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ABSTRACT 
Text categorization or classification is the automated assigning of 
text documents to pre-defined classes based on their contents. 
This problem has been studied in information retrieval, machine 
learning and data mining. So far, many effective techniques have 
been proposed. However, most techniques are based on some 
underlying models and/or assumptions. When the data fits the 
model well, the classification accuracy will be high. However, 
when the data does not fit the model well, the classification 
accuracy can be very low. In this paper, we propose a refinement 
approach to dealing with this problem of model misfit. We show 
that we do not need to change the classification technique itself 
(or its underlying model) to make it more flexible. Instead, we 
propose to use successive refinements of classification on the 
training data to correct the model misfit. We apply the proposed 
technique to improve the classification performance of two simple 
and efficient text classifiers, the Rocchio classifier and the naïve 
Bayesian classifier. These techniques are suitable for very large 
text collections because they allow the data to reside on disk and 
need only one scan of the data to build a text classifier. Extensive 
experiments on two benchmark document corpora show that the 
proposed technique is able to improve text categorization 
accuracy of the two techniques dramatically. In particular, our 
refined model is able to improve the naïve Bayesian or Rocchio 
classifier’s prediction performance by 45% on average. 
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1. INTRODUCTION 
With the ever-increasing volume of text data from various online 
sources, it is an important task to categorize or classify these text 
documents into manageable and easy to understand categories. 
Text categorization or classification aims to automatically assign 
categories or classes to unseen text documents. The task is 
commonly described as follows: Given a set of labeled training 

documents of n classes, the system uses this training set to build a 
classifier, which is then employed to classify new documents into 
the n classes. The problem has been studied extensively in 
information retrieval, machine learning and natural language 
processing. Past research has produced many text classification 
techniques, e.g., the naïve Bayesian classifier [27, 29], the 
Rocchio algorithm [19], and support vector machines [18]. These 
existing techniques have been used to automatically catalog news 
articles [26], classify Web pages [8] and learn the reading 
interests of users [24]. An automatic text classifier can save 
considerable time and human effort, particularly when aiding 
human indexers who have already produced a large database of 
categorized document collection. 

However, most classification techniques are based on some 
underlying models and/or assumptions. When the data fits the 
model well, the classification accuracy can be very high. 
However, when the underlying model does not fit the data well, 
the performance of the resulting classifiers can be quite poor. For 
instance, the naïve Bayesian classifier assumes that text 
documents are generated from a mixture model and there is a one-
to-one correspondence between the mixture components and the 
classes. However, this assumption can be seriously violated in 
many real world applications, e.g., the prevention of junk mails, 
where junk mails generally contain multiple sub-topics such as 
adult content and various unrelated business letters. Thus the one-
to-one correspondence assumption does not hold. In such cases, 
the naïve Bayesian classifier suffers, which is the problem of 
model misfit. On the other hand, we may explain that the model 
misfit is due to feature-space heterogeneity. Feature-space 
heterogeneity [2] occurs when the best features to base the 
classification on are different in different regions of the feature 
space. Since most widely used classification techniques, such as 
the naïve Bayesian algorithm, rely on measures computed over 
features of the entire training data to build classifiers, their 
performances are inevitably affected by an averaging effect over 
the entire training space. The resulting classifiers are likely to be 
sub-optimal due to the complex nature of the training data. 

Serious model misfit often leads to poor classification 
performance. For unstable classifiers such as decision trees and 
neural networks, boosting algorithms [12, 31, 35] can be used to 
enhance the basic weak learners. However, it is generally believed 
that boosting is not so effective on stable classifiers such as linear 
classifiers (e.g., the Rocchio algorithm). The naïve Bayesian 
classifier is also relatively stable with respect to small changes in 
training data [37]. Other techniques such as meta-learning can be 
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used to complement and improve individual classifiers by 
combining multiple classification techniques with relatively 
complicated mechanisms [5, 6, 23]. 

In this paper, we present a novel and yet simple method to deal 
with the problem of model misfit. In the proposed technique, we 
make use of training errors to successively refine the classification 
model on the training data. In learning, model misfit generally 
leads to high training error of classifiers such as the naïve 
Bayesian and the Rocchio algorithms. Based on the prediction 
errors on the training data, we retrain a sub-classifier using the 
training examples of each predicted class with the same learning 
method. In this way, we force the classifiers to learn from refined 
regions in the training data, making the model stronger and fit the 
training data better.  

