈Xk
δk

τk
+

∑
k(1− e−δk)1/τk∑

k 1x∈Xk
(1− (1− e−δk)1/τk)

.

D Details of HAT, Sup, and CSI

We have proposed two highly effective new CIL methods, HAT+CSI and Sup+CSI, by integrating the
existing parameter isolation based continual learning (CL) method HAT [3] or Sup [4] with the strong
OOD detection method CSI [6]. We replaced the training loss of HAT and Sup by that of CSI while
applying the continual learning techniques of the respective method. In this section, we overview
Sup, HAT, and CSI, and explain how to train them continually. Figure 1 shows the overall training
frameworks of Sup+CSI and HAT+CSI.

Denote feature extractor by h, classifier by f , and the parameters by W. In the main paper, we
denote the output of task k by f(x)k for both a single-head or multi-head method (e.g., Eq. 9) for
consistency. In this section, we use f(x, k) to indicate the output of task k to be more explicit as both
HAT and Sup are multi-head methods (one head for each task) designed for task incremental learning
(TIL).
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Figure 1: Overview of prediction and training framework of Sup+CSI and HAT+CSI. (a) Sup+CSI:
The CIL prediction is made by taking argmax over the concatenated output values from each task. In
training the network, the training batch is augmented to give different views of samples for contrastive
training in the OOD detection algorithm CSI. The training consists of two steps following CSI. The
first step is learning the feature extractor. In this step, the Edge Popup algorithm [79] is applied to find
a sparse network for each task. The sparse networks, which are indicated by edges of different colors
in the diagram. The second step fine-tunes the classifier only the fixed feature extractor. (b) HAT+CSI:
The CIL prediction is also made by argmax over the concatenated output from each task as Sup+CSI
method. Due to the OOD detection algorithm CSI, the overall training process is similar to Sup+CSI
except that it applies the hard attention algorithm [3]. In training feature extractor, task embeddings
are applied to find hard masks at each layer. Then given the learned feature representations, fine-tunes
the classifier in step 2.

D.1 Sup

SupSup (Sup) [4] trains supermasks by Edge Popup algorithm [79]. More precisely, given initial W,
find binary masks Mk for task k to minimize the cross-entropy loss

L = − 1

|Xk|
∑

log p(y|x, k), (14)

where Xk is the training data for task k, and

p(y|x, k) = f(h(x;W ⊗Mk)), (15)

where ⊗ indicates an element-wise product. The masks are obtained by selecting the top p% of
entries in the score matrices V. The p value determines the sparsity of the mask Mk. The subnetwork
found by Edge Popup algorithm is indicated by different colors in Figure 1(a).

Given the task-id k of a test instance at inference, the system (which is referred as Sup GG in the
original Sup paper) uses the task-specific mask Mk to obtain the classification output. By integrating
the OOD detection method, CSI, during training, Sup+CSI does not require to know the task-id of
test instance, which makes Sup+CSI applicable to CIL (class incremental learning).

D.2 HAT

We now discuss the hard attention (mask) mechanism of HAT [3]. It finds binary masks akl for each
layer l and task k, and uses them to block/unblock information flow at forward and backward pass.
More precisely, the hard attention is defined as

akl = σ(sekl ), (16)

where σ is the sigmoid, s is a positive constant, and ekl is a learnable embedding. To approximate the
binary mask, the system uses a large s value. The attention is applied to the output at each layer as

h
′

l = akl ⊗ hl, (17)

where ⊗ is an element-wise product, and

hl = ReLU(Wlhl−1 + bl). (18)

The neurons with attention value 1 is important for task k while those with zero attention value are
not necessary for the task, and thus they can be freely changed without affecting the output value
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h
′

l. The system needs to know which neurons are important to protect the previous knowledge from
forgetting. Denote the accumulated attentions of all previous tasks by

a<k
l = max(a<k−1

l , ak−1
l ), (19)

where a0l is the zero vector and max is an element-wise maximum. The gradients of parameters
corresponding to important neurons is modified as

∇w′
ij,l =

(
1−min

(
a<k
i,l , a

<k
j,l−1

))
∇wij,l, (20)

where a<k
i,l is the i’th unit of a<k

l and l = 1, · · · , L− 1. The hard attention is not applied to the last
layer L since it is a task-specific classification layer.

