

A Refinement Approach to Handling Model Misfit
in Text Categorization

Haoran Wu, Tong Heng Phang, Bing Liu*, Xiaoli Li
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

{wuhaoran, phangth, liub, lixl}@comp.nus.edu.sg

ABSTRACT
Text categorization or classification is the automated assigning of
text documents to pre-defined classes based on their contents.
This problem has been studied in information retrieval, machine
learning and data mining. So far, many effective techniques have
been proposed. However, most techniques are based on some
underlying models and/or assumptions. When the data fits the
model well, the classification accuracy will be high. However,
when the data does not fit the model well, the classification
accuracy can be very low. In this paper, we propose a refinement
approach to dealing with this problem of model misfit. We show
that we do not need to change the classification technique itself
(or its underlying model) to make it more flexible. Instead, we
propose to use successive refinements of classification on the
training data to correct the model misfit. We apply the proposed
technique to improve the classification performance of two simple
and efficient text classifiers, the Rocchio classifier and the naïve
Bayesian classifier. These techniques are suitable for very large
text collections because they allow the data to reside on disk and
need only one scan of the data to build a text classifier. Extensive
experiments on two benchmark document corpora show that the
proposed technique is able to improve text categorization
accuracy of the two techniques dramatically. In particular, our
refined model is able to improve the naïve Bayesian or Rocchio
classifier’s prediction performance by 45% on average.

Keywords
Text categorization, naïve Bayesian classifier, Rocchio algorithm

1. INTRODUCTION
With the ever-increasing volume of text data from various online
sources, it is an important task to categorize or classify these text
documents into manageable and easy to understand categories.
Text categorization or classification aims to automatically assign
categories or classes to unseen text documents. The task is
commonly described as follows: Given a set of labeled training

documents of n classes, the system uses this training set to build a
classifier, which is then employed to classify new documents into
the n classes. The problem has been studied extensively in
information retrieval, machine learning and natural language
processing. Past research has produced many text classification
techniques, e.g., the naïve Bayesian classifier [27, 29], the
Rocchio algorithm [19], and support vector machines [18]. These
existing techniques have been used to automatically catalog news
articles [26], classify Web pages [8] and learn the reading
interests of users [24]. An automatic text classifier can save
considerable time and human effort, particularly when aiding
human indexers who have already produced a large database of
categorized document collection.

However, most classification techniques are based on some
underlying models and/or assumptions. When the data fits the
model well, the classification accuracy can be very high.
However, when the underlying model does not fit the data well,
the performance of the resulting classifiers can be quite poor. For
instance, the naïve Bayesian classifier assumes that text
documents are generated from a mixture model and there is a one-
to-one correspondence between the mixture components and the
classes. However, this assumption can be seriously violated in
many real world applications, e.g., the prevention of junk mails,
where junk mails generally contain multiple sub-topics such as
adult content and various unrelated business letters. Thus the one-
to-one correspondence assumption does not hold. In such cases,
the naïve Bayesian classifier suffers, which is the problem of
model misfit. On the other hand, we may explain that the model
misfit is due to feature-space heterogeneity. Feature-space
heterogeneity [2] occurs when the best features to base the
classification on are different in different regions of the feature
space. Since most widely used classification techniques, such as
the naïve Bayesian algorithm, rely on measures computed over
features of the entire training data to build classifiers, their
performances are inevitably affected by an averaging effect over
the entire training space. The resulting classifiers are likely to be
sub-optimal due to the complex nature of the training data.

Serious model misfit often leads to poor classification
performance. For unstable classifiers such as decision trees and
neural networks, boosting algorithms [12, 31, 35] can be used to
enhance the basic weak learners. However, it is generally believed
that boosting is not so effective on stable classifiers such as linear
classifiers (e.g., the Rocchio algorithm). The naïve Bayesian
classifier is also relatively stable with respect to small changes in
training data [37]. Other techniques such as meta-learning can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007…$5.00. * Bing Liu is now with Department of Computer Science, University of

Illinois at Chicago, liub@cs.uic.edu.

used to complement and improve individual classifiers by
combining multiple classification techniques with relatively
complicated mechanisms [5, 6, 23].

In this paper, we present a novel and yet simple method to deal
with the problem of model misfit. In the proposed technique, we
make use of training errors to successively refine the classification
model on the training data. In learning, model misfit generally
leads to high training error of classifiers such as the naïve
Bayesian and the Rocchio algorithms. Based on the prediction
errors on the training data, we retrain a sub-classifier using the
training examples of each predicted class with the same learning
method. In this way, we force the classifiers to learn from refined
regions in the training data, making the model stronger and fit the
training data better.

Our technique is very flexible, which only needs one classification
method and there is no change to the method in any way. The
original classification model is improved by successively splitting
the training data and re-learning sub-models. Moreover, when
applying our technique to enhance the probabilistic classifiers
such as the naïve Bayesian classifier and linear classifiers such as
Rocchio, overfitting is generally not a problem. When the training
data is basically consistent with the test data, as the training
classification model becomes better, the corresponding
classification performance on test instances also improves.

