
Rule Interestingness Analysis Using OLAP Operations 
Bing Liu, Kaidi Zhao 

Department of Computer Science 
University of Illinois at Chicago 

851 S. Morgan St., Chicago, IL 60607 

{kzhao, liub}@cs.uic.edu 
 

Jeffrey Benkler 
Motorola, Inc 

600 N. U.S. Highway 45 
MD: AS220, Libertyville, IL 60048 

jeffbenkler@motorola.com  
 

Weimin Xiao 
Motorola Labs 

1301 E. Algonquin Rd. 
Schaumburg, IL 60196. USA 

awx003@motorola.com 
 

ABSTRACT 
The problem of interestingness of discovered rules has been 
investigated by many researchers. The issue is that data mining 
algorithms often generate too many rules, which make it very 
hard for the user to find the interesting ones. Over the years many 
techniques have been proposed. However, few have made it to 
real-life applications. Since August 2004, we have been working 
on a major application for Motorola. The objective is to find 
causes of cellular phone call failures from a large amount of usage 
log data. Class association rules have been shown to be suitable 
for this type of diagnostic data mining application. We were also 
able to put several existing interestingness methods to the test, 
which revealed some major shortcomings. One of the main 
problems is that most existing methods treat rules individually. 
However, we discovered that users seldom regard a single rule to 
be interesting by itself. A rule is only interesting in the context of 
some other rules. Furthermore, in many cases, each individual 
rule may not be interesting, but a group of them together can 
represents an important piece of knowledge. This led us to 
discover a deficiency of the current rule mining paradigm. Using 
none-zero minimum support and none-zero minimum confidence 
eliminates a large amount of context information, which makes 
rule analysis difficult. This paper proposes a novel approach to 
deal with all of these issues, which casts rule analysis as OLAP 
operations and general impression mining. This approach enables 
the user to explore the knowledge space to find useful knowledge 
easily and systematically. It also provides a natural framework for 
visualization. As an evidence of its effectiveness, our system, 
called Opportunity Map, based on these ideas has been deployed, 
and it is in daily use in Motorola for finding actionable knowledge 
from its engineering and other types of data sets. 

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Data Management – Data Mining. 
1.3.m [Computer Graphics]: Miscellaneous – Visualization 

General Terms: Human Factors, Management, Design. 

Keywords: Diagnostic data mining, Interestingness analysis, 
general impressions, class association rules, OLAP.  

1. INTRODUCTION 
It is well known that many existing data mining techniques often 
produce a large number of rules, which make it very difficult for 
manual inspection of the rules to identify the interesting ones. 
This is called the interestingness problem. Over the years, many 
techniques have been proposed to deal with this problem in order 
to help the user find useful knowledge. However, despite these 
efforts, interestingness remains a difficult problem. Few existing 
techniques have made it to real life applications. The difficulty is 
often attributed to the fact that interestingness is highly 
subjective. It depends on the user’s current needs and his/her 
existing domain knowledge. While this is true, in this paper we 
also argue that another reason for the limited success is that we 
perhaps have looked in the wrong direction. Furthermore, the 
research is also somewhat misguided by the current rule mining 
paradigm, which tends to fragment the knowledge space, creates a 
large number of holes in the space and makes it difficult for the 
user to find interesting knowledge.     

Since August 2004, we have been working on a major application 
for Motorola. The data set contains cellular phone call records. 
The raw data has more than 600 attributes and millions of records. 
After some pre-processing by our domain experts, we are left with 
just over 200 attributes. The data set is like any classification data 
set. Some of the attributes are continuous and some are discrete. 
One attribute indicates the final disposition of the call such as 
failed during setup, dropped while in progress, and ended 
successfully. This attribute is the class attribute in classification 
with discrete values. We note that this data set is only the data set 
that we began with. Our deployed system has been successfully 
used to analyze eleven (11) different data sets so far for entirely 
different applications in Motorola. Thus, we speak with some 
level of generality rather than based on only a single application.  

Two types of mining are usually performed with this kind of data: 

1. Predictive data mining: The objective is to build predictive or 
classification models that can be used to classify future cases 
or to predict the classes of future cases. This has been the 
focus of research of the machine learning community.  

2. Diagnostic data mining: The objective here is usually to 
understand the data and to find causes of some problems in 
order to solve the problems. No prediction or classification is 
needed. In the above example, the problems are failed during 
setup and dropped while in progress. A large number of data 
mining applications in engineering domains are of this type 
because product improvement is the key task.  

Our above application falls into the second type. The objective is 
not prediction, but to better understand the data and to find causes 
of call failures or to identify situations in which calls are more 
likely to fail. That is, the user wants interesting and actionable 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGKDD’06  August 20-23, 2006, Philadelphia, USA. 
Copyright 2006 CM 1-58113-000-0/00/0004…$5.00 
. 



knowledge. Interestingness evaluation of rules is thus the key. 
Clearly, the discovered knowledge has to be understandable.  

As the data set is a typical classification data set, rules that 
characterize product problems are of the following form 

X → y, 

where X is a set of conditions and y is a class, e.g., for our above 
example y ∈ {failed-during-setup, dropped-while-in-progress, 
ended-successfully}. In this paper, we focus on helping the user 
identify interesting knowledge based on such rules. These rules 
basically give the conditional probabilities of Pr(y | X), which are 
exactly what a diagnostic data mining application is looking for. 
Moreover, such rules are easily understood.  

It is easy to see that such rules are classification rules, which can 
be produced by classification algorithms such as decision trees 
and rule induction, and class association rule mining. However, 
traditional classification techniques such as decision trees and rule 
induction are not suitable for the task due to three main reasons: 

1. A typical classification algorithm only finds a very small 
subset of the rules that exist in data [25]. Most of the rules are 
not discovered because their objective is to find only enough 
rules for classification. However, the subset of discovered 
rules may not be useful in the application. Those useful rules 
are left undiscovered. We call this the completeness problem. 

2.  Due to the completeness problem, the context information of 
rules are lost (see below), which makes rule analysis later very 
difficult as the user does not see the complete information.  