To encourage sparsity in akl , the system uses regularization as

Lr = λk

∑
l

∑
i a

k
i,l

(
1− a<k

i,l

)
∑

l

∑
i

(
1− a<k

i,l

) , (21)

where λk is a hyper-parameter. The system minimizes the loss

L = Lce + Lr, (22)

where Lce is the cross-entropy loss. The overall framework of the algorithm is shown in Figure 1(b).

D.3 CSI

We now explain the OOD detection method CSI, and how to incorporate it in HAT and Sup. CSI is
based on contrastive learning [59, 58] and data augmentation due to their excellent performance [6].
Since this section focuses on how to learn a single task based on OOD detection, we omit the task-id
unless necessary. The OOD training process is similar to that of contrastive learning. It consists
of two steps: 1) learning the feature representation by the composite g ◦ h, where h is a feature
extractor and g is a projection to contrastive representation, and 2) learning a linear classifier f
mapping the feature representation of h to the label space. This two step training process is outlined
in Figure 1(a) and (b). In the following, we describe the training process: contrastive learning for
feature representation learning (1), and OOD classifier building (2). We then explain how to make a
prediction based on an ensemble method to further improve prediction.

D.3.1 Contrastive Loss for Feature Learning.

This is step 1. Supervised contrastive learning is used to try to repel data of different classes and
align data of the same class more closely to make it easier to classify them. A key operation is data
augmentation via transformations.

Given a batch of N samples, each sample x is first duplicated and each version then goes through
three initial augmentations (horizontal flip, color changes, and Inception crop [80]) to generate two
different views x1 and x2 (they keep the same class label as x). Denote the augmented batch by B,
which now has 2N samples. In [81, 6], it was shown that using image rotations is effective in learning
OOD detection models because such rotations can effectively serve as out-of-distribution (OOD)
training data. For each augmented sample x ∈ B with class y of a task, we rotate x by 90◦, 180◦, 270◦

to create three images, which are assigned three new classes y1, y2, and y3, respectively. This results
in a larger augmented batch B̃. Since we generate three new images from each x, the size of B̃ is
8N . For each original class, we now have 4 classes. For a sample x ∈ B̃, let B̃(x) = B̃\{x} and let
P (x) ⊂ B̃\{x} be a set consisting of the data of the same class as x distinct from x. The contrastive
representation of a sample x is zx = g(h(x, t))/∥g(h(x, t))∥, where t is the current task. In learning,
we minimize the supervised contrastive loss [72] of task t.

Lc =
1

8N

∑
x∈B̃

−1

|P (x)|
∑

p∈P (x)

log
exp(zx · zp/τ)∑

x′∈B̃(x) exp(zx · zx′/τ)
, (23)

where τ is a scalar temperature, · is dot product, and × is multiplication. The loss is reduced by
repelling z of different classes and aligning z of the same class more closely. Lc basically trains a
feature extractor with good representations for learning an OOD classifier.
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Since the feature extractor is shared across tasks in continual learning, a protection is needed to
prevent catastrophic forgetting. HAT and Sup use their respective technique to protect their feature
extractor from forgetting. Therefore, the losses L of Eq. 14 and Lce of Eq. 22 are replaced by Eq. 23
while the forgetting prevention mechanisms still hold.

D.3.2 Learning the Classifier.

This is step 2. Given the feature extractor h trained with the loss in Eq. 23, we freeze h and only
fine-tune the linear classifier f , which is trained to predict the classes of task t and the augmented
rotation classes. f maps the feature representation to the label space in R4|Ct|, where 4 is the number
of rotation classes including the original data with 0◦ rotation and |Ct| is the number of original
classes in task t. We minimize the cross-entropy loss,

Lft = − 1

|B̃|

∑
(x,y)∈B̃

log p̃(y|x, t), (24)

where ft indicates fine-tune, and

p̃(y|x, t) = softmax (f(h(x, t))) (25)

where f(h(x, t)) ∈ R4|Ct|. The output f(h(x, t)) includes the rotation classes. The linear classifier
is trained to predict the original and the rotation classes. Since individual classifier is trained for each
task and the feature extractor is frozen, no protection is necessary.

D.3.3 Ensemble Class Prediction.

We describe how to predict a label y ∈ Ct (TIL) and y ∈ C (CIL) (C is the set of original classes of
all tasks). We assume all tasks have been learned and their models are protected by masks.