We apply the proposed technique to improve the classification
performance of two simple and efficient text classifiers, the
Rocchio classifier and the naïve Bayesian classifier. Extensive
experiments on two benchmark document corpora show that the
proposed technique is able to improve text categorization
accuracy of the two techniques dramatically. These techniques are
suitable for very large text collections because they allow the data
to reside on disk and need only one scan of the data to build a
classifier. The resulting classifiers of our technique are very
efficient, much faster than many state-of-the-art approaches, e.g.,
SVM and Adaboost, while also gaining in prediction performance.
Our results show that the refined naïve Bayesian classifier
outperforms the proven superior classifier SVM [41], which has
very high memory requirements and needs the data in memory.
Furthermore, SVM converges slowly for large data sets [30].

The rest of this paper is organized as follows. Section 2 discusses
related work and Section 3 reviews some existing text
categorization techniques related to this work. Section 4 describes
the proposed technique in detail. We present the experimental
results in Section 5, which is followed by some concluding
remarks in the last section.

2. RELATED WORK
Improving prediction accuracy of text classifiers has been an
important issue. Many studies have been conducted in this area.
One of the popular frameworks is meta-learning or classifier
committees [6, 11, 14, 16, 22, 23, 25, 42], which is an integration
of multiple learning models to achieve higher accuracy. This is
because a combination of different learning approaches can
represent an integration of different learning biases that could
complement each other on their inefficient characteristics.

One pioneer work on applying meta-learning to data mining is
done by Littlestone & Warmuth [28]. They proposed several
weighted majority algorithms for combining different classifiers.
Chan and Stolfo [5, 6] adapted their methods to learn the weights

using a validation set. They presented techniques that learn an
arbiter to arbitrate among predictions generated by different
classifiers, and a combiner to merge the predictions of several
classifiers. Similar work in this direction also includes the stacked
generation [36, 39], and combining multiple rule sets using
Bayesian utility theory [1].

Our technique is different from the meta-learning approach. We
simply refine a classifier using the training data. Unlike meta-
learning, no voting is involved in our process. We do not require
multiple classification techniques.

Another popular framework is adaptive resampling [3, 17, 31],
which adaptively selects instances from a labelled training set to
improve classification accuracy. The selection process biases in
favour of misclassified data. In particular, the boosting algorithm
[12, 32, 33, 34, 35] adaptively resamples or reweights data biasing
towards the misclassified examples in the training set and then
combine the predictions of a set of classifiers. During the course
of its execution, it assigns different importance weights to
different training tuples. A weak learning algorithm takes these
weights into consideration, and as the algorithm progresses,
training documents that are hard to be classified correctly get
incrementally higher weights while documents that are easy to
classify get lower weights. This, in effect, forces the weak
learning algorithm to concentrate on documents that have been
misclassified most often previously.

Freund and Schapire’s Adaptive Boosting (AdaBoost) algorithm
[34, 35] has been reported to be a superior voting method. Several
studies have been made on implementing AdaBoost with various
classifiers. Elkan [10] provided a framework to apply boosting to
the naïve Bayesian classifier. Recently, Kim [20] presented
BayesBoost, which uses the naïve Bayes classifier as the weak
learner for boosting by allowing the boosting algorithm to utilize
term frequency information while maintaining probabilistic
accurate confidence ratio. However, there is no clear evidence in
how much BayesBoost can improve the naïve Bayes classifier. On
the other hand, Ting [37] reported that boosting does not work
well for the naïve Bayesian classifier. However, we will show that
our proposed technique can remarkably improve the performance
of the naïve Bayesian classifier. The refined NB classifier is much
superior to AdaBoost (with decision stumps) [35].

In terms of using tree strategy to handle the data heterogeneity
problem, Apte et. al. [2] introduced the Importance Profile Angle
(IPA) to split the feature space. They compute the IPA value for
each feature. If the value exceeds a suitable threshold, it is an
indication of heterogeneity. Hence, training data are recursively
split according to the feature that gives the largest IPA value.

Friedman [13] introduced a hybrid approach to classification by
combining aspects of both the K-nearest-neighbor and tree-
structured recursive partitioning techniques. It consists of two
strategies, machete and scythe. The machete is a successive
splitting procedure. It begins with the entire input measurement
space and divides it into two regions based on one of the input
variables (attributes). The splitting criterion is one that maximizes
the estimated relevance. The scythe employs an alternative
splitting strategy in which the respective variables influence each
split in proportion to their estimated relevance, rather than the
winner-takes-all approach of the machete. Our method is different,
as we do not need sophisticated extra mechanisms to select
variables to split the data.

Kohavi [21] reported a hybrid system of naïve Bayesian (NB) and
decision tree. The algorithm is similar to the decision tree-
building algorithm, except that the leaf nodes created are NB
classifiers instead of nodes predicting a single class. It uses a
validation set to determine when NB will form a leaf. Our
approach differs in the aspect that we do not require a complex
combination mechanism and integration of different classification
techniques at the algorithm level. We only use the classification
results to partition the training data, and apply only a single
classification technique. We also do not need a validation set.

3. TEXT CATEGORIZATION
TECHNIQUES

We review four commonly used text classification methods. We
will apply our technique on them or use them as baseline
algorithms for comparison in our experiments later.

3.1 Rocchio Algorithm
An early text classification technique from information retrieval is
the Rocchio algorithm, which was originally designed for
relevance feedback. It has also been widely used for document
classification [19].