2. Since the rules are for classification purposes, they usually 
contain many conditions in order to achieve high accuracy. 
Long rules are, however, of limited use according to our 
experience because the engineers can hardly take any action 
based on them. Furthermore, the data coverage of long rules is 
often so small that it is not worth doing anything about them.  

Class association rule mining [17] is found to be more suitable as 
it generates all rules in data that satisfy the user specified 
minimum support and minimum confidence thresholds. Class 
association rules are a special type of association rules [1] with 
only a class on the right-hand-side of each rule.  

Using the Motorola application, we were able to put several 
interestingness techniques to the test. We found that most existing 
interestingness techniques are useful to some extent, but they are 
“good to have” techniques rather than essential techniques. Thus, 
they cannot form the core of a rule interestingness analysis system 
to help the user systematically identify interesting knowledge. To 
our great surprise, we also discovered that the current rule mining 
paradigm itself poses a major obstacle for this interestingness 
analysis task. Below we first summarize the main shortcomings of 
the current interestingness techniques:  

• Lack of contexts: Most existing methods treat rules 
individually. However, a key discovery from our interactions 
with domain experts is that a single rule is seldom interesting 
by itself no matter what its support and confidence values are. 
It is only interesting if it deviates significantly from its 
siblings. That is, a rule is only interesting in a meaningful 
context and in comparisons with others. The user wants to see 
both the rule and the context. 

• Do not find generalized knowledge from rules (meta-mining): 
Each individual rule may not be interesting by itself. A group 
of related rules together may represent an important piece of 
knowledge. For example, a set of rules from an attribute may 
show some interesting trend, i.e., as the values of the attribute 
go up, a call is more likely to fail. We call such knowledge 
general impressions. Our domain experts said that such 
knowledge is much more useful than individual rules because 
they may reveal some hidden underlying principles. 

• Lack of knowledge exploration tools: Due to the subjective 
nature of interesting knowledge, a systematic method is 
required for the user to explore the rule space in order to find 
useful knowledge. Our experiences show that the user-driving 
interactive discovery is the best approach. Although there are 
many existing techniques for visualizing rules, they mostly 
also treat and visualize rules individually, which we found in 
our applications, was not very effective.  

Context is the key to dealing with all the above problems. 
However, the existing rule mining paradigm eliminates a large 
amount of contextual information. Let us see why: 

• In the mining of class association rules, user-specified 
minimum support (minsup) and minimum confidence 
(minconf) values are used to ensure that the computation is 
feasible. Those rules that do not meet the minsup or minconf 
requirements are not generated. However, they can form 
important context information for other rules and generalized 
knowledge. Such contextual information is thus lost.    

For example, an attribute B has three possible values, a, b, d. Due 
to the minsup we only find the rule B = a → c, where c is a class. 
The other two possible rules, B = b → c and B = d → c, which 
form the context for B = a → c, are not found because they do not 
satisfy the minsup. We call them holes (or gaps) in the knowledge 
space. Then rule B = a → c does not have a context. We also 
cannot find any generalized knowledge about the attribute due to 
incomplete information or the holes. Hence, we say that the 
current mining paradigm fragments the knowledge space and 
creates discontinuity in the space, which make the understanding 
and exploration of knowledge by human users very difficult. 

In this paper, we propose a novel approach to deal with all these 
problems. We show that a major part of rule exploration can be 
casted as an OLAP problem (On-line Analytical Processing) [7] 
based on rule cubes whereby well established techniques in 
OLAP, e.g., slicing, dicing, drilling down and rolling up, can be 
used to explore rules to systemically discover useful knowledge. 
Methods are also proposed to help the user find general 
impressions, which are also critical as they are what the users are 
very interested in. To the best of our knowledge, this is the first 
time that OLAP operations have been used for rule interestingness 
analysis. The OLAP framework also provides a natural way for 
visualization with contexts. Together with the mining of general 
expressions, the proposed technique represents an effective and 
systematic approach. The mining support is provided by a class 
association rule miner. The full system, called Opportunity Map, 
based on this approach has been deployed and is in daily use in 
Motorola. Originally, the intended task was to identify causes of 
cellular phone call failures, but the system has been found to be 
generic and has been used to mine many other data sets for the 
diagnostic type of applications and for data understanding.  



2. RELATED WORK AND PROBLEMS 
This work is related to three areas of research, rule mining, rule 
interestingness analysis and rule visualization. As we have 
discussed the shortcomings of the current rule mining paradigm in 
the introduction, we will not repeat it here. Below we only focus 
on rule interestingness analysis and visualization.  

There are several existing interestingness methods that can help 
the user find interesting knowledge.  

Unexpectedness: In this method, the user is asked to give some 
existing knowledge and the system then finds the unexpected 
rules [11][19][23][26][33]. This did not work well because our 
users were not sure what to expect. They wanted the system to 
find interesting knowledge for them. [4] studies neighborhood 
unexpectedness of rules. The neighborhood of a rule, which is 
similar to the concept of context, is a set of syntactically similar 
rules, i.e., involving similar items. This is not applicable to us. We 
need a different definition and also different rule mining. The idea 
of general impressions is first proposed in [16]. However, they 
need to be given by the user for finding unexpected rules. In this 
work, we mine general impressions from discovered rules. 

Rule ranking: Ranking rules according to some interestingness 
measures [2][9][28]. Our experiences show that almost all top 
ranked rules represent some artifacts of the data rather than any 
useful patterns. Moreover, giving only individual rules without 
contexts to compare with is not appropriate as we discussed 
earlier. This method does not find generalized knowledge.  

Querying and filtering: In [6][21], some data mining query 
languages are proposed to select the right data to mine different 
types of rules. [14][30][31] also report several rule query 
languages to enable the user to specify what rules that he/she 
needs and the system then retrieves the relevant rules. We tried 
this approach, but our users did not know what to ask. In [29], a 
set of rule post-processing operators is defined to allow the user to 
filter unwanted rules, select rules of interest, group rules, etc. This 
is a good approach. However, it stops short of providing contexts 
to rules and mining generalized knowledge.  