Our technique is very flexible, which only needs one classification 
method and there is no change to the method in any way. The 
original classification model is improved by successively splitting 
the training data and re-learning sub-models. Moreover, when 
applying our technique to enhance the probabilistic classifiers 
such as the naïve Bayesian classifier and linear classifiers such as 
Rocchio, overfitting is generally not a problem. When the training 
data is basically consistent with the test data, as the training 
classification model becomes better, the corresponding 
classification performance on test instances also improves.  

We apply the proposed technique to improve the classification 
performance of two simple and efficient text classifiers, the 
Rocchio classifier and the naïve Bayesian classifier. Extensive 
experiments on two benchmark document corpora show that the 
proposed technique is able to improve text categorization 
accuracy of the two techniques dramatically. These techniques are 
suitable for very large text collections because they allow the data 
to reside on disk and need only one scan of the data to build a 
classifier. The resulting classifiers of our technique are very 
efficient, much faster than many state-of-the-art approaches, e.g., 
SVM and Adaboost, while also gaining in prediction performance. 
Our results show that the refined naïve Bayesian classifier 
outperforms the proven superior classifier SVM [41], which has 
very high memory requirements and needs the data in memory. 
Furthermore, SVM converges slowly for large data sets [30].   

The rest of this paper is organized as follows. Section 2 discusses 
related work and Section 3 reviews some existing text 
categorization techniques related to this work. Section 4 describes 
the proposed technique in detail. We present the experimental 
results in Section 5, which is followed by some concluding 
remarks in the last section. 

2. RELATED WORK 
Improving prediction accuracy of text classifiers has been an 
important issue. Many studies have been conducted in this area. 
One of the popular frameworks is meta-learning or classifier 
committees [6, 11, 14, 16, 22, 23, 25, 42], which is an integration 
of multiple learning models to achieve higher accuracy. This is 
because a combination of different learning approaches can 
represent an integration of different learning biases that could 
complement each other on their inefficient characteristics.  

One pioneer work on applying meta-learning to data mining is 
done by Littlestone & Warmuth [28]. They proposed several 
weighted majority algorithms for combining different classifiers. 
Chan and Stolfo [5, 6] adapted their methods to learn the weights 

using a validation set. They presented techniques that learn an 
arbiter to arbitrate among predictions generated by different 
classifiers, and a combiner to merge the predictions of several 
classifiers. Similar work in this direction also includes the stacked 
generation [36, 39], and combining multiple rule sets using 
Bayesian utility theory [1]. 

Our technique is different from the meta-learning approach. We 
simply refine a classifier using the training data. Unlike meta-
learning, no voting is involved in our process. We do not require 
multiple classification techniques.  

Another popular framework is adaptive resampling [3, 17, 31], 
which adaptively selects instances from a labelled training set to 
improve classification accuracy. The selection process biases in 
favour of misclassified data. In particular, the boosting algorithm 
[12, 32, 33, 34, 35] adaptively resamples or reweights data biasing 
towards the misclassified examples in the training set and then 
combine the predictions of a set of classifiers. During the course 
of its execution, it assigns different importance weights to 
different training tuples. A weak learning algorithm takes these 
weights into consideration, and as the algorithm progresses, 
training documents that are hard to be classified correctly get 
incrementally higher weights while documents that are easy to 
classify get lower weights. This, in effect, forces the weak 
learning algorithm to concentrate on documents that have been 
misclassified most often previously.  

Freund and Schapire’s Adaptive Boosting (AdaBoost) algorithm 
[34, 35] has been reported to be a superior voting method. Several 
studies have been made on implementing AdaBoost with various 
classifiers. Elkan [10] provided a framework to apply boosting to 
the naïve Bayesian classifier. Recently, Kim [20] presented 
BayesBoost, which uses the naïve Bayes classifier as the weak 
learner for boosting by allowing the boosting algorithm to utilize 
term frequency information while maintaining probabilistic 
accurate confidence ratio. However, there is no clear evidence in 
how much BayesBoost can improve the naïve Bayes classifier. On 
the other hand, Ting [37] reported that boosting does not work 
well for the naïve Bayesian classifier. However, we will show that 
our proposed technique can remarkably improve the performance 
of the naïve Bayesian classifier. The refined NB classifier is much 
superior to AdaBoost (with decision stumps) [35]. 

In terms of using tree strategy to handle the data heterogeneity 
problem, Apte et. al. [2] introduced the Importance Profile Angle 
(IPA) to split the feature space. They compute the IPA value for 
each feature. If the value exceeds a suitable threshold, it is an 
indication of heterogeneity. Hence, training data are recursively 
split according to the feature that gives the largest IPA value. 