In this algorithm, documents are represented with the popular
vector space representation. Building a classification is achieved
by constructing document vectors into a prototype vector jcρ for

each class cj. Both the normalized document vectors of the
relevant examples for a class as well as those of the irrelevant
examples for a class are first summed up. Next, the prototype
vector is computed as a weighted difference of each summation.

λ and µ are parameters that adjust the relative impact of relevant
and irrelevant training examples. Buckley et al [4] recommended
λ = 16 and µ = 4. In classification, for each test document 'd

ρ
, we

simply use the cosine measure to compute the similarity of 'd
ρ

with each prototype class vector jcρ . A particular class is assigned

to 'd
ρ

 when its class vector is the most similar to 'd
ρ

.

3.2 Naive Bayesian Classifier
The naive Bayesian (NB) method is another effective technique
for text classification. It has been shown to perform extremely
well in practice by many researchers [9, 15, 27, 29].

Given a set of training documents D, each document is considered
an ordered list of words. We use wdi,k to denote the word in
position k of document di, where each word is from the
vocabulary V = < w1, w2, … , w|v| >. The vocabulary is the set of
all words we consider for classification. We also have a set of pre-
defined classes, C = {c1, c2, … , c|C|} (in this paper we only
consider two class classification, so, C = {c1, c2}). In order to
perform classification, we need to compute the posterior
probability P(cj|di), where cj is a class and di is a document. Based
on the Bayesian probability and the multinomial model, we have

and with Laplacian smoothing,

where N(wt,di) is the count of the number of times the word wt
occurs in document di and P(cj|di) ∈{0,1} depending on the class
label of the document.

Finally, assuming that the probabilities of words are independent
given the class, we obtain the naïve Bayesian classifier:

In the naive Bayesian classifier, the class with the highest P(cj|di)
is assigned as the class of the document.

3.3 Support Vector Machine
Over the recent years, Support Vector Machine (SVM) has been
shown to be an accurate classification method for text documents.
SVM is a relatively new approach introduced by Vapnik [7, 38] to
solving two-class pattern recognition problems. It is based on the
Structural Risk Minimization principle for which error-bound
analysis has been theoretically motivated. This method is defined
over a vector space in which the problem is to find a decision
surface that “best” separates the data vectors into two classes.
Joachims [18] provides both theoretical and empirical evidences
that SVM is very suitable for text categorization. He compared
SVM with other classification methods and showed that SVM
outperformed all the other methods tested in his experiments.

3.4 AdaBoost
AdaBoost, proposed by Schapire [34, 35], is a learning algorithm
that generates multiple classifiers and uses them to build an
ultimate classifier. It is well suited to the text categorization
problem. Given an instance x and a set of classifiers (θt(x)) built
with a weak learner, AdaBoost produces the final classifier F(x)
through combining the hypotheses of the weak classifiers:

∑
=

=
T

i
tt xxF

1

)()(θα

where T is the number of iterations and αt is the weight for
hypothesis θt(x), which can be calculated by using the equation of
the original AdaBoost.

Schapire and Singer [35] introduced the BoosTexter system for
text classification, which employs AdaBoost on a one-level
decision tree (decision stumps) as the weak learner and reported
excellent results.

4. PROPOSED TECHNIQUE
In this section, we first describe the framework of our proposed
technique, we then analyse how our approach can solve the model
misfit problem when using the naïve Bayesian classifier and the
Rocchio classifier.

4.1 Algorithm
In this work, we consider binary text classification that assigns

∑∑
−∈∈

−
−=

jj CDdjCdj
j d

d
CDd

d
C

c
ρρ

ρ
ρ

ρ
ρ

ρ

||||
1

||||
1 µλ

∑ ∏
∏

= =

=

ΡΡ

ΡΡ
=Ρ ||

1

||

1 ,

||

1 ,

)|()(

)|()(
)|(C

r

d

k rkdr

d

k jkdj
ij i

i

i

i

cwc

cwc
dc

∑ ∑ Ρ+
∑ Ρ+

=Ρ
= =

=
||
1

||
1

||
1

)|(),(||
)|(),(1

)|(V
s

D
i ijis

D
i ijit

jt dcdwNV
dcdwN

cw

||
)|(

)(
||
1

D
dc

c
D
i ij

j
∑ Ρ

=Ρ =

each document dj either to the positive class C+ or to its
complement negative class C-. Theoretically, binary text
classification is more general than the multi-class one and a multi-
class classification problem can be transformed into a set of
independent binary ones.

For a text classification task, given a set D of pre-labelled training
examples, we choose a classification technique Cl (e.g., the naïve
Bayesian classifier) as the base classifier of the proposed
technique. We begin with the entire training set D, learning an
initial classifier Cl0 from D, and then classify D into positive and
negative classes respectively. We thus split D into two subsets, DP
and DN, consisting of the predicted positive documents and
negative documents respectively. The resulting predicted
examples generally contain errors, e.g., the predicted positive
class is made up of true positive and false positive documents. We
can then learn a sub-classifier ClP from DP based on the training
examples in the predicted positive class. The sub-classifier ClP
could be a refiner of the original classifier Cl0. To combine ClP
with Cl0, we apply ClP as the classifier for the predicted positive
documents produced by Cl0. We denote their combined classifier
as Cl0+P. The contribution of ClP can be evaluated by comparing
the classification performances of Cl0 and Cl0+P on the training
data. If Cl0+P outperforms Cl0, we keep the sub-classifier ClP as
the refiner of the original classifier Cl0; otherwise, we discard ClP.
A similar refining process is also done on the predicted negative
documents produced by Cl0 and thus can output another refined
classifier ClN. We can recursively carry out the above learning
process to build a refinement tree, which is illustrated by Figure 1.