We discuss the prediction of class label y for a test sample x in the TIL setting first. Note that the
network f◦h in Eq. 25 returns logits for rotation classes (including the original task classes). Note also
for each original class label jk ∈ Ck (original classes) of a task k, we created three additional rotation
classes. For class jk, the classifier f will produce four output values from its four rotation class
logits, i.e., fjk,0(h(x0, k)), fjk,90(h(x90, k)), fjk,180(h(x180, k)), and fjk,270(h(x270, k)), where 0,
90, 180, and 270 represent 0◦, 90◦, 180◦, and 270◦ rotations respectively and x0 is the original x. We
compute an ensemble output fjk(h(x, k)) for each class jk ∈ Ck of task k,

f(h(x, k))jk =
1

4

∑
deg

f(h(xdeg, k))jk,deg. (26)

We use Eq. 9 to make the CIL class prediction, where the final class prediction is made as

ŷ = argmax
⊕
i

f(h(x, i)). (27)

E Output Calibration

In this section, we discuss the output calibration technique used in Sec. 4.4 to improve the final
prediction accuracy. Even if an OOD detection of each task was perfect (i.e. the model accept
and reject IND and OOD samples perfectly), the system could make incorrect class prediction if
the magnitudes of outputs across different tasks are different. To ensure that the output values
are comparable, we calibrate the outputs by scaling αk and shifting βk for each task. The optimal
parameters (αk, βk) ∈ R×R can be found by solving optimization problem using samples in memory
buffer. More precisely, denote the memory buffer M and calibration parameters (α, β) ∈ RT ×RT ,
where T is the number of learned tasks. After training T th task, we find optimal calibration parameters
by minimizing the cross-entropy loss,

L = − 1

|M|
∑

(x,y)∈M

log p(y|x) (28)
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Table 7: The TIL results of all the systems. The calibrated versions (+c) of our methods are omitted
as calibration does not affect TIL performance. Exemplar-free methods are italicized.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 99.7±0.03 85.0±0.07 59.6±0.83 65.4±0.48 22.4±0.87 28.1±0.55
MUC 99.9±0.02 95.1±0.10 77.3±0.83 73.4±9.16 55.9±0.26 47.2±0.22
PASS† 99.5±0.14 83.8±0.68 72.1±0.70 76.8±0.32 49.9±0.56 46.5±0.39
LwF 99.9±0.09 95.2±0.30 86.2±1.00 89.0±0.45 56.4±0.48 55.3±0.35
iCaRL 99.9±0.08 94.9±0.34 84.2±1.04 85.7±0.68 54.5±0.29 52.7±0.37
Mnemonics†∗ 99.9±0.03 94.5±0.46 82.3±0.30 86.2±0.46 54.8±0.16 52.9±0.66
BiC 99.9±0.03 95.4±0.35 84.6±0.48 88.7±0.19 61.5±0.60 62.2±0.45
DER++ 99.7±0.08 92.0±0.54 84.0±9.43 86.6±9.44 57.4±1.31 60.0±0.74
HAT 99.9±0.02 96.7±0.18 84.0±0.23 85.0±0.98 61.2±0.72 63.8±0.41
HyperNet 99.7±0.04 94.6±0.37 76.8±1.22 83.5±0.98 23.9±0.60 28.0±0.69
Sup 99.6±0.01 96.6±0.21 87.9±0.27 91.6±0.15 64.3±0.24 68.4±0.22
HAT+CSI 99.9±0.00 98.7±0.06 92.0±0.37 94.3±0.06 68.4±0.16 72.4±0.21
Sup+CSI 99.0±0.08 98.7±0.07 93.0±0.13 95.3±0.20 65.9±0.25 74.1±0.28

where p(c|x) is computed using the softmax,

softmax
⊕

[αkf(x)k + βk] (29)

where
⊕

indicates the concatenation and f(x)k is the output of task k as Eq. 9. Given the optimal
parameters (α∗, β∗), we make final prediction as

ŷ = argmax
⊕

[α∗
kf(x)k + β∗

k ] (30)

If we use OODk = σ(α∗
kf(x)k + β∗

k), where σ is the sigmoid, and TPk = OODk/
∑

k′ OODk′ ,
the theoretical results in Sec. 3 hold.