Friedman [13] introduced a hybrid approach to classification by 
combining aspects of both the K-nearest-neighbor and tree-
structured recursive partitioning techniques. It consists of two 
strategies, machete and scythe. The machete is a successive 
splitting procedure. It begins with the entire input measurement 
space and divides it into two regions based on one of the input 
variables (attributes). The splitting criterion is one that maximizes 
the estimated relevance. The scythe employs an alternative 
splitting strategy in which the respective variables influence each 
split in proportion to their estimated relevance, rather than the 
winner-takes-all approach of the machete. Our method is different, 
as we do not need sophisticated extra mechanisms to select 
variables to split the data.    



 

Kohavi [21] reported a hybrid system of naïve Bayesian (NB) and 
decision tree. The algorithm is similar to the decision tree-
building algorithm, except that the leaf nodes created are NB 
classifiers instead of nodes predicting a single class. It uses a 
validation set to determine when NB will form a leaf. Our 
approach differs in the aspect that we do not require a complex 
combination mechanism and integration of different classification 
techniques at the algorithm level. We only use the classification 
results to partition the training data, and apply only a single 
classification technique. We also do not need a validation set. 

3. TEXT CATEGORIZATION 
TECHNIQUES 

We review four commonly used text classification methods. We 
will apply our technique on them or use them as baseline 
algorithms for comparison in our experiments later.  

3.1 Rocchio Algorithm 
An early text classification technique from information retrieval is 
the Rocchio algorithm, which was originally designed for 
relevance feedback. It has also been widely used for document 
classification [19].  

In this algorithm, documents are represented with the popular 
vector space representation. Building a classification is achieved 
by constructing document vectors into a prototype vector jcρ  for 

each class cj. Both the normalized document vectors of the 
relevant examples for a class as well as those of the irrelevant 
examples for a class are first summed up. Next, the prototype 
vector is computed as a weighted difference of each summation. 

 

 

λ and µ are parameters that adjust the relative impact of relevant 
and irrelevant training examples. Buckley et al [4] recommended 
λ  = 16 and µ = 4. In classification, for each test document 'd

ρ
, we 

simply use the cosine measure to compute the similarity of 'd
ρ

 
with each prototype class vector jcρ . A particular class is assigned 

to 'd
ρ

 when its class vector is the most similar to 'd
ρ

. 

3.2 Naive Bayesian Classifier 
The naive Bayesian (NB) method is another effective technique 
for text classification. It has been shown to perform extremely 
well in practice by many researchers [9, 15, 27, 29]. 

Given a set of training documents D, each document is considered 
an ordered list of words. We use wdi,k to denote the word in 
position k of document di, where each word is from the 
vocabulary V = < w1, w2, … , w|v| >. The vocabulary is the set of 
all words we consider for classification. We also have a set of pre-
defined classes, C = {c1, c2, … , c|C|} (in this paper we only 
consider two class classification, so, C = {c1, c2}). In order to 
perform classification, we need to compute the posterior 
probability P(cj|di), where cj is a class and di is a document. Based 
on the Bayesian probability and the multinomial model, we have 

 

 

and with Laplacian smoothing, 

 

 

 

where N(wt,di) is the count of the number of times the word wt 
occurs in document di and P(cj|di) ∈{0,1} depending on the class 
label of the document. 

Finally, assuming that the probabilities of words are independent 
given the class, we obtain the naïve Bayesian classifier:  

 

 

 

In the naive Bayesian classifier, the class with the highest P(cj|di) 
is assigned as the class of the document. 

3.3 Support Vector Machine 
Over the recent years, Support Vector Machine (SVM) has been 
shown to be an accurate classification method for text documents. 
SVM is a relatively new approach introduced by Vapnik [7, 38] to 
solving two-class pattern recognition problems. It is based on the 
Structural Risk Minimization principle for which error-bound 
analysis has been theoretically motivated. This method is defined 
over a vector space in which the problem is to find a decision 
surface that “best” separates the data vectors into two classes. 
Joachims [18] provides both theoretical and empirical evidences 
that SVM is very suitable for text categorization. He compared 
SVM with other classification methods and showed that SVM 
outperformed all the other methods tested in his experiments. 

3.4 AdaBoost 
AdaBoost, proposed by Schapire [34, 35], is a learning algorithm 
that generates multiple classifiers and uses them to build an 
ultimate classifier. It is well suited to the text categorization 
problem. Given an instance x and a set of classifiers (θt(x)) built 
with a weak learner, AdaBoost produces the final classifier F(x) 
through combining the hypotheses of the weak classifiers: 
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where T is the number of iterations and αt is the weight for 
hypothesis θt(x), which can be calculated by using the equation of 
the original AdaBoost. 