Figure 1: A tree structure of the proposed framework

The effectiveness of text classifiers is commonly evaluated by
measuring the recall (r), the precision (p) and/or the F score [40]
(which is computed with r and p). In our technique, we use F
score, as it is often employed in text classification. We also use F
score on the training data to evaluate the resulting sub-classifiers
(e.g. ClP, and ClN) during the process of building a refinement tree.

Let:
 a = number of true positive predictions to C+
 b = number of false positive predictions to C+
 c = number of false negative predictions to C-
 d = number of true negative predictions to C-

Note that in this work we are only interested in the positive class.
Thus, the recall and the precision are defined on the positive class
as:

)(ca
ar
+

=
)(ba

ap
+

= .

The F-score of the positive class is computed as follows (which
gives the equal weight to recall and precision):

rp
prF
+

=
2

In the proposed technique, we recursively build a refinement tree
from the root node. The root node comprises all example
documents in the training set D. At any node, we first build a base
classifier Cl0 by using the selected classification technique on all
the training data of this node. Then, according to the predictions
of Cl0, we split this node into positive and negative children nodes
child(P) and child(N), and compute the F score of the training data
of this node with the class assignments of Cl0:

 F0 = 2a0 / (2a0 + b0 + c0)

Next, we build two sub-classifiers, ClP and ClN, using the training
data of the positive and negative children nodes respectively, and
then compute two new F scores by adding the contributions of ClP
and ClN accordingly:

FP = 2aP / (2aP + bP + cP + c0);
FN = 2(a0 + aN) / (2(a0 + aN) + b0 + bN + cN);
If FP > F0, output child(P), else prune the branch;
If FN > F0, output child(N) else prune the branch;

This algorithm is a heuristic one, which tries to refine the
classification model by improving the F score on the training data.
In the resulting refinement tree, the F score of the base classifier
of a particular node is always smaller than that of the combined
classifier produced by merging the node’s base classifier with a
child node’s classifier. Since the node splitting process will stop
when the F measure does not increase, our approach may reach a
local maximum rather than a global maximum. The experimental
results show that the proposed technique is already extremely
effective. We present the algorithm in Figure 2.

Refiner (D0)
1. Build the base classifier Cl0 using training data D0;
2. F0 = 2a0 / (2a0 + b0 + c0);
3. Split D0 into DP and DN by Cl0;
4. Build classifier ClP using DP;
5. Build classifier ClN using DN;
6. FP = 2aP / (2aP + bP + cP + c0);
7. FN = 2(a0 + aN) / (2(a0 + aN) + b0 + bN + cN);
8. If FP > F0, then Refiner(DP) else prune the branch;
9. If FN > F0, then Refiner(DN) else prune the branch;

Figure 2: Constructing a refinement tree

4.2 Why Does the Technique Work?
In this sub-section, we show why the proposed approach is able to
deal with the problem of model misfit in the contexts of the naïve
Bayesian classifier and the Rocchio classifier.

4.2.1 Naive Bayesian (NB) Classifier
In devising the Bayesian method for text classification, two
assumptions are made: (1) text documents are generated by a
mixture model and there is a one-to-one mapping between
mixture components and classes; (2) document features are
independent given the class. Many researchers have shown that
the Bayesian classifier performs surprisingly well in obvious

N P P

P N

Cl0

ClP ClN

…… ……

N

violation of (2). However, (1) often causes difficulty when it does
not hold. In many real-life situations, one-to-one correspondence
of mixture components and classes does not hold. That is, a class
(or category) may cover a number of sub-topics.

In the proposed technique, after building the original classifier
using the entire training data, we build a sub-classifier on the
predicted positive training examples that contain false positive
examples (misclassified negative ones) and true positive ones.
The predicted positive training examples are similar to each other
according to their probabilities in the original model. When we re-
train on the predicted positive training examples, we have gotten
rid of most of the mixture components in the training data, which
have been classified into the negative class. When we perform this
process recursively, we can refine the classification and make it
closer to one-to-one correspondence of mixture components and
classes.

4.2.2 Rocchio Classifier
Figure 3 illustrates the problem of model misfit when using the
Rocchio algorithm, where C+ and C- represent the positive and
negative prototype vectors respectively. The Rocchio
classification model is based on the assumption that a given
document should be assigned to a particular class if the similarity
between this document vector and the prototype vector of the
class is the largest. However, when the data does not fit the model
well, the Rocchio classifier suffers (see the data points in regions
1 and 2 of Figure 3). Training instances within region 2 will be
misclassified as positive documents, while instances within region
1 will be misclassified as negative documents. In the proposed
technique, after splitting the entire training data by the initial
classifier, we obtain the situation in Figure 4 for the predicted
positive class. We can see that it fits the Rocchio model very well.
The original region 2 can now be classified correctly using a
Rocchio sub-classifier.

Figure 3: The model misfit of the Rocchio classifier

Figure 4: The refined model for the predicted positive class
examples (in the training data)

5. EXPERIMENTS
The empirical evaluation is done on two data corpora. First, we
will give the dataset descriptions, experimental settings and
evaluation measures. Next, we present the empirical results of the
experiments on the two datasets.