F TIL (WP) Results

The TIL (WP) results of all the systems are reported in Tab. 7. HAT and Sup show strong performances
compared to the other baselines as they leverage task-specific parameters. However, as shown in
Theorem 1, the CIL depends on TP (or OOD). Without an OOD detection mechanism in HAT or
Sup, they perform poorly in CIL as shown in the main paper. The contrastive learning in CSI also
improves the IND prediction (i.e., WP), and this along with OOD detection results in the strong CIL
performance.

G Hyper-parameters

Here we report the hyper-parameters that we did not report in the main paper due to space limitations.
We mainly report the hyper-parameters of the proposed methods, HAT+CSI, Sup+CSI, and their
calibrated versions. For all the experiments of the proposed methods, we use the values chosen by
the original CSI [6]. We use LARS [82] optimization with learning rate 0.1 for training the feature
extractor. We linearly increase the learning rate by 0.1 per epoch for the first 10 epochs. After that,
we use cosine scheduler [83] without restart as in [6, 59]. After training the feature extractor, we
train the linear classifier for 100 epochs with SGD with learning rate 0.1 and reduce the rate by 0.1 at
60, 75, and 90 epochs. For all the experiments except MNIST, we train the feature extractor for 700
epochs with batch size 128.

For the following hyper-parameters, we use 10% of training data for validation to find a good set
of values. For the number of epochs and batch size for MNIST, Sup+CSI trains for 1000 epochs
with batch size of 32 while HAT+CSI trains for 700 epochs with batch size of 256. The hard
attention regularization penalty λi in HAT is different by experiments and task i. For MNIST, we use
λ1 = 0.25, and λ2 = · · · = λ5 = 0.1. For C10-5T, we use λ1 = 1.0, and λ2 = · · · = λ5 = 0.75.
For C100-10T, λ1 = 1.5, and λ2 = · · · = λ10 = 1.0 are used. For C100-20T, λ1 = 3.5, and
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Table 8: The number of parameters used at inference after learning the final task. The M after each
value indicates millions.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 5.27M 5.27M 5.36M 5.36M 5.46M 5.46M
MUC 1.06M 11.19M 45.06M 45.06M 45.47M 45.47M
PASS 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
LwF 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

iCaRL 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
Mnemonics 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

BiC 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M
DER++ 1.03M 11.17M 44.76M 44.76M 44.86M 44.86M

HAT 1.04M 11.23M 45.01M 45.28M 44.97M 45.11M
HyperNet 0.48M 0.47M 0.47M 0.47M 0.48M 0.48M

Sup 0.05M 1.43M 5.75M 11.45M 2.95M 5.80M
HAT+CSI 1.07M 11.25M 45.31M 45.58M 45.59M 45.72M

HAT+CSI+c 1.07M 11.25M 45.31M 45.58M 45.59M 45.72M
Sup+CSI 0.28M 1.38M 5.90M 11.60M 3.04M 6.05M

Sup+CSI+c 0.28M 1.38M 5.90M 11.60M 3.04M 6.05M

λ2 = · · · = λ20 = 2.5 are used. For T-5T, λi = 0.75 for all tasks, and lastly, for T-10T, λ1 = 1.0,
and λ2 = · · · = λ10 = 0.75 are used. We use larger λ1 for the first task than the later tasks as we
have found that the larger regularization on the first task results in better accuracy. This is by the
definition of regularization in HAT. The earlier task gives lower penalty than later tasks. We manually
give larger penalty to the first task. We did not search hyper-parameter λt for tasks t ≥ 2. For sparsity
in Sup+CSI, we simply choose the least sparsity value of 32 used in the original Sup paper without
parameter search.

Calibration methods (HAT+CSI+c and Sup+CSI+c) are based on its memory free versions (i.e.
HAT+CSI and Sup+CSI). Therefore, the model training part uses the same hyper-parameters as
their calibration free counterparts. For calibration training, we use SGD with learning rate 0.01, 160
training iterations, and batch size of 15 for HAT+CSI+c for all experiments. For Sup+CSI+c, we use
the same values for all the experiments except for MNIST. For MNIST, we use learning rate 0.05,
batch size of 8, and run 280 iterations.

For the baselines, we use the hyper-parameters reported in the original papers or in their code. If the
hyper-parameters are unknown or the code does not reproduce the result (e.g., the baseline did not
implement a particular dataset or the code had undergone significant version change), we search for
the hyper-parameters as we did for HAT+CSI and Sup+CSI.

