CS201 Midterm Test

Name:
SSN:

1. (7 marks) The relation R is a relation on the set $\{a, b, c, d\}$. Which one (ones) is (are) equivalence relation(s)?
a) $R=\{(a, a),(b, b),(c, c),(d, d)\}$
b) $R=\{(a, a),(a, b),(b, b),(b, a),(a, d),(a, c),(c, a),(c, c),(d, a),(d, d)\}$
c) $R=\{(a, a),(a, d),(b, b),(c, c),(d, a),(d, d)\}$
d) $R=\{(a, a),(a, b),(a, c),(a, d),(b, b),(b, c),(b, d),(c, c),(c, d),(d, d)\}$
2. (7 marks) Each of following is a relation on $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Which one (ones) is (are) partial order(s)?
a) $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d})\}$
b) $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{a}, \mathrm{d}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{a}),(\mathrm{d}, \mathrm{d})\}$
c) $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{d})\}$
d) $R=\{(a, a),(a, b),(a, c),(a, d),(b, b),(b, c),(b, d),(c, c),(c, d),(d, d)\}$
3. (10 marks) For each of these relations on the set $\{1,2,3,4\}$, decide whether it is reflexive, whether it is symmetric, whether it is anti-symmetric, and whether it is transitive. Put a tick in the table cell if you think that the corresponding relation has the particular property.

	Reflexive	Symmetric	Anti-symmetric	Transitive
(a) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$	x	x		x
(b) $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$			x	x
(c) $\{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4),(3,2)\}$				x
(d) $\{(1,1),(2,2),(3,3)\}$		x	x	x

4. (10 marks) Fill in the table. Z is the set of integers and N is the set of natural numbers, $0,1,2, \ldots$.

	onto	one-to-one	bijection
$f: N \rightarrow N, f(x)=x+1$		x	
$g: Z \rightarrow Z, g(x)=x+1$	x	x	x
$h: Z \rightarrow N, h(x)=\|x\|$	x		
$m: N \rightarrow Z, m(x)=x * 2$		x	

5. (10 marks) Let A be the set $\{2,5,7,8,12,13\}$ and B the set $\{1,2,3,5,8,13,14\}$. Compute:
(a) $\mathrm{A} \cap \mathrm{B}=\{2,5,8,13\}$
(b) $\mathrm{A}-\mathrm{B}=\{7,12\}$
(c) $\mathrm{B}-\mathrm{A}=\{1,3,14\}$
6. (10 marks) Let $\mathrm{A}=\{1,2,5,8,11,\{3\}\}$. Identify each of the following as True or False.

	True	False
(a) $\{5,1\} \subseteq \mathrm{A}$	x	
(b) $\{8,1\} \in \mathrm{A}$		x
(c) $\{3\} \in \mathrm{A}$	x	
(d) $\{\{3\}\} \subseteq \mathrm{A}$	x	
(e) $3 \in \mathrm{~A}$		x

7. (8 marks) Given $A=\{1,2,9\}$ and $B=\{2,5,6,8\}$, Make True or False for each of the following:

	True	False
(a) $\{1,2,5\} \subset \mathrm{A}-\mathrm{B}$		x
(b) $\mathrm{A} \cap \mathrm{B} \subset \mathrm{P}(\mathrm{B})$		x
(c) $\mathrm{A}-\mathrm{B} \in \mathrm{P}(\mathrm{A})$	x	
(d) $\{\varnothing\} \subset \mathrm{P}(\mathrm{A})$	x	

8. (10 marks) Fill the truth table of the following formula $\neg(p \vee \neg(p \wedge q))$

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\neg(\mathrm{p} \wedge \mathrm{q})$	$\mathrm{p} \vee \neg(\mathrm{p} \wedge \mathrm{q})$	$\neg(\mathrm{p} \vee \neg(\mathrm{p} \wedge \mathrm{q}))$
T	T	T	F	T	F
T	F	F	T	T	F
F	T	F	T	T	F
F	F	F	T	T	F

9. (18 marks) Let p, q, and r be propositions; p is known to be true, q is known to be false, and r 's status is unknown at this time. Tell whether each of the compound propositions is true, is false, or has unknown status.

	true	false	unknown
a) $p \vee r$	x		
b) $p \wedge r$			x
c) $p \rightarrow r$			x
d) $q \rightarrow r$	x		
e) $r \rightarrow p$	x		x
f) $r \rightarrow q$			
g) $(p \wedge r) \rightarrow r$	x		x
h) $(p \vee r) \rightarrow r$			
i) $(q \wedge r) \rightarrow r$	x		

10. (10 marks) Use mathematic induction to prove

$$
n!\geq 2^{n-1} \text { for } n \geq 1
$$

Answer:

Show that it is true for $n=1: 1!=1,2^{1-1}=1, n!\geq 2^{n-1}$ is true for $n=1$.
Show that for all integers $k>=1$, if the property is true for $n=k$ then it is true for $n=k+1$
Suppose $\mathrm{k}!\geq 2^{k-1}$, we will show that $(\mathrm{k}+1)!\geq 2^{k+1-1}=2^{k}$.
$(\mathrm{k}+1)!=\mathrm{k}!*(\mathrm{k}+1) \geq 2^{k-1} *(\mathrm{k}+1) \geq 2^{k-1} * 2=2^{k}$
Since we have proved both the base case and the inductive case, we conclude that the statement is true.