5.1 Experimental Setup
The first data corpus used is the Reuters-21578 dataset1 collected
from the Reuters newswire. The “ModApte” split is used, leading
to a corpus of 9,603 training documents and 3,299 test documents.
Of the 135 potential topic categories, only the most populous 10
are used as positive classes. Binary text classification is performed
in the experiments.

The second data collection is the Usenet articles2 collected by
Lang (1995) from 20 different newsgroups. 1000 articles were
collected for each newsgroup. There are four main categories
within the newsgroups, namely, Computing (comp), Recreation
(rec), Science (sci), and Talk (talk). We perform classification on
the sub-categories within them. The detailed data compositions
are shown in Table 11 in the appendix. For example, we take
graphics category as the positive class and the rest of the comp
categories (os-ms, ibm-pc, mac and x-win) as the negative class.
We withhold the most recently posted articles (40% of the entire
dataset) for testing.

Two classification techniques, the naïve Bayesian classifier (NB)
and the Rocchio classifier, have been tested in the proposed
approach as the base classifier. We also attempted to apply our
algorithm on SVM. SVM has been previously proven to be a
superior classifier by Yang [41] and fits training data very well in
general. In most categories, SVM does not generate substantial
training error, therefore our technique fails to refine it much
further and the improvement is minimal. Nevertheless, we use
SVM as a baseline for comparison.

Our technique works well in different feature settings. In
particular, the performance of our refined classifiers is more
outstanding when fewer features are used. Hence, we select the
first 1000 words with the highest information gains as features for
our classifiers during refinement. Experiments are conducted on
AdaBoost (with decision stumps) using the BoosTexter 3 [35]
package. The other experiments are conducted using the publicly
available Rainbow text classification package4.

We use F score (of the positive class) and error as the evaluation
measures for our system. F score takes into account of both recall
and precision, which makes it a more reliable and suitable
measure. Error of classification is the fraction of all documents
that are classified wrongly with respect to both classes. It is the
ratio of the sum of the numbers of false positives and false
negatives to the total number of documents.

With these metrics distributed over all the categories, some kind
of averaging is needed to get global performance measures. There
are essentially two methods to perform the averaging, micro-
averaging and macro-averaging. In micro-averaging, the

1 http://www.research.att.com/~lewis/reuters21578.html
2 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes/20_newsgroups.tar.gz
3 http://www.research.att.com/~schapire/BoosTexter/
4 http://www-2.cs.cmu.edu/~mccallum/bow/

2

C-

C-

1

C+

2

individual numbers for true/false positives and true/false negatives
are summed up and the evaluation measures are computed on
them. In macro-averaging, the individual measures (e.g.: F score
or error) for every category are computed and the average is
calculated over the total number of categories. Consequently,
macro-averaging treats all categories equally, while micro-
averaging treats all documents equally. The denominator of error
rate is a constant for all the categories, resulting in the same value
for macro-averaging and micro-averaging.

5.2 Reuters Dataset
Table 1 shows the experimental results on the Reuters data set. In
Table 1, Columns 2 and 3 contain the error and F score of using
the NB classifier on each of the top 10 categories of the Reuters-
21578 collection respectively. Columns 4 and 5 show the results
of the refined NB classifier with our technique. Column 6
provides the classification improvement (I+) on the F score of
Column 5 over Column 3, which is the improvement percentage
of our refined NB classifier over the initial NB classifier.
Similarly, Table 2 shows the classification performance of the
refined Rocchio classifier. For all these experiments, 1000 top
features (or words) are used.

According to the results, our algorithm works very well when
applied to the NB or Rocchio classifiers. For example, in datasets
that NB performs badly (e.g., ship and corn), our system
successfully enhances NB by an overwhelming improvement. The
refined classifiers are on average 45% better than the original NB
classifiers and 44% better than the original Rocchio classifiers in
terms of macro-averaged F score. In terms of micro-averaged F
score, the refined classifiers are also 25% and 31% better than the
original NB classifiers and the original Rocchio classifiers
respectively. In addition, our technique also reduces all the error
rates substantially. We observe that the refined classifiers are able
to improve on every dataset. Although both refined classifiers
show outstanding performances the refined NB classifier gives
better results than the refined Rocchio classifier. Hence we use it
as our representative technique for the performance comparison in
Figure 5.

Figure 5 illustrates the comparison of our techniques with several
benchmarks in terms of F score. They include AdaBoost (with
decision stumps) in BoosTexter, NB and linear SVM. Yang [41]
reported that linear SVM provides slightly better results than non-
linear models on the Reuters dataset. Thus, we use the linear
version as the representative of SVM in our comparison. For this
comparison, we use all features for NB and SVM. These
classifiers perform better with all the features.
From the diagram, it is clear that our refined NB classifiers
outperform AdaBoost greatly for all categories. In general, it also
performs better than SVM. As for the Rocchio-refiner, it is
slightly worse than SVM. In terms of running time, our system is
much faster than SVM and AdaBoost, requiring only linear scans
and thus incurring significantly less computational cost.
For most categories in the Reuters dataset, the optimal results of
our algorithm are obtained after reaching 2-3 levels of the refined
classification tree. As the training error decreases, the test error
also decreases, apparently without overfitting. This behavior is
also observed in the Usenet dataset experiments, which
demonstrates the flexibility of our technique.