We also considered several other methods [8][24][27]. All of 
these and above methods had some use but were not sufficient. 
The first version of our system [35] was based on class 
association rules, rule ranking and grouping, and sophisticated 
visualization. However, the techniques were not effective enough 
because they did not provide a systematic approach to enable the 
user to explore the knowledge space, and could not produce the 
kind of knowledge that the user needed. Thus, it was not a final 
product that could be deployed. The approach still requires 
extensive human effort to interpret the results, so was not 
considered satisfactory.  

Regarding data mining results visualization, our work is related to 
rule visualization [13]. [10] proposes interactive mosaic plots to 
visualize the contingency tables of association rules. In [5], 
classification rules are visualized using rule polygons. [34] 
visualizes the temporal behavior of rules. In [12], a post-
processing environment is proposed to browse and visualize 
association rules so that the user can divide a large rule set into 
smaller ones. In [22], important rules in terms of support and 
confidence values are highlighted with a grid view. In [20], 
ordering of categorical data is studied to improve visualization.  

The above approaches mainly help to visualize individual rules. 
They do not actively help the user find useful knowledge. They 
visualize rules without sufficient contextual information. Thus, 
they differ from our approach in terms of both the goal and the 
visualization. Our visualization is based on rule cubes and OLAP 
with a set of well established and systematic operations.  

3. THE CONCEPTUAL FRAMEWORK 
Before building the current system we spent more than a year 
building the first system [35]. As discussed in the related work, it 
was not deployable although the system was useful to some 
extent. After several demonstrations, it became clear to us that a 
new approach was needed as our domain experts were not willing 
to use it. However, our extensive interactions with the domain 
experts during the process were very valuable. We found that  

1. Presenting rules individually and ranking them is not very 
useful. The highly ranked rules are mostly artifacts of the data 
rather than useful patterns. Rules need to be visualized within 
some meaningful contexts so that related rules can be 
compared. It is through the comparison that the user will 
discover useful knowledge. The keyword is “comparison”. 
Without a meaningful comparison, nothing is interesting.   

2. Users are interested in generalized knowledge because that is 
how they usually describe knowledge. For example, in our 
meetings with domain experts, they often said such things as 
"when the values of attribute Ai increase, the call is more 
likely to fail", and “attribute Ai is an important attribute". We 
call such knowledge general impressions because they are 
summaries of many underlying rules and are also imprecise. 
General impressions need to be mined from rules.  

3. Users are mostly interested in short rules, seldom more than 
two conditions because they said that it was impractical for 
them to do laboratory tests to meet the conditions of long 
rules. Furthermore, rules with many conditions often cover so 
few cases that it is not worthwhile doing anything about them.  

4. Users want to explore rules to discover knowledge based on 
their engineering background. They do not want the system to 
dictate what is interesting because the domain knowledge is so 
complex that there is little chance that an automatic system is 
able to decide interestingness. Thus, a simple and systematic 
exploration tool is needed to facilitate this process. 

OLAP based on rule cubes provides a generic and convenient 
environment for addressing all of these issues. By design, OLAP 
is an exploration tool. We will also see that interesting rules and 
their contexts can be visualized in the OLAP framework. General 
impressions can also be mined in the framework. Thus, interactive 
rule exploration and interesting knowledge finding are naturally 
integrated. This turned out to be a powerful approach, which is 
used in Opportunity Map. Class association rule mining provides 
the backbone mining support for the whole system.  

The conceptual framework of the proposed approach is shown in 
Fig. 1. The class association rule miner produces both rule cubes 
for OLAP and also long rules (rules with many conditions). We 
will discuss them shortly. GI miner mines general impressions 
(GI) from rules in rule cubes. The visualization and the user 
interaction are powered by the usual OLAP operations, which 
also show the GI mining results and long rules.  



 

4. RULE EXPLORATION AS OLAP 
OPERATIONS 

OLAP is a database technology. The idea is to organize the data 
using a multi-dimensional data cube. Each attribute and its values 
in the data represent a dimension. There is also a measurement 
attribute. Its values are the cell values in the cube. The well-
known example is the sales data across different regions in 
different time periods [7]. The measurement attribute is the sales 
volume of each region in a particular quarter. Each dimension 
may also have a concept hierarchy, which allows the user to see 
the sales volume at different levels of hierarchy. The main OLAP 
operations are roll-up, drill-down, slice, and dice. Below, we 
introduce these operations in the context of rules. We will see that 
these operations for data analysis are also very powerful for rule 
analysis. The OLAP framework thus presents a systematic 
methodology for the exploration of knowledge.  

4.1. From Rules to Rule Cubes 
Rules are not data. The problem is how to transform rules into 
cubes so that OLAP operations can be applied. We discuss it now.    

Let the set of attributes in the data D be A = {A1, A2, …, An}. Let 
the class attribute be C. Let the domain or the set of possible 
values of an attribute Ai be dom(Ai).  

We want to convert class association rules into cubes. Recall that 
class association rules (CAR) [17] are a special kind of 
association rules [1] with only a class on the right-hand-side of 
each rule. They are of the form:  X → y, where X is a set of 
conditions, and y ∈ dom(C) is a class. A condition is an attribute 
value pair of the form: Ai=aij (aij ∈ dom(Ai)). Every condition 
uses a distinctive attribute. CAR mining requires every attribute 
in the data to be discrete. This is not a problem as there are many 
existing discretization algorithms that can be used to discretize a 
continuous attribute into intervals.  

Given any set of attributes, {Ai1, …, Aip} ⊆ A, we use S to denote 
the set of all possible rules using the set of attributes: 

S = {(Ai1=v1, …, Aip=vp → C = ck) | v1∈ dom(Ai1), …,  
  vp∈ dom(Aip), ck∈ dom(C)} 

The supports and confidences of the rules are omitted here.  