Schapire and Singer [35] introduced the BoosTexter system for 
text classification, which employs AdaBoost on a one-level 
decision tree (decision stumps) as the weak learner and reported 
excellent results.  

4. PROPOSED TECHNIQUE 
In this section, we first describe the framework of our proposed 
technique, we then analyse how our approach can solve the model 
misfit problem when using the naïve Bayesian classifier and the 
Rocchio classifier. 

4.1 Algorithm 
In this work, we consider binary text classification that assigns 

∑∑
−∈∈

−
−=

jj CDdjCdj
j d

d
CDd

d
C

c
ρρ

ρ
ρ

ρ
ρ

ρ

||||
1

||||
1 µλ

∑ ∏
∏

= =

=

ΡΡ

ΡΡ
=Ρ ||

1

||

1 ,

||

1 ,

)|()(

)|()(
)|( C

r

d

k rkdr

d

k jkdj
ij i

i

i

i

cwc

cwc
dc

∑ ∑ Ρ+
∑ Ρ+

=Ρ
= =

=
||
1

||
1

||
1

)|(),(||
)|(),(1

)|( V
s

D
i ijis

D
i ijit

jt dcdwNV
dcdwN

cw

||
)|(

)(
||
1

D
dc

c
D
i ij

j
∑ Ρ

=Ρ =



 

each document dj either to the positive class C+ or to its 
complement negative class C-. Theoretically, binary text 
classification is more general than the multi-class one and a multi-
class classification problem can be transformed into a set of 
independent binary ones.  

For a text classification task, given a set D of pre-labelled training 
examples, we choose a classification technique Cl (e.g., the naïve 
Bayesian classifier) as the base classifier of the proposed 
technique. We begin with the entire training set D, learning an 
initial classifier Cl0 from D, and then classify D into positive and 
negative classes respectively. We thus split D into two subsets, DP 
and DN, consisting of the predicted positive documents and 
negative documents respectively. The resulting predicted 
examples generally contain errors, e.g., the predicted positive 
class is made up of true positive and false positive documents. We 
can then learn a sub-classifier ClP from DP based on the training 
examples in the predicted positive class. The sub-classifier ClP 
could be a refiner of the original classifier Cl0. To combine ClP 
with Cl0, we apply ClP as the classifier for the predicted positive 
documents produced by Cl0. We denote their combined classifier 
as Cl0+P. The contribution of ClP can be evaluated by comparing 
the classification performances of Cl0 and Cl0+P on the training 
data. If Cl0+P outperforms Cl0, we keep the sub-classifier ClP as 
the refiner of the original classifier Cl0; otherwise, we discard ClP. 
A similar refining process is also done on the predicted negative 
documents produced by Cl0 and thus can output another refined 
classifier ClN. We can recursively carry out the above learning 
process to build a refinement tree, which is illustrated by Figure 1. 
 

 

 

 

 

 

 

 

   
Figure 1: A tree structure of the proposed framework  

The effectiveness of text classifiers is commonly evaluated by 
measuring the recall (r), the precision (p) and/or the F score [40] 
(which is computed with r and p). In our technique, we use F 
score, as it is often employed in text classification. We also use F 
score on the training data to evaluate the resulting sub-classifiers 
(e.g. ClP, and ClN) during the process of building a refinement tree.   

Let: 
 a = number of true positive predictions to C+  
 b = number of false positive predictions to C+ 
 c = number of false negative predictions to C- 
 d = number of true negative predictions to C- 

Note that in this work we are only interested in the positive class. 
Thus, the recall and the precision are defined on the positive class 
as: 
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The F-score of the positive class is computed as follows (which 
gives the equal weight to recall and precision): 

rp
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In the proposed technique, we recursively build a refinement tree 
from the root node. The root node comprises all example 
documents in the training set D. At any node, we first build a base 
classifier Cl0 by using the selected classification technique on all 
the training data of this node. Then, according to the predictions 
of Cl0, we split this node into positive and negative children nodes 
child(P) and child(N), and compute the F score of the training data 
of this node with the class assignments of Cl0: 

  F0 = 2a0 / (2a0 + b0 + c0) 

Next, we build two sub-classifiers, ClP and ClN, using the training 
data of the positive and negative children nodes respectively, and 
then compute two new F scores by adding the contributions of ClP 
and ClN accordingly: 

