CS201 Quiz 1

Name:	SSN:
Name.	55IN.

- 1. (5 marks) Which of the following is logically equivalent to "I'm not taking umbrella or it's not raining"?
 - (a) "If I'm taking umbrella, then it's raining."
 - (b) "If it's raining, then I'm taking umbrella."
 - (c) "If it's raining, then I'm not taking umbrella."
 - (d) None of the above.

Answer: (c)

2. (10 marks) Write the statement formally using quantifiers and variables, and write a negation for the statement.

Every object is larger than some object.

Answer:

- (1) $\forall x \in O, \exists y \in O$, such that x is larger than y
- (2) $\exists x \in O$, such that $\forall y \in O$, x is not larger than y.
- 3. (10 marks) Translate the following sentences into propositional logic using the specified letter:
 - S: Sally goes to the party.
 - J: Jim goes to the party.
 - (1) Sally goes to the party and Jim does not go to the party.

Answer: $S \land \neg J$

(2) If Jim goes to the party, Sally goes to the party.

Answer: $J \rightarrow S$

(3) Sally only goes to the party if Jim does not go.

Answer: $S \rightarrow \neg J$

4. (7 marks) Write the contraposition, converse and inverse of the below conditional statement in English: (The statement may or may not be true.)

If P is a rectangle, then P is a square.

Answers:

Contraposition: If P is not a square, then P is not a rectangle.

Converse:	If P is a square	, then P is a rectangle.
-----------	------------------	--------------------------

Inverse: If P is not a rectangle, then P is not a square.

5. (8 marks) Using a truth table to show that $p \rightarrow q$ is equivalent to $\neg p \lor q$.

р	q	¬p	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

6. (20 marks) Use mathematical induction to prove:

(1) $8^n + 6$ is divisible by 14 for all positive integers n.

Answer:

Show that it is true for n=1: $8^n + 6 = 8^1 + 6 = 14$, 14 is divisible by 14. Show that for all integers $k \ge 1$, if the property is true for n=k then it is true for n=k+1 Assume that $8^k + 6$ is divisible by 14, we will show that $8^{k+1} + 6$ is also divisible by 14. Since $8^k + 6$ is divisible by 14, then $8^k + 6 = 14$ m, where m is an integer, and $8^k = 14$ m-6. We have

 $(8^{k+1}+6)=8*8^{k}+6=8(14m-6)+6=8*14m-42=14(8m-3)$, which is divisible by 14. Since we have proved both the base case and the inductive case, we conclude that the statement is true.

(2) $1+3n \le 4n$ for every integer $n \ge 1$.

Answer:

Show that it is true for n=1: 1+3*1=4, 4*1=4, $1+3n \le 4n$ is true for n=1. Show that for all integers $k \ge 1$, if the property is true for n=k then it is true for n=k+1 Suppose $1+3k \le 4k$, we will show that $1+3(k+1) \le 4(k+1)$.

 $1+3(k+1) = 1+3k+3 \le 4k+3 < 4k+4 = 4(k+1)$

Since we have proved both the base case and the inductive case, we conclude that the statement is true.