It is easy to see that all the rules using the attributes can be 

represented as a cube with p+1 dimensions (1 being the class 
attribute). We call this a rule cube. The measurement attribute, 
which we do not have explicitly, is the support/frequency count of 
data records that satisfy each rule. Thus, each cell of the rule cube 
is represented with  

Ai1=v1, …, Aip=vp, C = ck 

Its cell value is the number of data points that contains (Ai1=v1, 
…, Aip=vp, C = ck), which is simply the support count of the rule:  

 Ai1=v1, …, Aip=vp → C = ck 

The confidence of the rule can be computed with  

,
),,...,sup(

),,...,sup(

),...,(

|)(|

1 11

11

11

∑ =
===

===
=

=→==

Cdom

j jpipi

kpipi

kpipi

cCvAvA

cCvAvA

cCvAvAconf
 (1) 

where the function sup gives the support count of a cube cell. Let 
us see an example. We have a data set with three attributes. One 
of them is the class attribute C, which has two values, yes and no. 
The other two attributes are A1 and A2. A1 has four possible values 
a, b, c, d, and A2 has three possible values e, f, g. Assume that the 
data set has 1158 data points. The rule cube is shown in Fig. 2, 
which represents 24 rules (3×4×2).  

 
Fig. 2: A rule cube example representing 24 rules.  

As an example, the rule, A1 = a, A2 = e → C = yes, has the support 
of 100/1158, and the confidence of 100/(100+50). The rule, A1 = 
a, A2 = f → C = yes, has the support of 0 and the confidence of 0. 
We see that the support and the confidence of each rule can be 
easily computed if we have the rule cube. In visualizing rules, we 
will have both values computed and visualized.  

4.2. OLAP Operations on Rule Cubes 
Let us now see how various OLAP operations are performed on 
the rule cube.  

Roll-up: The roll-up operation performs aggregation on the rule 
cube, either by claiming up a concept hierarchy for a dimension 
or by dimension reduction. In application, it is easy to build a 
concept hierarchy for an attribute based on the domain knowledge 
or requirement. For example, we may group the values a and b 
together and call it ab, and group c and d together and call it cd. 
Likewise, we can group ab and cd to create a concept abcd. This 
gives a 3-level hierarchy. In an actual application, suitable names 
can be given to the concepts. Here, we only use an example of 

C 

A1 

Fig. 1: The conceptual framework of Opportunity Map 

       No 
Yes 

a 

b 

c 

d 

          50       100         42 
 

 100   0      80 

  8 60        50 

 120  25    60 

 5 20       120 

   e           f            g 
 A2 

GI Miner OLAP 

Visual Interface 

Rule Cubes Long Rules 

Class Association Rule Miner 



dimension reduction to show the working of roll-up. For instance, 
if we remove attribute A1, we obtain the sub-cube in Fig. 3.  

 
Fig. 3: Roll-up: after removing the dimension A1 

This roll-up operation gives us 6 one-conditional rules:  

 A2 = e → C = yes  A2 = e → C = no 
 A2 = f → C = yes  A2 = f → C = no 
 A2 = g → C = yes  A2 = g → C = no 

Computing their supports and confidence is straightforward.   

Drill-down: Drill-down is the reverse of roll-up. It goes from less 
detailed data to more detailed data. Drill-down can be stepping 
down a concept hierarchy for a dimension or introducing 
additional dimensions. For example, if our current cube only has 
two dimensions, A2 and C, then adding the A1 dimension 
constitutes a drill-down operation, which give more detailed 
information. For example, we can drill down from Fig. 3 to Fig. 2.  

Slice: The slice operation performs a database selection on one 
dimension of the given cube, resulting in a sub-cube. For 
example, if we select using the criterion A1 = a, we obtain the 
sub-cube in Fig. 4. 

 
Fig. 4: A slice operation 

This operation gives us the following 2-conditional rules:  

 A1 = a, A2 = e → C = yes  A1 = a, A2 = e → C = no 
 A1 = a, A2 = f → C = yes  A1 = a, A2 = f → C = no 
 A1 = a, A2 = g → C = yes  A1 = a, A2 = g → C = no 

Dice: The dice operation defines a sub-cube by performing a 
selection on two or more dimensions. For example, if we do the 
selection, (A1 = a or A1 = b) and (A2 = e or A2 = f), we obtain the 
sub-cube in Fig. 5.  

 
Fig. 5. A dice operation 

This operation results in the following rules: 

 A1 = a, A2 = e → C = yes  A1 = a, A2 = e → C = no 
 A1 = a, A2 = f → C = yes  A1 = a, A2 = f → C = no 
 A1 = b, A2 = e → C = yes  A1 = b, A2 = e → C = no 
 A1 = b, A2 = f → C = yes  A1 = b, A2 = f → C = no 

There are other OLAP operations. However, the operations above 
have been shown sufficient for finding interesting knowledge.  

Our practical experience shows that OLAP operations are useful 
for interestingness analysis due to the following reasons:   

1. They allow the user to see rules in context because all relevant 
rules are contained in the same cube. Note that although in our 
examples above we did not include rules confidences, they 
can be easy added in visualization as we will see in Section 6.  

2. The cube representation of rules gives us a natural way to 
visualize rules. Our visualization system is based on matrices, 
which are sufficient for visualizing the complete information 
of two and three dimensional rule cubes.     

3. They allow general impressions about rules to be easily mined 
based on cubes and also displayed in the same visualization. 
We will discuss the details in the next section. 

4. The well defined operations of OLAP enable the user to 
systematically explore the knowledge space to find interesting 
knowledge, which is proven to be critical in our applications.  

The downside is that we cannot build a huge rule cube to cover all 
attributes in the data as the cube size grows exponentially with the 
number of attributes. Fortunately, we do not need such a huge rule 
cube in practice because our application experiences show that 
users are seldom interested in long rules. In this work, we only 
build all 3-dimensional rule cubes (the class attribute is a 
dimension in every rule cube). This can be done using a class 
association rule miner, which also generates longer rules at the 
same time. Cube generation and rule mining are thus integrated.  

4.3. Mining Class Association Rules 
To support the cube operations using a class association rule 
(CAR) miner, we need to find all possible rules. This means that 
we have to set both minsup and minconf to 0. However, this 
causes combinatorial explosion. We need a compromise.   

