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Abstract

This paper makes a focused contribution
to supervised aspect extraction. It shows
that if the system has performed aspect ex-
traction from many past domains and re-
tained their results as knowledge, Condi-
tional Random Fields (CRF) can leverage
this knowledge in a lifelong learning man-
ner to extract in a new domain markedly
better than the traditional CRF without us-
ing this prior knowledge. The key inno-
vation is that even after CRF training, the
model can still improve its extraction with
experiences in its applications.

1 Introduction

Aspect extraction is a key task of opinion min-
ing (Liu, 2012). It extracts opinion targets from
opinion text. For example, from the sentence “The
screen is great”, it aims to extract “screen”, which
is a product feature, also called an aspect.

Aspect extraction is commonly done using a su-
pervised or an unsupervised approach. The unsu-
pervised approach includes methods such as fre-
quent pattern mining (Hu and Liu, 2004; Popescu
and Etzioni, 2005; Zhu et al., 2009), syntactic
rules-based extraction (Zhuang et al., 2006; Wang
and Wang, 2008; Wu et al., 2009; Zhang et al.,
2010; Qiu et al., 2011; Poria et al., 2014), topic
modeling (Mei et al., 2007; Titov and McDonald,
2008; Li et al., 2010; Brody and Elhadad, 2010;
Wang et al., 2010; Moghaddam and Ester, 2011;
Mukherjee and Liu, 2012; Lin and He, 2009; Zhao
et al., 2010; Jo and Oh, 2011; Fang and Huang,
2012; Wang et al., 2016), word alignment (Liu
et al., 2013), label propagation (Zhou et al., 2013;
Shu et al., 2016), and others (Zhao et al., 2015).

This paper focuses on the supervised approach
(Jakob and Gurevych, 2010; Choi and Cardie,

2010; Mitchell et al., 2013) using Conditional
Random Fields (CRF) (Lafferty et al., 2001). It
shows that the results of CRF can be significantly
improved by leveraging some prior knowledge au-
tomatically mined from the extraction results of
previous domains, including domains without la-
beled data. The improvement is possible because
although every product (domain) is different, there
is a fair amount of aspects sharing across do-
mains (Chen and Liu, 2014). For example, every
review domain has the aspect price and reviews
of many products have the aspect battery life or
screen. Those shared aspects may not appear in
the training data but appear in unlabeled data and
the test data. We can exploit such sharing to help
CRF perform much better.

Due to leveraging the knowledge gained from
the past to help the new domain extraction, we
are using the idea of lifelong machine learning
(LML) (Chen and Liu, 2016; Thrun, 1998; Sil-
ver et al., 2013), which is a continuous learning
paradigm that retains the knowledge learned in the
past and uses it to help future learning and prob-
lem solving with possible adaptations.

The setting of the proposed approach L-CRF
(Lifelong CRF) is as follows: A CRF model M
has been trained with a labeled training review
dataset. At a particular point in time, M has ex-
tracted aspects from data in n previous domains
D1, . . . , Dn (which are unlabeled) and the ex-
tracted sets of aspects are A1, . . . , An. Now, the
system is faced with a new domain data Dn+1.
M can leverage some reliable prior knowledge in
A1, . . . , An to make a better extraction fromDn+1

than without leveraging this prior knowledge.
The key innovation of L-CRF is that even after

supervised training, the model can still improve its
extraction in testing or its applications with expe-
riences. Note that L-CRF is different from semi-
supervised learning (Zhu, 2005) as the n previous



(unlabeled) domain data used in extraction are not
used or not available during model training.

There are prior LML works for aspect extrac-
tion (Chen et al., 2014; Liu et al., 2016), but
they were all unsupervised methods. Supervised
LML methods exist (Chen et al., 2015; Ruvolo and
Eaton, 2013), but they are for classification rather
than for sequence learning or labeling like CRF.
A semi-supervised LML method is used in NELL
(Mitchell et al., 2015), but it is heuristic pattern-
based. It doesn’t use sequence learning and is not
for aspect extraction. LML is related to transfer
learning and multi-task learning (Pan and Yang,
2010), but they are also quite different (see (Chen
and Liu, 2016) for details).