FP = 2aP / (2aP  + bP  + cP + c0); 
FN = 2(a0 + aN) / (2(a0 + aN) + b0 + bN + cN); 
If FP > F0, output child(P), else prune the branch; 
If FN > F0, output child(N) else prune the branch; 

This algorithm is a heuristic one, which tries to refine the 
classification model by improving the F score on the training data. 
In the resulting refinement tree, the F score of the base classifier 
of a particular node is always smaller than that of the combined 
classifier produced by merging the node’s base classifier with a 
child node’s classifier. Since the node splitting process will stop 
when the F measure does not increase, our approach may reach a 
local maximum rather than a global maximum. The experimental 
results show that the proposed technique is already extremely 
effective. We present the algorithm in Figure 2. 

Refiner (D0) 
1. Build the base classifier Cl0 using training data D0; 
2. F0 = 2a0 / (2a0 + b0 + c0); 
3. Split D0 into DP and DN by Cl0; 
4. Build classifier ClP using DP; 
5. Build classifier ClN using DN; 
6. FP = 2aP / (2aP + bP + cP + c0); 
7. FN = 2(a0 + aN) / (2(a0 + aN) + b0 + bN + cN); 
8. If FP > F0, then Refiner(DP) else prune the branch;  
9. If FN > F0, then Refiner(DN) else prune the branch; 
 

Figure 2: Constructing a refinement tree 

4.2 Why Does the Technique Work? 
In this sub-section, we show why the proposed approach is able to 
deal with the problem of model misfit in the contexts of the naïve 
Bayesian classifier and the Rocchio classifier.  

4.2.1 Naive Bayesian (NB) Classifier 
In devising the Bayesian method for text classification, two 
assumptions are made: (1) text documents are generated by a 
mixture model and there is a one-to-one mapping between 
mixture components and classes; (2) document features are 
independent given the class. Many researchers have shown that 
the Bayesian classifier performs surprisingly well in obvious 
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violation of (2). However, (1) often causes difficulty when it does 
not hold. In many real-life situations, one-to-one correspondence 
of mixture components and classes does not hold. That is, a class 
(or category) may cover a number of sub-topics.  

In the proposed technique, after building the original classifier 
using the entire training data, we build a sub-classifier on the 
predicted positive training examples that contain false positive 
examples (misclassified negative ones) and true positive ones. 
The predicted positive training examples are similar to each other 
according to their probabilities in the original model. When we re-
train on the predicted positive training examples, we have gotten 
rid of most of the mixture components in the training data, which 
have been classified into the negative class. When we perform this 
process recursively, we can refine the classification and make it 
closer to one-to-one correspondence of mixture components and 
classes.   

4.2.2 Rocchio Classifier 
Figure 3 illustrates the problem of model misfit when using the 
Rocchio algorithm, where C+ and C- represent the positive and 
negative prototype vectors respectively. The Rocchio 
classification model is based on the assumption that a given 
document should be assigned to a particular class if the similarity 
between this document vector and the prototype vector of the 
class is the largest. However, when the data does not fit the model 
well, the Rocchio classifier suffers (see the data points in regions 
1 and 2 of Figure 3). Training instances within region 2 will be 
misclassified as positive documents, while instances within region 
1 will be misclassified as negative documents. In the proposed 
technique, after splitting the entire training data by the initial 
classifier, we obtain the situation in Figure 4 for the predicted 
positive class. We can see that it fits the Rocchio model very well. 
The original region 2 can now be classified correctly using a 
Rocchio sub-classifier. 
 

 

 

 

 

 

 

 

Figure 3: The model misfit of the Rocchio classifier 

 
 

 

 

 

 

 

Figure 4: The refined model for the predicted positive class 
examples (in the training data) 

5. EXPERIMENTS 
The empirical evaluation is done on two data corpora. First, we 
will give the dataset descriptions, experimental settings and 
evaluation measures. Next, we present the empirical results of the 
experiments on the two datasets. 

5.1 Experimental Setup 
The first data corpus used is the Reuters-21578 dataset1 collected 
from the Reuters newswire. The “ModApte” split is used, leading 
to a corpus of 9,603 training documents and 3,299 test documents. 
Of the 135 potential topic categories, only the most populous 10 
are used as positive classes. Binary text classification is performed 
in the experiments. 

The second data collection is the Usenet articles2 collected by 
Lang (1995) from 20 different newsgroups. 1000 articles were 
collected for each newsgroup. There are four main categories 
within the newsgroups, namely, Computing (comp), Recreation 
(rec), Science (sci), and Talk (talk). We perform classification on 
the sub-categories within them. The detailed data compositions 
are shown in Table 11 in the appendix. For example, we take 
graphics category as the positive class and the rest of the comp 
categories (os-ms, ibm-pc, mac and x-win) as the negative class. 
We withhold the most recently posted articles (40% of the entire 
dataset) for testing. 