• We set minsup and minconf to 0 in mining rules with 1 and 2 
conditions so that we can generate all 3-dimensional rule 
cubes, which represent all possible 2-condition rules (the class 
attribute forms a dimension). This usually does not cause 
memory problem. For example, we are able to use our data set 
of over 200 attributes to generate rules to populate all 3-
dimensional rule cubes. In our application, 2-condition rules 
are usually sufficient as we stated earlier.  

• We set non-zero minsup and minconf for rules with more 
conditions. This prevents combinatorial explosion. Multiple 
minimum supports give additional flexibilities [18], which 
deal with skewed data and also enable the system not to 
generate unwanted rules [15]. These are useful in practice.   

All these can be done quite easily in a CAR miner such as CBA 
[17] by setting some parameters. We have re-implemented CBA 
to accommodate the required flexibility. For more details on class 
association rule mining, please refer to [17][15].  

50 100 42 

100 0 80 
C 

C 

A1 

 50  100 

100  0 

8  60 

105 310 95 

233 105 310 
C No 

Yes 

Slice for A1 = a: e  f  g 
 A2 

       No 
Yes 

   e           f           
 A2 

a 

b 

 e  f  g 
A2 

No 
Yes 



We also note that rule cubes do not need to be materialized. The 
tree structure (we use a hash tree) for generating and storing CAR 
rules can be used directly as virtual cubes by OLAP operations. 
Our current implementation takes this approach. However, it is 
possible to materialize the cubes and store them on disk if there is 
not enough main memory for generating long rules.  

5. MINING GENERAL IMPRESSIONS 
As we discussed in Section 4, domain experts usually look for 
general knowledge which is broadly applicable and exception 
rules in some contexts. As we mentioned earlier, they often say  

• "Attribute A is an important attribute": We call such attributes 
discriminative attributes.  

• "When the values of attribute Ai increase (or decrease), the 
phone call is more likely to fail": We call such a behavior of 
an attribute a trend. This kind of knowledge is only applicable 
to ordinal and numeric attributes.   

• “When the attribute Ai takes value aij, the phone call is more 
likely to fail” We call such rules context exceptions (or simply 
exceptions) as they are found in certain contexts. Clearly, this 
type of rules is particularly useful for categorical attributes.  

These pieces of knowledge are called general impressions (GI). 
The question is how to let a data mining system find such 
knowledge in the first place. This is the topic of this section.  

General impressions are mined from the following construct: 

X, Ai → C 

where X is a set of conditions, which can be empty (i.e., |X| ≥ 0), 
Ai is an attribute, and C is the class attribute. Each condition in X 
is an attribute value pair expressed as Ak = akj. We also call X a 
data constraint as it defines a subset of the data DDC ⊆ D that 
satisfies the constraint. Attribute Ai is called the active attribute as 
we will consider all its values. Let the set of attributes used in X 
be XA. We have |X| = |XA| (each attribute in X is distinct) and XA ∩ 
{Ai} = ∅. Thus, X, Ai → C represents a set of rules:  

{(X, Ai = aij → ck) | aij ∈ dom(Ai), ck ∈ dom(C)}. 
These rules can be easily obtained by an OLAP operation. In the 
examples in Section 4, if X = ∅, these rules can be obtained by a 
roll-up operation in Fig. 2. If X contains A1 = a, the rules can be 
obtained by a slice operation in Fig. 4.  

5.1. Rules in Contexts and Exceptions 
As we discussed above, a rule is only interesting in a meaningful 
context. The context of a rule is simply its sibling rules, which 
can be defined in various ways. Our applications show that the 
following definition is a very useful one.  

Definition (context of a rule): The context of the rule (X, Ai = aij 
→ ck) consists of the following rules, which cover all the values 
of the active attribute Ai:  

X, Ai = ai1 → ck, 
...,  
X, Ai = air → ck 

where {ai1, …, air} is the domain of Ai. These rules are also 
called sibling rules of one another. 

In this context, we can compare all rules and detect values of Ai 
that represent exceptions, i.e., highly correlated (positively or 
negatively) to the class ck. We compute exceptions based on 
confidences, but can be done in other ways.  

Definition (degree of exception in confidence): The degree of 
exception, denoted by DE(X, Ai=aij, ck), of the rule (X, Ai = aij 
→ ck) is measured by how the observed confidence is different 
from the expected confidence: 

),(),,(),,( kEkijiOkiji cXConfcaAXConfcaAXDE −===  

where ConfO(X, Ai=aij, ck) is the observed confidence of the 
rule, and ConfE(X, ck) is the class ck's prior probability in DDC.  

5.2. Discriminative Attributes  
We now compute the discriminative power of an attribute.  

Definition (discriminative power of an attribute): The 
discriminative power of attribute Ai given X is the ability of this 
attribute to distinguish data of all classes in DDC: 

∑ ∑
= =

=×=×=
m

k

r

j
kijikijici caAXDEcaAXsupwAXDP

k
1 1

),,(),,(),(  

where r is the number values of attribute Ai, m is the number of 
classes, sup(X, Ai = aij, ck) is the support count of the rule: X, Ai 
= aij → ck, and wck is a weight parameter reflecting the 
importance of class ck. This weight parameter is useful because 
it enables the user to focus on the class that he/she is interested 
in. We note that there are other ways to define discriminative 
power of an attribute, e.g., information gain [25].  

Ranking can be performed based on the results.  

5.3. Trend Behaviors 
Recall a trend represents a piece of knowledge that when the 
values of an attribute increase/decrease, a particular class is 
more/less likely to occur. The trend analysis is only applicable to 
continuous attributes and ordinal attributes.  

Definition (unit trend of Ai on class ck): A unit trend of attribute 
Ai with respect to class ck and fixed conditions X, denoted by 
UT(X, Ai=[aix, …, aiy], tl, ck), is a trend tl of the rule 
confidences of a set of consecutive values [aix, …, aiy] of 
attribute Ai with respect to class ck in DDC. tl (also called a trend 
type) is decided by a statistical test, and takes one of the types 
from the set {increasing-trend, decreasing-trend, stable-trend}. 
The value range from aix to aiy is such that any larger range will 
not have the trend tl. That is, the trend is maximal.  