5.3 Usenet Dataset
As above, Tables 3, 5, 7 and 9 show the refinement results
obtained from the NB classifier from the four main newsgroups.
Tables 4, 6, 8 and 10 show the corresponding results using
Rocchio as the base classifier. For these results, 1000 top features
(or words) are used. Figures 6, 7, 8 and 9 give the comparison
with the various benchmark techniques (all features are used).
From the experiments, we observe that our technique clearly
outperforms all the other methods by a significant margin.
BoosTexter did not perform well for the Usenet data set, which is
in accordance with the results reported in [35]. SVM also does not
perform well in the Usenet data set. One possible reason is that
SVM overfits the training data because the training errors were
very low for most datasets. However, our refined NB classifier
and our refined Rocchio classifier do not seem to suffer from
overfitting.
Regarding running efficiency, SVM is much slower than our
system because of its quadratic optimization. AdaBoost using a
large number of rounds of boosting is also time-consuming. Using
NB or Rocchio as the base classifier, our refined system requires
only linear scans of the data and is on average more than 1000
times faster than SVM using the Rainbow package.

Table 1: Results after refining NB classifier for Reuters

NB Refined NB

Error F Error F I+(%)
earn 0.021 0.97 0.019 0.970 0.0
acq 0.035 0.92 0.017 0.959 4.2

money-fx 0.072 0.59 0.018 0.828 40.3
grain 0.065 0.58 0.008 0.908 56.6
crude 0.048 0.71 0.009 0.921 29.7
trade 0.100 0.41 0.013 0.826 101.5

interest 0.066 0.54 0.019 0.723 33.9
ship 0.036 0.59 0.005 0.914 54.9

wheat 0.076 0.36 0.008 0.841 133.6
corn 0.073 0.31 0.006 0.836 169.7

microavg 0.059 0.74 0.012 0.926 25.1
macroavg 0.059 0.60 0.012 0.873 45.5

Table 2: Results after refining Rocchio classifier for Reuters

Rocchio Refined Rocchio

Error F Error F I+(%)
earn 0.022 0.97 0.021 0.97 0.0
acq 0.043 0.91 0.025 0.94 3.3

money-fx 0.095 0.53 0.025 0.80 50.9
grain 0.064 0.58 0.014 0.85 46.6
crude 0.070 0.62 0.029 0.78 25.8
trade 0.140 0.34 0.025 0.72 111.8

interest 0.084 0.48 0.025 0.71 47.9
ship 0.045 0.55 0.011 0.82 49.1

wheat 0.078 0.36 0.013 0.75 108.3
corn 0.087 0.28 0.009 0.78 178.6

microavg 0.073 0.69 0.020 0.90 30.4
macroavg 0.073 0.56 0.020 0.81 44.6

Table 3: Results of refining NB classifier for UseNet (comp)

NB Refined NB Comp
Error F Error F I+(%)

graphics 0.087 0.80 0.052 0.87 8.7
os-ms 0.102 0.74 0.063 0.84 13.5
ibm-pc 0.099 0.78 0.041 0.89 14.1

mac 0.084 0.81 0.049 0.88 8.6
x-win 0.098 0.76 0.058 0.85 11.8

microavg 0.094 0.78 0.052 0.87 11.5
macroavg 0.094 0.78 0.052 0.87 8.7

Table 4: Results of refining Rocchio classifier for Usenet (comp)

Rocchio Refined Rocchio Comp
Error F Error F I+(%)

graphics 0.129 0.73 0.080 0.80 9.6
os-ms 0.130 0.73 0.072 0.80 9.6
ibm-pc 0.141 0.71 0.060 0.84 18.3

mac 0.089 0.80 0.071 0.82 2.5
x-win 0.133 0.73 0.058 0.83 13.7

microavg 0.124 0.74 0.068 0.87 17.6
macroavg 0.124 0.74 0.068 0.82 10.8

Table 5: Results of refining NB classifier for UseNet (rec)

NB Refined NB Rec
Error F Error F I+(%)

autos 0.053 0.90 0.014 0.97 7.8
motorcycle 0.069 0.88 0.010 0.98 11.4

baseball 0.016 0.97 0.019 0.98 1.0
hockey 0.021 0.96 0.008 0.98 2.1

microavg 0.040 0.92 0.013 0.98 6.5
macroavg 0.040 0.93 0.013 0.98 5.4

Table 6: Results of refining Rocchio classifier for UseNet (rec)

Rocchio Refined Rocchio Rec
Error F Error F I+(%)

autos 0.080 0.86 0.019 0.96 11.6
motorcycle 0.074 0.87 0.013 0.97 11.5

baseball 0.031 0.94 0.027 0.94 0.0
hockey 0.054 0.90 0.011 0.98 8.9

microavg 0.060 0.89 0.018 0.96 7.9
macroavg 0.060 0.89 0.018 0.96 7.9

Table 7: Results of refining NB classifier for Usenet (sci)