To the best of our knowledge, this is the first pa-
per that uses LML to help a supervised extraction
method to markedly improve its results.

2 Conditional Random Fields

CRF learns from an observation sequence x to es-
timate a label sequence y: p(y|x;θ), where θ is
a set of weights. Let l be the l-th position in the
sequence. The core parts of CRF are a set of
feature functions F = {fh(yl, yl−1,xl)}Hh=1 and
their corresponding weights θ = {θh}Hh=1.
Feature Functions: We use two types of feature
functions (FF). One is Label-Label (LL) FF:

fLL
ij (yl, yl−1) = 1{yl = i}1{yl−1 = j},∀i, j ∈ Y, (1)

where Y is the set of labels, and 1{·} an indicator
function. The other is Label-Word (LW) FF:

fLW
iv (yl,xl) = 1{yl = i}1{xl = v}, ∀i ∈ Y,∀v ∈ V, (2)

where V is the vocabulary. This FF returns 1 when
the l-th word is v and the l-th label is v’s specific
label i; otherwise 0. xl is the current word, and
is represented as a multi-dimensional vector. Each
dimension in the vector is a feature of xl.

Following the previous work in (Jakob and
Gurevych, 2010), we use the feature set {W, -1W,
+1W, P, -1P, +1P, G}, where W is the word and P
is its POS-tag, -1W is the previous word, -1P is its
POS-tag, +1W is the next word, +1P is its POS-
tag, and G is the generalized dependency feature.

Under the Label-Word FF type, we have two
sub-types of FF: Label-dimension FF and Label-G
FF. Label-dimension FF is for the first 6 features,
and Label-G is for the G feature.

The Label-dimension (Ld) FF is defined as

fLd
ivd

(yl,xl) = 1{yl = i}1{xd
l = vd},∀i ∈ Y, ∀vd ∈ Vd, (3)

where Vd is the set of observed values in feature
d ∈ {W,−1W,+1W,P,−1P,+1P} and we call
Vd feature d’s feature values. Eq. (3) is a FF that
returns 1 when xl’s feature d equals to the feature
value vd and the variable yl (lth label) equals to
the label value i; otherwise 0.

We describe G and its feature function next,
which also holds the key to the proposed L-CRF.

3 General Dependency Feature (G)

Feature G uses generalized dependency relations.
What is interesting about this feature is that it en-
ables L-CRF to use past knowledge in its sequence
prediction at the test time in order to perform much
better. This will become clear shortly. This feature
takes a dependency pattern as its value, which is
generalized from dependency relations.

The general dependency feature (G) of the vari-
able xl takes a set of feature values VG. Each fea-
ture value vG is a dependency pattern. The Label-
G (LG) FF is defined as:

fLG
ivG(yl,xl) = 1{yl = i}1{xG

l = vG},∀i ∈ Y, ∀vG ∈ VG. (4)

Such a FF returns 1 when the dependency feature
of the variable xl equals to a dependency pattern
vG and the variable yl equals to the label value i.

3.1 Dependency Relation
Dependency relations have been shown useful in
many sentiment analysis applications (Johansson
and Moschitti, 2010; Jakob and Gurevych, 2010).
A dependency relation 1 is a quintuple-tuple:
(type, gov, govpos, dep, deppos), where type is the
type of the dependency relation, gov is the gover-
nor word, govpos is the POS tag of the governor
word, dep is the dependent word, and deppos is
the POS tag of the dependent word. The l-th word
can either be the governor word or the dependent
word in a dependency relation.

3.2 Dependency Pattern
We generalize dependency relations into depen-
dency patterns using the following steps:

1. For each dependency relation, replace the
current word (governor word or dependent
word) and its POS tag with a wildcard since
we already have the word (W) and the POS
tag (P) features.

1We obtain dependency relations using Stanford
CoreNLP: http://stanfordnlp.github.io/CoreNLP/.