H Computes and Resources Used in Experiments

This paper provides a guidance on how to solve the CIL problem, backed by theoretical justifications.
Based on the guidance, we have proposed some new CIL methods. Two outstanding ones are
HAT+CSI and Sup+CSI. These methods achieve state-of-the-art CIL performances, but by no mean,
they are the only approaches. Many CIL algorithms can be designed following the analysis as it is
general to any CL model.

Despite the generality of our work, we report the execution time and required memory for HAT+CSI
and Sup+CSI. The report is based on a machine with NVIDIA RTX 3090 on C10-5T experiments.
HAT+CSI takes 28.68 hours while Sup+CSI runs for 18.41 hours, which are slower than baselines.
Contrastive learning and extensive data augmentation in CSI are the major reason for the slow
execution time. However, if other more efficient OOD detection algorithms can replace CSI, the
running time can be improved with the new OOD detection methods.

As noted in Sec. 4.2, all the methods use the same backbone architecture with the same width and
depth except for OWM and HyperNet for the reasons explained in the main paper. We report the
number of parameters of each method required for inference after learning the last task. Sup and
Sup+CSI uses a very small number of parameters because Sup finds a sparse subnetwork for each task.
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Our methods HAT+CSI introduces 7.7K, 17.6K, 68.0K, 47.5K, 191.0K, and 109.0K parameters on
M-5T, C10-5T, C100-10T, C100-20T, T-5T, and T-10T, respectively, at each task. Sup+CSI introduces
56.3K, 284.9K, 590.3K, 580.0K, 607.7K, and 605.1K parameters on the same experiments. The
calibrated methods HAT+CSI+c and Sup+CSI+c introduce 2 parameters (αk, βk) per task.

For HAT and HAT+CSI, the reported number of parameters is based on the network at full capacity.
The hard attention masks consume 71.10, 86.31, 98.89, 99.71, 92.94, and 98.67% of the total network
capacity on average over 5 runs for HAT on M-5T, C10-5T, C100-10T, C100-20T, T-5, and T-10T,
respectively. Similarly, 99.39, 99.56, 99.56, 50.68, 94.94, and 99.18% of the total network capacity
are used for HAT+CSI on the same datasets on average.

I Negative Societal Impacts

The goal of continual learning is to learn a sequence of tasks incrementally. Like many machine
learning algorithms, our proposed methods could be affected by bias in the input data as this work
does not deal with fairness or bias in the data. A possible solution to mitigate the problem is to check
bias in data before training.

J Forgetting Rate

We discuss forgetting rate (i.e., backward transfer) [28], which is defined for task t as

F t =
1

t− 1

t−1∑
k=1

Ainit
k −At

k, (31)

where Ainit
k is the classification accuracy of task k’s data after learning it for the first time and At

k is
the accuracy of task k’s data after learning task t. We report the forgetting rate after learning the last
task.
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Figure 2: Average forgetting rate (%). The lower the value, the better the method is on forgetting.

Figure 2 shows the forgetting rates of each method. Some methods (e.g., OWM, iCaRL) experience
less forgetting than the proposed methods HAT+CSI and Sup+CSI on M-5T. On this dataset, all
the systems performed well. For instance, OWM and iCaRL achieve 95.8% and 96.0% accuracy
while HAT+CSI and HAT+CSI+c achieve 94.4 and 96.9% accuracy. As we have noted in the main
paper, Sup+CSI and Sup+CSI+c achieve only 80.7 and 81.0 on M-5T although they have improved
drastically from 70.1% of the base method Sup.

OWM and HyperNet show lower forgetting rates than HAT+CSI+c and Sup+CSI+c on T-5T and
T-10T. However, they are not able to adapt to new classes as OWM and HyperNet achieve the
classification accuracy of only 10.0% and 7.9%, respectively, on T-5T and 8.6% and 5.3% on T-10T.
HAT+CSI+c and Sup+CSI+c achieves 51.7% and 49.2%, respectively, on T-5T and 47.6% and 46.2%
on T-10T.
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In fact, the performance reduction (i.e., forgetting) in our proposed methods occurs not because the
systems forget the previous task knowledge, but because the systems learn more classes and the
classification naturally becomes harder. The continual learning mechanisms (HAT and Sup) used
in the proposed methods experience little or no forgetting because they find independent subset
of parameters for each task, and the learned parameters are not interfered during training. For the
forgetting rate results in the TIL setting, refer to our earlier workshop paper [84].
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