Two classification techniques, the naïve Bayesian classifier (NB) 
and the Rocchio classifier, have been tested in the proposed 
approach as the base classifier. We also attempted to apply our 
algorithm on SVM. SVM has been previously proven to be a 
superior classifier by Yang [41] and fits training data very well in 
general. In most categories, SVM does not generate substantial 
training error, therefore our technique fails to refine it much 
further and the improvement is minimal. Nevertheless, we use 
SVM as a baseline for comparison.  

Our technique works well in different feature settings. In 
particular, the performance of our refined classifiers is more 
outstanding when fewer features are used. Hence, we select the 
first 1000 words with the highest information gains as features for 
our classifiers during refinement. Experiments are conducted on 
AdaBoost (with decision stumps) using the BoosTexter 3  [35] 
package. The other experiments are conducted using the publicly 
available Rainbow text classification package4.  

We use F score (of the positive class) and error as the evaluation 
measures for our system. F score takes into account of both recall 
and precision, which makes it a more reliable and suitable 
measure. Error of classification is the fraction of all documents 
that are classified wrongly with respect to both classes. It is the 
ratio of the sum of the numbers of false positives and false 
negatives to the total number of documents.  

With these metrics distributed over all the categories, some kind 
of averaging is needed to get global performance measures. There 
are essentially two methods to perform the averaging, micro-
averaging and macro-averaging. In micro-averaging, the 

                                                 
1 http://www.research.att.com/~lewis/reuters21578.html 
2 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes/20_newsgroups.tar.gz 
3 http://www.research.att.com/~schapire/BoosTexter/ 
4 http://www-2.cs.cmu.edu/~mccallum/bow/ 
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individual numbers for true/false positives and true/false negatives 
are summed up and the evaluation measures are computed on 
them. In macro-averaging, the individual measures (e.g.: F score 
or error) for every category are computed and the average is 
calculated over the total number of categories. Consequently, 
macro-averaging treats all categories equally, while micro-
averaging treats all documents equally. The denominator of error 
rate is a constant for all the categories, resulting in the same value 
for macro-averaging and micro-averaging.  

5.2 Reuters Dataset 
Table 1 shows the experimental results on the Reuters data set. In 
Table 1, Columns 2 and 3 contain the error and F score of using 
the NB classifier on each of the top 10 categories of the Reuters-
21578 collection respectively. Columns 4 and 5 show the results 
of the refined NB classifier with our technique. Column 6 
provides the classification improvement (I+) on the F score of 
Column 5 over Column 3, which is the improvement percentage 
of our refined NB classifier over the initial NB classifier. 
Similarly, Table 2 shows the classification performance of the 
refined Rocchio classifier. For all these experiments, 1000 top 
features (or words) are used.  

According to the results, our algorithm works very well when 
applied to the NB or Rocchio classifiers. For example, in datasets 
that NB performs badly (e.g., ship and corn), our system 
successfully enhances NB by an overwhelming improvement. The 
refined classifiers are on average 45% better than the original NB 
classifiers and 44% better than the original Rocchio classifiers in 
terms of macro-averaged F score. In terms of micro-averaged F 
score, the refined classifiers are also 25% and 31% better than the 
original NB classifiers and the original Rocchio classifiers 
respectively. In addition, our technique also reduces all the error 
rates substantially. We observe that the refined classifiers are able 
to improve on every dataset. Although both refined classifiers 
show outstanding performances the refined NB classifier gives 
better results than the refined Rocchio classifier. Hence we use it 
as our representative technique for the performance comparison in 
Figure 5.  

Figure 5 illustrates the comparison of our techniques with several 
benchmarks in terms of F score. They include AdaBoost (with 
decision stumps) in BoosTexter, NB and linear SVM. Yang [41] 
reported that linear SVM provides slightly better results than non-
linear models on the Reuters dataset. Thus, we use the linear 
version as the representative of SVM in our comparison. For this 
comparison, we use all features for NB and SVM. These 
classifiers perform better with all the features.  
From the diagram, it is clear that our refined NB classifiers 
outperform AdaBoost greatly for all categories. In general, it also 
performs better than SVM. As for the Rocchio-refiner, it is 
slightly worse than SVM. In terms of running time, our system is 
much faster than SVM and AdaBoost, requiring only linear scans 
and thus incurring significantly less computational cost. 
For most categories in the Reuters dataset, the optimal results of 
our algorithm are obtained after reaching 2-3 levels of the refined 
classification tree. As the training error decreases, the test error 
also decreases, apparently without overfitting. This behavior is 
also observed in the Usenet dataset experiments, which 
demonstrates the flexibility of our technique. 