For an attribute Ai and class ck, there can be multiple unit trends 
over the values of the attribute. For example, it can have an 
increasing trend from value1 to value5, and a decreasing trend 
from value6 to value10. An example trend is: 

In a particular salary range, as the salary of the borrower 
goes higher, a loan is more likely to be approved.  

Here, "loan approved" is the class ck that we are interested in. The 
attribute "salary" is the trend attribute Ai, which shows an 
increasing trend tl as its values go from small aix to large aiy. 

A unit trend is derived from a set of rules based on their 
confidences. For example, the above simple trend may be derived 
from the following rules:  



Rule 1: salary = 20K → loan_approved, Confidence: 20% 
Rule 2:  salary = 30K → loan_approved, Confidence: 35% 
Rule 3:  salary = 40K → loan_approved, Confidence: 40% 

By using the trend relationship, all the three rules (or even more) 
can be summarized into a single piece of knowledge. This unit 
trend has the value range from 20K to 40K. Our domain experts 
really like this notion because that is what they are interested in 
and is exactly the format that they are familiar with. 

The type of a trend is calculated using a statistical test called 
reverse arrangement test [3]. For example, to test whether it is an 
increasing trend, we first calculate how many times that a later 
value is strictly greater than an earlier value. Each time that 
happens, we call it a reversal. If there are a lot of reversals (more 
than are likely from pure chance with no trend), we have 
significant evidence of an increasing trend. If there are too few 
reversals we have significant evidence of decreasing trend. 
Formally, it works as follows: 

Given r ordered values as v1, v2,..., vr, for all the possible pairs, we 
count a reversal each time when i < j and vi < vj. We keep the 
total count as reversal count R. 

For r values, the maximum possible number of reversals is r(r-
1)/2. For random data, on average we would expect to have 
r(r-1)/4 reversals. 

With value r and R, we can lookup the statistic tables [3] to 
decide the count whether we can conclude a significant trend 
in the data. 

For each unit trend, we also compute two statistical properties. 

Support: It is the sum of the data points this trend covers (can be 
the raw count). It can also be expressed as a percentage of the 
total number of data points in DDC. 

Confidence: It is used to indicate how likely the trend is correct. 
A value of 1.0 indicates a perfect trend of that type without 
exception. Otherwise, it is calculated based on how many data 
values and their covered data points satisfy the trend behavior.  

SupportdataAbnormalConfidence /_1.0 −=  

where Abnormal_data is the data count which does not follow 
the trend.  

Definition (trend value of an attribute on class ck): The trend 
value of attribute Ai given X, denoted as TV(X, Ai, tl, ck), with 
respect to class ck for trend type tl in data DDC is defined by: 

∑
=

×=
k

j
UTUTkli jj

ConfidenceSupportctAXTV
1

),,,(  

where UTj is an unit trend of attribute Ai and there are k such 
unit trends.  

Finally, we can use the trend values (TV) to rank attributes 
according to different types of trends (increasing-trend, 
decreasing-trend or stable-trend). The user can see them in the 
visualization and determine which trends are interesting. We also 
note that there are other ways for computing the trend value of an 
attribute. The above method works quite well for our applications.  

6. SYSTEM AND EVALUATION 
We first give a brief description of our system. The main focus is 
on the visualization sub-system. We then discuss the evaluation.  

6.1. Opportunity Map 
The Opportunity Map system consists of five main components: a 
discretizer, a CAR rule generator, a GI miner, and a visualizer. 
Given a data set, continuous attributes are first discretized using 
the discretizer (a manual discretization option is also available). 
The discretized data is fed into the CAR rule generator. The 
resulting rules form 3-dimentional virtual rule cubes. The user 
uses the visualizer to explore the rule space based on OLAP 
operations. GI miner is called when requested based on the sub-
cube shown on screen. Below, we give more details on rule cube 
visualization.  

Due to the use of rule cubes and OLAP operations, the 
visualization is simple. In our system, every visualization screen 
is a 2-dimensional matrix. Each grid in the matrix visualization 
visualizes one or more cells in the rule cube. 

1. For a 2-dimensional cube, each grid represents a cube cell. 
Inside the grid, a rule is visualized using a bar. The height of 
the bar represents the confidence of the rule, with the support 
count written beside it. 

2. For a 3-dimensional cube, each grid represents the cube cells 
in the third dimension. Thus, it contains multiple rules, with 
each rule visualized as a bar. 

Note that rules with more than two conditions are not visualized 
in our current system as they are seldom used in our applications 
(our engineers said that it is very hard to do anything about long 
rules). However, if the user wants to see longer rules related to a 
cube cell, the relevant rules will be listed in a separate window. 

6.2. Evaluation and a Case Study 
Since the proposed system helps the user find subjectively 
interesting/useful knowledge, it is difficult to have an objective 
measure of its effectiveness. As an evidence of its effectiveness, 
our system has been deployed and is in regular use in Motorola. 
The original intended application was to find causes of cellular 
phone call failures from the call log data. Due to its success, the 
system has been used to analyze more than 11 large data sets for 
entirely different applications by Motorola engineers. Many 
pieces of actionable knowledge have also been put to practice use. 

Here, we give a case study using the call log data to show how the 
user interacts with the system to find useful knowledge. The goal 
is to discover possible causes of call failures. This is a large and 
high dimensional data set. It has seventy six million data records, 
and about 600 attributes. Sampling was used to reduce the data 
size. After some initial analysis by domain experts, the number of 
attributes was reduced. This version of the data contains 211 
attributes, in which one attribute is the class attribute with three 
values. The majority class covers a very large proportion of the 
data. Due to confidentiality, we could not disclose the exact 
percentage. All the attribute names and values are also replaced 
by generic names and values.  