NB Refined NB Sci
Error F Error F I+(%)

crypt 0.056 0.90 0.019 0.96 6.7
electronics 0.043 0.91 0.030 0.94 3.3

medical 0.029 0.94 0.018 0.96 2.1
space 0.047 0.91 0.013 0.97 6.6

microavg 0.044 0.92 0.020 0.96 4.3
macroavg 0.044 0.92 0.020 0.96 4.3

Table 8: Results of refining Rocchio classifier for Usenet (sci)

Rocchio Refined Rocchio Sci
Error F Error F I+(%)

crypt 0.077 0.86 0.045 0.92 7.0
electronics 0.072 0.86 0.067 0.89 3.5

medical 0.032 0.94 0.031 0.94 0.0
space 0.072 0.87 0.020 0.96 10.3

microavg 0.063 0.88 0.041 0.92 4.5
macroavg 0.063 0.88 0.041 0.92 4.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

earn acq money grain crude trade interest ship wheat corn

Figure 5: Comparison of F score on Reuters-21578 dataset

BoosTexter

NB

SVM

NB-Refiner

Table 9: Results of refining NB classifier for Usenet (talk)

NB Refined NB Talk
Error F Error F I+(%)

guns 0.129 0.78 0.067 0.86 10.3
mideast 0.038 0.93 0.028 0.95 2.2

misc 0.115 0.77 0.089 0.83 7.8
religion 0.086 0.83 0.058 0.87 4.8

microavg 0.092 0.83 0.060 0.88 6.0
macroavg 0.092 0.83 0.060 0.88 6.0

Table 10: Results of refining Rocchio classifier for Usenet (talk)

Rocchio Refined Rocchio Talk
Error F Error F I+(%)

guns 0.151 0.76 0.084 0.81 6.6
mideast 0.045 0.91 0.031 0.93 2.2

misc 0.154 0.72 0.104 0.76 5.6
religion 0.086 0.84 0.075 0.84 0.0

microavg 0.109 0.80 0.074 0.84 5.0
macroavg 0.109 0.81 0.074 0.84 3.7

6. CONCLUSION
In this paper, we proposed a refinement approach to handle the
problem of model misfit evident in some existing text
categorization techniques. Our approach successively refines the
classification model based on the prediction errors of the
training data. Extensive experiments conducted on Reuters-
21578 and Usenet newsgroups corpora confirm that our
technique could make an inflexible classification model
versatile, and outperform the state-of-the-art techniques like
SVM and AdaBoost significantly.

The results reported here are not necessarily the best that can be
achieved. There is still room for improvement by finding better
ways to identify the performance characteristics of the base
classifier during the initial training phase. Nevertheless, the
approach described is already able to achieve outstanding
prediction performance without using any complex strategies or
incurring significant computational costs.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the support of A-STAR and
National University of Singapore Academic Research Fund
grants R252-000-041-112 and R252-000-041-303. We would
also like to thank Wee Sun Lee for many useful discussions.

8. REFERENCE
[1]. Ali, K. and Pazzani, M. Error reduction through learning

multiple descriptions. Machine Learning, 1996.

[2]. Apte, C., Hong, S., Hosking, J., Lepre, J., Pednault, E. and
Rosen, B. Decomposition of heterogeneous classification
problems, Intelligent Data Analysis, 1998.

[3]. Breiman, L. Bagging predictors. Machine Learning 1996.

[4]. Buckley, C., Salton, G. and Allan, J. The effect of adding
relevance information in a relevance feedback
environment. In Proceedings of the Seventeenth Annual

0

0.2

0.4

0.6

0.8

1

autos motorcycle baseball hockey

BoosTexter

NB

SVM

NB-Refiner

Figure 7: Comparison of F score on Usenet (Rec)

0

0.2

0.4

0.6

0.8

1

crypt electronics medical space

BoosTexter

NB

SVM

NB-Refiner

Figure 8: Comparison of F score on Usenet (Sci)

0

0.2

0.4

0.6

0.8

1

guns mideast misc religion

BoosTexter

NB

SVM

NB-Refiner

Figure 9: Comparison of F score on Usenet (Talk)

0

0.2

0.4

0.6

0.8

1

graphics os-ms ibm-pc mac x-win

BoosTexter

NB

SVM

NB-Refiner

Figure 6: Comparison of F score on Usenet (Comp)

ACM SIGIR Conference, 1994.

[5]. Chan, P. and Stolfo, S. Comparative evaluation of voting
and meta-learning on partitioned data. In Proceedings of
the Twelfth International Conference on Machine
Learning, 1995.

[6]. Chan, P. and Stolfo, S. Learning arbiter and combiner
trees from partitioned data for scaling machine learning.
In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, 1995.

[7]. Cortes, C. and Vapnik, V. Support vector networks.
Machine learning, 1995.

[8]. Craven, M., DiPasquo, D., Freitag, D., MaCallum, A.,
Mitchell, T., Nigam, K., & Slattery, S. Learning to extract
symbolic knowledge from the World Wide Web. In
Proceedings of AAAI, 1998.

[9]. Duda, R. and Hart, P. Pattern Classification and Scene
Analysis, 1973.

[10]. Elkan, C. Boosting and naive Bayesian learning. In
Proceedings of the International Conference on
Knowledge Discovery and Data Mining, 1997.

[11]. Freitag, D. Multistrategy learning for information
extraction. In Proceedings of the Fifteenth International
Conference on Machine Learning, 1998.