5.3 Usenet Dataset 
As above, Tables 3, 5, 7 and 9 show the refinement results 
obtained from the NB classifier from the four main newsgroups. 
Tables 4, 6, 8 and 10 show the corresponding results using 
Rocchio as the base classifier. For these results, 1000 top features 
(or words) are used. Figures 6, 7, 8 and 9 give the comparison 
with the various benchmark techniques (all features are used). 
From the experiments, we observe that our technique clearly 
outperforms all the other methods by a significant margin. 
BoosTexter did not perform well for the Usenet data set, which is 
in accordance with the results reported in [35]. SVM also does not 
perform well in the Usenet data set. One possible reason is that 
SVM overfits the training data because the training errors were 
very low for most datasets. However, our refined NB classifier 
and our refined Rocchio classifier do not seem to suffer from 
overfitting. 
Regarding running efficiency, SVM is much slower than our 
system because of its quadratic optimization. AdaBoost using a 
large number of rounds of boosting is also time-consuming. Using 
NB or Rocchio as the base classifier, our refined system requires 
only linear scans of the data and is on average more than 1000 
times faster than SVM using the Rainbow package. 

Table 1: Results after refining NB classifier for Reuters 

NB Refined NB  
 

Error  F Error F I+(%) 
earn 0.021 0.97 0.019 0.970 0.0 
acq 0.035 0.92 0.017 0.959 4.2 

money-fx 0.072 0.59 0.018 0.828 40.3 
grain 0.065 0.58 0.008 0.908 56.6 
crude 0.048 0.71 0.009 0.921 29.7 
trade 0.100 0.41 0.013 0.826 101.5 

interest 0.066 0.54 0.019 0.723 33.9 
ship 0.036 0.59 0.005 0.914 54.9 

wheat 0.076 0.36 0.008 0.841 133.6 
corn 0.073 0.31 0.006 0.836 169.7 

microavg 0.059 0.74 0.012 0.926 25.1 
macroavg 0.059 0.60 0.012 0.873 45.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Results after refining Rocchio classifier for Reuters 

Rocchio Refined Rocchio  
 

Error  F Error F I+(%) 
earn 0.022 0.97 0.021 0.97 0.0 
acq 0.043 0.91 0.025 0.94 3.3 

money-fx 0.095 0.53 0.025 0.80 50.9 
grain 0.064 0.58 0.014 0.85 46.6 
crude 0.070 0.62 0.029 0.78 25.8 
trade 0.140 0.34 0.025 0.72 111.8 

interest 0.084 0.48 0.025 0.71 47.9 
ship 0.045 0.55 0.011 0.82 49.1 

wheat 0.078 0.36 0.013 0.75 108.3 
corn 0.087 0.28 0.009 0.78 178.6 

microavg 0.073 0.69 0.020 0.90 30.4 
macroavg 0.073 0.56 0.020 0.81 44.6 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 3: Results of refining NB classifier for UseNet (comp) 

NB Refined NB  Comp 
Error  F Error F I+(%) 

graphics 0.087 0.80 0.052 0.87 8.7 
os-ms 0.102 0.74 0.063 0.84 13.5 
ibm-pc 0.099 0.78 0.041 0.89 14.1 

mac 0.084 0.81 0.049 0.88 8.6 
x-win 0.098 0.76 0.058 0.85 11.8 

microavg 0.094 0.78 0.052 0.87 11.5 
macroavg 0.094 0.78 0.052 0.87 8.7 

 
Table 4: Results of refining Rocchio classifier for Usenet (comp) 

Rocchio Refined Rocchio  Comp 
Error  F Error F I+(%) 

graphics 0.129 0.73 0.080 0.80 9.6 
os-ms 0.130 0.73 0.072 0.80 9.6 
ibm-pc 0.141 0.71 0.060 0.84 18.3 

mac 0.089 0.80 0.071 0.82 2.5 
x-win 0.133 0.73 0.058 0.83 13.7 

microavg 0.124 0.74 0.068 0.87 17.6 
macroavg 0.124 0.74 0.068 0.82 10.8 

 
Table 5: Results of refining NB classifier for UseNet (rec) 