The visualization uses a matrix layout, and has two main modes, 
overall visualization mode, and detailed visualization mode. In 
the overall visualization mode (Fig. 6), the X axis is associated 
with all attributes in the data. The Y axis is associated with all the 
classes. For each attribute (a column), each grid shows all one 
conditional rules of the corresponding class value. Each rule is 
visualized as a thumbnail bar. The height of the bar is the rule 
confidence value. Thus, this screen simply shows all the 2-



dimensional rule cubes. Each rule cube is formed by the class 
attribute and one other attribute. Each column shows one cube. 

The system supports automatic scaling among classes to address 
the class imbalance issue. Scaling increases relative proportions. 
In Fig. 6, it has already been applied. Otherwise, we will not see 
anything for the minority classes (the first two classes on the Y 
axis), which are the classes that our users are interested in.  

Blue color is used by default. Some attributes may have so many 
possible values (e.g., Att002, Att003, etc.) that the grid size may 
be inadequate to draw them all. Light blue is used to indicate this. 
To see all values, the user can either increase the grid size, or use 
a detailed visualization (see below). Various support counts and 
proportions are written on the screen or in the Information Panel 
on the right when the user moves the mouse over the screen. 

This overall visualization mode is able to summarize and show a 
number of important properties of the data immediately: 

1. The data distribution of each attribute is illustrated by the 
distribution bars at the top of each column above the X axis. 
For the class attribute, they are on the left of the Y axis. 

2. One-conditional class association rules are visualized for all 
attributes. Each rule is represented as a small bar in the 
visualization, with its context information: rules of all other 
values of the attribute (X direction in each grid) and all other 
classes (Y direction across rows) are visualized side by side.  

3. Trends are detectable from the shape in each grid. Strong unit 
trends are indicated using color arrows: red for decreasing, 
green for increasing and gray for stable trends. 

After seeing the overall visualization, the user may be interested 
in trends and want to see which attributes are strongly correlated 
with the classes. For example, if he is interested in seeing 
increasing trends with respect to the first class (first row, class 
Value4733), using a sorting command from the menu, he gets the 
visualization in Fig. 7. Attributes are sorted so that those with 
strongest increasing trends on class Value4733 appear first on the 

X axis. With this screen, the user can easily confirm his previous 
knowledge, or find new knowledge. For example, it clearly shows 
that as the values of attribute Att951 increase from small to large, 
the chance of occurrence of failure class Value4733 increases. 
This may be a vital piece of knowledge that could be used in 
product design. Visualization of sorted trend attributes for other 
trend types and classes is viewable using similar commands. 

Another sorting shows the discriminative attributes (Fig. 8). Note 
that the pink color is used to indicate that the scaling produced 
some very small values that can hardly be seen on screen (for that 
grid). The top ranked attributes all have strong discriminating 
powers on the classes. For example, the values of the first 
attribute (Att021) clearly discriminate data into different classes. 
Attribute Att020 also has strong discriminating power except for 
the middle 4 values. Our users confirmed that this kind of 
knowledge is very useful. Also crucial is the fact that the user can 
view all the details side-by-side. This provides context for visual 
comparison and discovery, which is vital in practice. 

Visualizing all the 2-dimensional rule cubes in the overall 
visualization is very useful to get the users started and to pick the 
right attributes for further study using the detailed visualization. 

A detailed visualization shows either a larger version of a 2-
dimensional rule cube (Fig. 9), or a 3-dimensional rule cube (Fig. 
10). The X axis shows the values of a given attribute. The Y axis 
shows another attribute (usually the class attribute).  

1. Fig. 9 shows a detailed visualization of one attribute (Att001, 
on the X axis) with all classes (the Y axis). This is simply a 2-
dimensional rule cube. This visualization reveals the 
following detailed pieces of knowledge: The exact trends of 
this attribute with respect to all classes (if the attribute is 
ordinal). It also shows the exact counts and percentages which 
are not shown in the overall visualization. 

2. Exceptions of this attribute. The dotted dark blue horizontal 
lines show the expected confidences for the classes (scaling is 
applied). Those bars that deviate from their expected 

 

Fig. 6. Initial visualization showing general knowledge: all 2-dimensional rule cubes. 



confidences represent important exceptions. Values (on the X 
axis) can be sorted according to their degrees of exception.  

For each piece of knowledge discovered here, the user is able to 
see all the related classes (in the vertical direction) and all the 
related values (in the horizontal direction) from the visualization. 
They act as the context. Now, suppose the user is interested in 
seeing what will happen if another condition is added. This is an 
OLAP slice operation. It is visualized by adding a data constraint 
to the visualization so that the subset of data can be visualized and 
studied. Fig. 10 shows the result of using attribute "Att012 = 
Value0497" as the data constraint (Value0497 is a phone model). 
Thus, all the information shown in this visualization has 2 
attributes involved (plus the class attribute), i.e., two conditional 
rules. For example, the rule in the grid of row 2 and column 2 is: 

Att012=Value0497, Att001=Value0232 → Att210=Value4734, 1.39% 

Comparing with Fig. 9, we can see that the slice operation affects 
the last column greatly. It changed the class Value4734 from 
below expected confidence in Fig. 9 to far above expected 
confidence in Fig. 10.  

Visualizing 3-dimensional rule cubes (or sub-cubes) using 
detailed visualization can be employed for comparative study, as 
shown in Fig. 11. It "stacks" two or more detailed visualizations 
by drawing the bars for each corresponding grid side by side into 
one grid, creating a clear contrast view in each grid. Since the Y 
axis is the class attribute and the data constraints represent two 
different phones, this visualization shows that the second phone 
(Value0498) has a lower failure rate than the first one, by having 
consistently tall bars in the row of Value4735 (the class for 
"success calls"). Other rows and bars show how the products 
perform on different values of Att012 as well as the comparisons 
between them. This visualization is produced by a slice operation. 
Due to space limitation, we are unable to show many other types 
of analysis that can be performed on the system.   

In summary, the overall visualization provides a summary of all 
the 2-dimensional rule cubes. Various sorting of attributes give 
the user different general impressions. This allows the user to pin 
down interesting attributes easily. Detailed visualizations provide 
further information and enables detailed analysis. What is crucial 
is that all pieces of information and rules are shown in context 

 

Fig. 10. Detailed visualization of one 3-
dimensional data cube (a slice) Fig. 8. Discriminate attributes sorted 

Fig. 9. Detailed visualization of one 2-
dimensional rule cube  

Fig. 7. Trend attributes sorted for class Value4733 



within their corresponding rule cubes or slices, which enables the 
user to quickly detect interesting knowledge. Our users confirm 
that the system to allow them to easily analyze their data. 