Index Word Dependency Relations
1 The {(det, battery, 2, NN , The, 1, DT) }
2 battery {(nsubj, great, 7, JJ , battery, 2, NN), (det, battery, 2, NN , The, 1, DT), (nmod, battery, 2, NN, camera, 5, NN) }
3 of {(case, camera, 5, NN, of, 3, IN) }
4 this {(det, camera, 5, NN, this, 4, DT) }
5 camera {(case, camera, 5, NN, of, 3, IN), (det, camera, 5, NN, this, 4, DT), (nmod, battery, 2, NN, camera, 5, NN) }
6 is {(cop, great, 7, JJ , is, 6, VBZ) }
7 great {(root, ROOT, 0, VBZ, great, 7, JJ), (nsubj, great, 7, JJ , battery, 2, NN), (cop, great, 7, JJ , is, 6, VBZ) }

Table 1: Dependency relations parsed from “The battery of this camera is great”

2. Replace the context word (the word other
than the l-th word) in each dependency re-
lation with a knowledge label to form a more
general dependency pattern. Let the set of as-
pects annotated in the training data be Kt. If
the context word in the dependency relation
appears in Kt, we replace it with a knowl-
edge label ‘A’ (aspect); otherwise ‘O’ (other).

For example, we work on the sentence “The bat-
tery of this camera is great.” The dependency re-
lations are given in Table 1. Assume the current
word is “battery,” and “camera” is annotated as an
aspect. The original dependency relation between
“camera” and “battery” produced by a parser is
(nmod, battery, NN, camera, NN). Note that we do
not use the word positions in the relations in Table
1. Since the current word’s information (the word
itself and its POS-tag) in the dependency relation
is redundant, we replace it with a wild-card. The
relation becomes (nmod, *, camera, NN). Sec-
ondly, since “camera” is in Kt, we replace “cam-
era” with a general label ‘A’. The final dependency
pattern becomes (nmod,*, A, NN).

We now explain why dependency patterns can
enable a CRF model to leverage the past knowl-
edge. The key is the knowledge label ‘A’ above,
which indicates a likely aspect. Recall that our
problem setting is that when we need to extract
from the new domain Dn+1 using a trained CRF
model M , we have already extracted from many
previous domains D1, . . . , Dn and retained their
extracted sets of aspects A1, . . . , An. Then, we
can mine reliable aspects from A1, . . . , An and
add them in Kt, which enables many knowl-
edge labels in the dependency patterns of the new
data An+1 due to sharing of aspects across do-
mains. This enriches the dependency pattern fea-
tures, which consequently allows more aspects to
be extracted from the new domain Dn+1.

4 The Proposed L-CRF Algorithm

We now present the L-CRF algorithm. As the de-
pendency patterns for the general dependency fea-

Algorithm 1 Lifelong Extraction of L-CRF

1: Kp ← ∅
2: loop
3: F ← FeatureGeneration(Dn+1,K)
4: An+1 ← Apply-CRF-Model(M,F )
5: S ← S ∪ {An+1}
6: Kn+1 ← Frequent-Aspects-Mining(S, λ)
7: if Kp = Kn+1 then
8: break
9: else

10: K ← Kt ∪Kn+1

11: Kp ← Kn+1

12: S ← S − {An+1}
13: end if
14: end loop

ture do not use any actual words and they can also
use the prior knowledge, they are quite powerful
for cross-domain extraction (the test domain is not
used in training).

Let K be a set of reliable aspects mined from
the aspects extracted in past domain datasets using
the CRF model M . Note that we assume that M
has already been trained using some labeled train-
ing data Dt. Initially, K is Kt (the set of all an-
notated aspects in the training data Dt). The more
domainsM has worked on, the more aspects it ex-
tracts, and the larger the set K gets. When faced
with a new domain Dn+1, K allows the general
dependency feature to generate more dependency
patterns related to aspects due to more knowledge
labels ‘A’ as we explained in the previous section.
Consequently, CRF has more informed features to
produce better extraction results.

