CS201 Midterm Test

Name:

SSN:

- 1. (7 marks) The relation R is a relation on the set {a, b, c, d}. Which one (ones) is (are) equivalence relation(s)?
 - a) $R = \{(a, a), (b, b), (c, c), (d, d)\}$
 - b) $R=\{(a, a), (a, b), (b, b), (b, a), (a, d), (a, c), (c, a), (c, c), (d, a), (d, d)\}$
 - c) $R = \{(a, a), (a, d), (b, b), (c, c), (d, a), (d, d)\}$
 - d) $R=\{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)\}$
- 2. (7 marks) Each of following is a relation on {a,b,c,d}. Which one (ones) is (are) partial order(s)?
 - <u>a) $R=\{(a, a), (b, b), (c, c), (d, d)\}$ </u>
 - b) $R=\{(a, a), (a, b), (b, b), (b, a), (a, d), (a, c), (c, a), (c, c), (d, a), (d, d)\}$
 - c) $R=\{(a, a), (a, c), (a, d), (b, b), (c, a), (c, d), (d, d)\}$
 - <u>d</u>) $R=\{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)\}$
- 3. (10 marks) For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is anti-symmetric, and whether it is transitive. Put a tick in the table cell if you think that the corresponding relation has the particular property.

	Reflexive	Symmetric	Anti-symmetric	Transitive
(a) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$	х	х		х
(b) $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$			Х	х
(c) $\{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4),(3,2)\}$				х
$(d) \{(1,1),(2,2),(3,3)\}$		х	Х	х

4. (10 marks) Fill in the table. Z is the set of integers and N is the set of natural numbers, 0, 1, 2,

	onto	one-to-one	bijection
$f: N \rightarrow N, f(x) = x + 1$		х	
$g: Z \rightarrow Z, g(x) = x + 1$	Х	х	Х
$h: Z \rightarrow N, h(x) = x $	Х		
$m: N \rightarrow Z, m(x) = x*2$		Х	

- 5. (10 marks) Let A be the set {2, 5, 7, 8, 12, 13} and B the set {1, 2, 3, 5, 8, 13, 14}. Compute:
 - (a) $A \cap B = \{2, 5, 8, 13\}$
 - (b) $A-B = \{7, 12\}$
 - (c) $B-A = \{1, 3, 14\}$

	True	False
(a) $\{5,1\} \subseteq \mathbf{A}$	Х	
(b) $\{8, 1\} \in A$		Х
(c) $\{3\} \in A$	Х	
(d) $\{\{3\}\} \subseteq A$	Х	
(e) 3 ∈ A		Х

6. (10 marks) Let $A = \{1, 2, 5, 8, 11, \{3\}\}$. Identify each of the following as True or False.

7. (8 marks) Given $A = \{1, 2, 9\}$ and $B = \{2, 5, 6, 8\}$, Make True or False for each of the following:

	True	False
(a) $\{1, 2, 5\} \subset A - B$		Х
(b) $A \cap B \subset P(B)$		Х
(c) $A-B \in P(A)$	Х	
(d) $\{\emptyset\} \subset P(A)$	Х	

8. (10 marks) Fill the truth table of the following formula $\neg (p \lor \neg (p \land q))$

р	q	$p \wedge q$	\neg (p \land q)	$p \lor \neg (p \land q)$	$\neg (p \lor \neg (p \land q))$
Т	Т	Т	F	Т	F
Т	F	F	Т	Т	F
F	Т	F	Т	Т	F
F	F	F	Т	Т	F

9. (18 marks) Let p, q, and r be propositions; p is known to be true, q is known to be false, and r's status is unknown at this time. Tell whether each of the compound propositions is true, is false, or has unknown status.

	true	false	unknown
a) $p \vee r$	Х		
b) $p \wedge r$			Х
c) $p \rightarrow r$			х
d) $q \rightarrow r$	Х		
e) $r \rightarrow p$	Х		
f) $r \rightarrow q$			х
g) $(p \land r) \rightarrow r$	Х		
h) $(p \lor r) \rightarrow r$			Х
i) $(q \land r) \rightarrow r$	Х		

10. (10 marks) Use mathematic induction to prove

$$n! \ge 2^{n-1}$$
 for $n \ge 1$

Answer:

Show that it is true for n=1: 1!=1, $2^{1-1}=1$, n! $\ge 2^{n-1}$ is true for n=1.

Show that for all integers $k \ge 1$, if the property is true for n=k then it is true for n=k+1

Suppose $k! \ge 2^{k-1}$, we will show that $(k+1)! \ge 2^{k+1-1} = 2^k$.

 $(k+1)!=k!*(k+1) \ge 2^{k-1}*(k+1) \ge 2^{k-1}*2=2^k$

Since we have proved both the base case and the inductive case, we conclude that the statement is true.