[12]. Freund, Y. and Schapire, R. Experiments with a new
boosting algorithm, In Proceedings of the Thirteenth
International Conference on Machine Learning, 1996.

[13]. Friedman, J. Flexible metric nearest neighbor
classification. Technical Report, 1994.

[14]. Guo, Y. and Sutiwaraphun, J. Knowledge probing in
distributed data mining. In Advances in Distributed and
Parallel Knowledge Discovery, 1999.

[15]. Hand, D. and Yu, K. Idiot’s Bayes - Not so Stupid After All?
2001.

[16]. Hull, D., Pedersen, J. and Schutze, H. Method
combination for document filtering. In Proceedings of the
Nineteenth International Conference on Research and
Development in Information Retrieval, 1996.

[17]. Iyengar, V., Apte C. and Zhang, T. Active learning using
adaptive resampling, In Proceedings of the Seventh
International. Conference on Knowledge Discovery &
Data Mining, 2000.

[18]. Joachims, T. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the Tenth European Conference on
Machine Learning, 1998.

[19]. Joachims, T. A probabilistic analysis of the rochhio
algorithm with TFIDF for text categorization. In
Proceedings of the Fourteenth International Conference
on Machine Learning, 1997.

[20]. Kim, Y., Hahn, S. and Zhang, B. Text filtering by
boosting naive Bayes classifiers. In Proceedings of SIGIR,
2000.

[21]. Kohavi, R. Scaling up the accuracy of naïve-Bayes
classifiers: A decision-tree hybrid. In Proceedings of the
Second International. Conference on Knowledge
Discovery & Data Mining, 1996.

[22]. Kumar, S. A hierarchical multi-classifier system for
hyperspectral data analysis. In Proceedings of the First
International Workshop on Multiple classifier systems,
2000.

[23]. Lam, W. and Lai, K. A meta-learning approach for text
categorization. In Proceedings of SIGIR, 2001.

[24]. Lang, K. Newsweeder: Learning to filter netnews. In
Proceedings of International Conference on Machine
Learning, 1995.

[25]. Larkey, L. and Croft, W. Combining classifiers in text
categorization. In Proceedings of the Nineteenth
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1996.

[26]. Lewis, D. & Gale, W. A sequential algorithm for training
text classifiers. Proceedings of SIGIR, 1994.

[27]. Lewis, D. & Ringuette, M. A comparison of two learning
algorithms for text categorization. Third Annual
Symposium on Document Analysis and Information
Retrieval (pp. 81-93), 1994.

[28]. Littlestone, N and Warmuth, M. The weighted majority
algorithm. Tech. report, UCSC-CRL-89-16: UC. Santa
Cruz, 1989.

[29]. McCallum, A., & Nigam, K. A comparison of event
models for naïve Bayes text classification. AAAI-98
Workshop on Learning for Text Categorization. Tech. Rep.
WS-98-05, AAAI Press, 1998

[30]. Pavlov, D. and Mao, J. Scaling-up Support Vector
machines using boosting algorithm. In International
Conference on Pattern Recognition, 2000.

[31]. Quinlan, J. Bagging, boosting and C4.5. In Proceedings
AAAI, 1996.

[32]. Schapire, R., Freund, Y. Bartlett, P. and Lee, W. Boosting
the margin: A new explanation for the effectiveness of
voting methods. In Proceedings of the Fourteenth
International Conference of Machine Learning, 1997.

[33]. Schapire, R., Singer, Y and Singhal, A. Boosting and
Rocchio applied to text filtering. In Proceedings SIGIR,
1998.

[34]. Schapire, R. and Singer, Y. Improved boosting algorithms
using confidence-rated predictions. Machine Learning,
1999.

[35]. Schapire, R. and Singer, Y. BoosTexter: A boosting-based
system for text categorization, Machine Learning, 2000.

[36]. Ting, K. and Witten, I. Stacked generalization: when does
it work? In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, 1997.

[37]. Ting, K. and Zhen, Z. Improving the performance of
boosting for naive Bayesian classification. In Proceedings
of PAKDD, 1999.

[38]. Vapnik, V. The Nature of Statistical Learning Theory,
1995.

[39]. Wolpert, D. Stacked generalization. Neural Networks,
1992.

[40]. Yang, Y. An evaluation of statistical approaches to text
categorization. Journal of Information Retrieval, 1999.

[41]. Yang, Y. and Liu, X. A re-examination of text
categorization methods. In Proceedings of ACM SIGIR
Conference on Research and Development in Information
Retrieval, 1999.

[42]. Yang, Y., Ault, T. and Pierce, T. Combining multiple
learning strategies for effective cross validation. In
Proceedings of the International Conference on Machine
Learning, 2000.

APPENDIX
Table 11: Usenet newsgroups used as positive categories

Index Group Name of Category
graphics comp comp.graphics
os-ms comp comp.os.ms-windows.misc
ibm-pc comp comp.sys.ibm.pc.hardware
mac comp comp.sys.mac.hardware
x-win comp comp.windows.x
autos rec rec.autos
motorcycle rec rec.motorcycles
baseball rec rec.sport.baseball
hockey rec rec.sport.hockey
crypt sci sci.crypt
electronics sci sci.electronics
medical sci sci.med
space sci sci.space
guns talk talk.politics.guns
mideast talk talk.politics.mideast
misc talk talk.politics.misc
religion talk talk.religion.misc