L-CRF works in two phases: training phase
and lifelong extraction phase. The training phase
trains a CRF model M using the training data Dt,
which is the same as normal CRF training, and
will not be discussed further. In the lifelong ex-
traction phase, M is used to extract aspects from
coming domains (M does not change and the do-
main data are unlabeled). All the results from the
domains are retained in past aspect store S. At



Domain # Sent. # Asp. # non-asp. words
Computer 536 1173 7675
Camera 609 1640 9849
Router 509 1239 7264
Phone 497 980 7478

Speaker 510 1299 7546
DVD Player 506 928 7552
Mp3 Player 505 1180 7607
Table 2: Annotation details of the datasets

a particular time, it is assumed M has been ap-
plied to n past domains, and is now faced with
the n + 1 domain. L-CRF uses M and reliable
aspects (denoted Kn+1) mined from S and Kt

(K = Kt ∪ Kn+1) to extract from Dn+1. Note
that aspects Kt from the training data are consid-
ered always reliable as they are manually labeled,
thus a subset ofK. We cannot use all extracted as-
pects from past domains as reliable aspects due to
many extraction errors. But those aspects that ap-
pear in multiple past domains are more likely to be
correct. ThusK contains those frequent aspects in
S. The lifelong extraction phase is in Algorithm 1.

Lifelong Extraction Phase: Algorithm 1 per-
forms extraction on Dn+1 iteratively.

1. It generates features (F ) on the data Dn+1

(line 3), and applies the CRF model M on F
to produce a set of aspects An+1 (line 4).

2. An+1 is added to S, the past aspect store.
From S, we mine a set of frequent aspects
Kn+1. The frequency threshold is λ.

3. If Kn+1 is the same as Kp from the previ-
ous iteration, the algorithm exits as no new
aspects can be found. We use an iterative
process because each extraction gives new re-
sults, which may increase the size of K, the
reliable past aspects or past knowledge. The
increased K may produce more dependency
patterns, which can enable more extractions.

4. Else: some additional reliable aspects are
found. M may extract additional aspects in
the next iteration. Lines 10 and 11 update the
two sets for the next iteration.

5 Experiments

We now evaluate the proposed L-CRF method and
compare with baselines.

5.1 Evaluation Datasets

We use two types of data for our experiments. The
first type consists of seven (7) annotated bench-
mark review datasets from 7 domains (types of
products). Since they are annotated, they are used
in training and testing. The first 4 datasets are
from (Hu and Liu, 2004), which actually has 5
datasets from 4 domains. Since we are mainly
interested in results at the domain level, we did
not use one of the domain-repeated datasets. The
last 3 datasets of three domains (products) are
from (Liu et al., 2016). These datasets are used
to make up our CRF training data Dt and test data
Dn+1. The annotation details are given in Table 2.

The second type has 50 unlabeled review
datasets from 50 domains or types of prod-
ucts (Chen and Liu, 2014). Each dataset has 1000
reviews. They are used as the past domain data,
i.e., D1, . . . , Dn (n = 50). Since they are not la-
beled, they cannot be used for training or testing.

5.2 Baseline Methods

We compare L-CRF with CRF. We will not com-
pare with unsupervised methods, which have been
shown improvable by lifelong learning (Chen
et al., 2014; Liu et al., 2016). The frequency
threshold λ in Algorithm 1 used in our experiment
to judge which extracted aspects are considered re-
liable is empirically set to 2.

CRF: We use the linear chain CRF from 2. Note
that CRF uses all features including dependency
features as the proposed L-CRF but does not em-
ploy the 50 domains unlabeled data used for life-
long learning

CRF+R: It treats the reliable aspect set K as
a dictionary. It adds those reliable aspects in K
that are not extracted by CRF but are in the test
data to the final results. We want to see whether
incorporating K into the CRF extraction through
dependency patterns in L-CRF is actually needed.

We do not compare with domain adaptation or
transfer learning because domain adaption basi-
cally uses the source domain labeled data to help
learning in the target domain with few or no la-
beled data. Our 50 domains used in lifelong learn-
ing have no labels. So they cannot help in transfer
learning. Although in transfer learning, the target
domain usually has a large quantity of unlabeled
data, but the 50 domains are not used as the target
domains in our experiments.