NB Refined NB  Rec 
Error  F Error F I+(%) 

autos 0.053 0.90 0.014 0.97 7.8 
motorcycle 0.069 0.88 0.010 0.98 11.4 

baseball 0.016 0.97 0.019 0.98 1.0 
hockey 0.021 0.96 0.008 0.98 2.1 

microavg 0.040 0.92 0.013 0.98 6.5 
macroavg 0.040 0.93 0.013 0.98 5.4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6: Results of refining Rocchio classifier for UseNet (rec) 

Rocchio Refined Rocchio  Rec 
Error  F Error F I+(%) 

autos 0.080 0.86 0.019 0.96 11.6 
motorcycle 0.074 0.87 0.013 0.97 11.5 

baseball 0.031 0.94 0.027 0.94 0.0 
hockey 0.054 0.90 0.011 0.98 8.9 

microavg 0.060 0.89 0.018 0.96 7.9 
macroavg 0.060 0.89 0.018 0.96 7.9 

 
 

Table 7: Results of refining NB classifier for Usenet (sci) 

NB Refined NB  Sci 
Error  F Error F I+(%) 

crypt 0.056 0.90 0.019 0.96 6.7 
electronics 0.043 0.91 0.030 0.94 3.3 

medical 0.029 0.94 0.018 0.96 2.1 
space 0.047 0.91 0.013 0.97 6.6 

microavg 0.044 0.92 0.020 0.96 4.3 
macroavg 0.044 0.92 0.020 0.96 4.3 

 
 
Table 8: Results of refining Rocchio classifier for Usenet (sci) 

Rocchio Refined Rocchio  Sci 
Error  F Error F I+(%) 

crypt 0.077 0.86 0.045 0.92 7.0 
electronics 0.072 0.86 0.067 0.89 3.5 

medical 0.032 0.94 0.031 0.94 0.0 
space 0.072 0.87 0.020 0.96 10.3 

microavg 0.063 0.88 0.041 0.92 4.5 
macroavg 0.063 0.88 0.041 0.92 4.5 
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Table 9: Results of refining NB classifier for Usenet (talk) 

NB Refined NB  Talk 
Error  F Error F I+(%) 

guns 0.129 0.78 0.067 0.86 10.3 
mideast 0.038 0.93 0.028 0.95 2.2 

misc 0.115 0.77 0.089 0.83 7.8 
religion 0.086 0.83 0.058 0.87 4.8 

microavg 0.092 0.83 0.060 0.88 6.0 
macroavg 0.092 0.83 0.060 0.88 6.0 

 
 

Table 10: Results of refining Rocchio classifier for Usenet (talk) 

Rocchio Refined Rocchio  Talk 
Error  F Error F I+(%) 

guns 0.151 0.76 0.084 0.81 6.6 
mideast 0.045 0.91 0.031 0.93 2.2 

misc 0.154 0.72 0.104 0.76 5.6 
religion 0.086 0.84 0.075 0.84 0.0 

microavg 0.109 0.80 0.074 0.84 5.0 
macroavg 0.109 0.81 0.074 0.84 3.7 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

6. CONCLUSION 
In this paper, we proposed a refinement approach to handle the 
problem of model misfit evident in some existing text 
categorization techniques. Our approach successively refines the 
classification model based on the prediction errors of the 
training data. Extensive experiments conducted on Reuters-
21578 and Usenet newsgroups corpora confirm that our 
technique could make an inflexible classification model 
versatile, and outperform the state-of-the-art techniques like 
SVM and AdaBoost significantly. 

The results reported here are not necessarily the best that can be 
achieved. There is still room for improvement by finding better 
ways to identify the performance characteristics of the base 
classifier during the initial training phase. Nevertheless, the 
approach described is already able to achieve outstanding 
prediction performance without using any complex strategies or 
incurring significant computational costs. 
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APPENDIX 
Table 11: Usenet newsgroups used as positive categories 

Index Group Name of Category 
graphics comp comp.graphics 
os-ms comp comp.os.ms-windows.misc 
ibm-pc comp comp.sys.ibm.pc.hardware 
mac comp comp.sys.mac.hardware 
x-win comp comp.windows.x 
autos rec rec.autos 
motorcycle rec rec.motorcycles 
baseball rec rec.sport.baseball 
hockey rec rec.sport.hockey 
crypt sci sci.crypt 
electronics sci sci.electronics 
medical sci sci.med 
space sci sci.space 
guns talk talk.politics.guns 
mideast talk talk.politics.mideast 
misc talk talk.politics.misc 
religion talk talk.religion.misc 