7. CONCLUSIONS  
This paper proposed a novel approach to rule analysis to help 
users find useful knowledge. The approach has four key ideas. 
The first idea is that the traditional mining paradigm hinders rule 
analysis. The second idea is that rules need to be analyzed in 
context. The third idea is that rule analysis can be performed 
using OLAP operations. The fourth idea is the mining of general 
impressions. Rule cubes and OLAP provide a general framework 
for exploration of rules in context to enable the user find useful 
knowledge. A data mining system, called Opportunity Map, based 
on the ideas and class association rules have been built. The 
system has been deployed and is in daily use in Motorola.  

REFERENCES 
[1] Agrawal, R. and Srikant, R. “Fast algorithms for mining 

association rules.” VLDB-94, 1994. 
[2] Bayardo, R. and Agrawal, R. “Mining the most interesting 

rules.” KDD-99, 1999.  
[3] Bendat J., Persol A. Random data: analysis and measurement 

procedures. Wiley-Inter science. 2005.  
[4] Dong G., Li J. Interestingness of discovered association rules 

in terms of neighborhood-based unexpectedness. PAKDD-98.  
[5] Han J, Cercone N. "RuleViz: A model for visualizing 

knowledge discovery process". KDD-00, 2000.  
[6] Han J., Fu, Y., Wang W., Koperski, K. and Zaiane, O. 

“DMQL: a data mining query language for relational 
databases.” SIGMOD Workshop on DMKD, 1996. 

[7] Han, J and Kamber, M. Data mining: concepts and 
techniques. Morgan Kaufmann, 2001.  

[8] Hussain, F, Liu, H, Suzuki, E., Lu, H. Exception rule mining 
with a relative interestingness measure. PAKDD-00, 2000. 

[9] Hilderman, R., Hamilton, H. “Evaluation of interestingness 
measures for ranking discovered knowledge.” PAKDD-2001. 

[10] Hofmann H, Siebes A., Wilhelm, A. "Visualizing association 

rules with interactive mosaic plots". KDD-00.  
[11] Jaroszewicz, S., and Simovici, D. “Interestingness of 

frequent itemsets using bayesian networks as background 
knowledge.” KDD-04, 2004.  

[12] Jorge A., Pocas J., Azevedo P. "Post-processing environment 
for browsing large sets of association rules". PKDD-02 
VDM Workshop, 2002. 

[13] Keim D. "Information visualization and visual data mining". 
IEEE Trans. Vis. Comput. Graph, 2002. 

[14] Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H., 
and Verkamo, A.I. “Finding interesting rules from large sets 
of discovered association rules.” CIKM-1994, 1994. 

[15] Liu, B. Web Data Mining: exploring hyperlinks, contents, 
and usage data. A forthcoming book. 2006/2007 

[16] Liu B., Hsu W. and Chen S., “Using general impressions to 
analyze discovered classification rules.” KDD-97, 1997. 

[17] Liu B., Hsu W., and Ma Y. “Integrating classification and 
association rule mining.” KDD-98, 1998.  

[18] Liu B., Hsu W., Ma Y. “Mining association rules with 
multiple minimum supports.” KDD-99, 1999. 

[19] Liu, B., Hsu, W., Mun, L., & Lee, H. “Finding interesting 
patterns using user expectations.” IEEE TKDE, 11(6), 1999. 

[20] Ma S., Hellerstein J. "Ordering categorical data to improve 
visualization. " INFOVIS-99, 1999.  

[21] Meo, R. Psaila, G., and Ceri, S. “A new SQL-like operator 
for mining association rules.” VLDB-96, 1996.  

[22] Ong K-H, Ong K-L, Ng W-K, Lim E-P. "CrystalClear: 
active visualization of association rules". ICDM-02 
Workshop on Active Mining (AM-02), 2002. 

[23] Padmanabhan, B. and Tuzhilin, “A. knowledge refinement 
based on the discovery of unexpected patterns in data 
mining.” Decision Support Systems, 33(3), July 2002.  

[24] Piatesky-Shapiro, G., and Matheus, C. “The interestingness 
of deviations.” KDD-94, 1994. 

[25] Quinlan J.R. C4.5: Programs for Machine Learning. 1993. 
[26] Silberschatz, A, Tuzhilin, A. What makes patterns interesting 

in knowledge discovery systems. IEEE TKDE 8(6), 1996.  
[27] Suzuki, E. “Autonomous discovery of reliable exception 

rules.” KDD-97, 1997. 
[28] Tan, P-N. & Kumar, V. “Interestingness measures for 

association patterns: a perspective.” KDD-2000 Workshop 
on Post-processing in ML and DM, 2000. 

[29] Tuzhilin, A. and Adomavicius, G. “Handling very large 
numbers of association rules in the analysis of microarray 
data.” KDD-02, 2002. 

[30] Tuzhilin, A., and Liu, B. “Querying multiple sets of 
discovered rules. KDD-02, 2002. 

[31] Virmani A., Imielinski, T. “M-SQL: A query language for 
database mining.” Journal of DMKD, 1999. 

[32] Vapnik, V. The nature of statistical learning theory. 1995. 
[33] Wang K., Jiang Y., Lakshmanan L. V.S. “Mining 

unexpected rules by pushing user dynamics.” KDD-03, 2003. 
[34] Zhao K. Liu, B., Tirpak, T. and Schaller, A. "V-Miner: using 

enhanced parallel coordinates to mine product design and 
test data". KDD-02, 2004.  

[35] Zhao K., Liu B., Tirpak T. and Xiao W. “A visual data 
mining framework for convenient identification of useful 
knowledge.” ICDM-05. 2005.  

 

Fig. 11. Detailed visualization of one 3-dimensional rule 
cube for comparative study 