2https://github.com/huangzhengsjtu/pcrf/



Cross-Domain

Training Testing
CRF CRF+R L-CRF

P R F1 P R F1 P R F1

−Computer Computer 86.6 51.4 64.5 23.2 90.4 37.0 82.2 62.7 71.1
−Camera Camera 84.3 48.3 61.4 21.8 86.8 34.9 81.9 60.6 69.6
−Router Router 86.3 48.3 61.9 24.8 92.6 39.2 82.8 60.8 70.1
−Phone Phone 72.5 50.6 59.6 20.8 81.2 33.1 70.1 59.5 64.4
−Speaker Speaker 87.3 60.6 71.6 22.4 91.2 35.9 84.5 71.5 77.4
−DVDplayer DVDplayer 72.7 63.2 67.6 16.4 90.7 27.7 69.7 71.5 70.6
−Mp3player Mp3player 87.5 49.4 63.2 20.6 91.9 33.7 84.1 60.7 70.5

Average 82.5 53.1 64.3 21.4 89.3 34.5 79.3 63.9 70.5
In-Domain

−Computer −Computer 84.0 71.4 77.2 23.2 93.9 37.3 81.6 75.8 78.6
−Camera −Camera 83.7 70.3 76.4 20.8 93.7 34.1 80.7 75.4 77.9
−Router −Router 85.3 71.8 78.0 22.8 93.9 36.8 82.6 76.2 79.3
−Phone −Phone 85.0 71.1 77.5 25.1 93.7 39.6 82.9 74.7 78.6
−Speaker −Speaker 83.8 70.3 76.5 20.1 94.3 33.2 80.1 75.8 77.9
−DVDplayer −DVDplayer 85.0 72.2 78.1 20.9 94.2 34.3 81.6 76.7 79.1
−Mp3player −Mp3player 83.2 72.6 77.5 20.4 94.5 33.5 79.8 77.7 78.7

Average 84.3 71.4 77.3 21.9 94.0 35.5 81.3 76.0 78.6
Table 3: Aspect extraction results in precision, recall and F1 score: Cross-Domain and In-Domain (−X
means all except domain X)

5.3 Experiment Setting

To compare the systems using the same training
and test data, for each dataset we use 200 sen-
tences for training and 200 sentences for testing to
avoid bias towards any dataset or domain because
we will combine multiple domain datasets for
CRF training. We conducted both cross-domain
and in-domain tests. Our problem setting is cross-
domain. In-domain is used for completeness. In
both cases, we assume that extraction has been
done for the 50 domains.

Cross-domain experiments: We combine 6
labeled domain datasets for training (1200 sen-
tences) and test on the 7th domain (not used in
training). This gives us 7 cross-domain results.
This set of tests is particularly interesting as it is
desirable to have the trained model used in cross-
domain situations to save manual labeling effort.

In-domain experiments: We train and test on
the same 6 domains (1200 sentences for training
and 1200 sentences for testing). This also gives us
7 in-domain results.

Evaluating Measures: We use the popular pre-
cision P , recallR, and F1-score.

5.4 Results and Analysis

All the experiment results are given in Table 3.
Cross-domain: Each −X in column 1 means

that domain X is not used in training. X in col-

umn 2 means that domain X is used in testing. We
can see that L-CRF is markedly better than CRF
and CRF+R in F1. CRF+R is very poor due to
poor precisions, which shows treating the reliable
aspects set K as a dictionary isn’t a good idea.

In-domain: −X in training and test columns
means that the other 6 domains are used in both
training and testing (thus in-domain). We again
see that L-CRF is consistently better than CRF
and CRF+R in F1. The amount of gain is smaller.
This is expected because most aspects appeared in
training probably also appear in the test data as
they are reviews from the same 6 products.

6 Conclusion

This paper proposed a lifelong learning method
to enable CRF to leverage the knowledge gained
from extraction results of previous domains (unla-
beled) to improve its extraction. Experimental re-
sults showed the effectiveness of L-CRF. The cur-
rent approach does not change the CRF model it-
self. In our future work, we plan to modify CRF
so that it can consider previous extraction results
as well as the knowledge in previous CRF models.
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