Quiz Two (CS201)

Your Name:

\qquad Your SSN: \qquad

Instructions

- This is a closed-book quiz.
- The quiz has 8 questions, and the full mark is 75 .
- Write the answer for each question in the space provided below the question.

1. (15 marks) Give the first 5 terms $(k=1,2,3,4,5)$ of the following recursively defined sequences?
(a). $\mathrm{V}(\mathrm{k})=\mathrm{V}(\mathrm{k}-1)+\mathrm{V}(\mathrm{k}-2)$ for integers $\mathrm{k}>=3$
$\mathrm{V}(1)=1, \mathrm{~V}(2)=1$
Solution: $\quad V(3)=2, V(4)=3, V(5)=5$
(b). $\mathrm{V}(\mathrm{k})=\mathrm{V}(\mathrm{k}-1) * 2$ for integers $\mathrm{k}>=2$
$V(1)=6$
Solution: $\quad V(2)=12, V(3)=24, V(4)=48, v(5)=96$
(c). $V(k)=V(k+1)-V(k-1)$ for integers $k>=2$
$\mathrm{V}(1)=1, \mathrm{~V}(2)=1$
Solution: $\quad V(3)=2, V(4)=3, V(5)=5$
2. (5 marks) Give the following recursive definition of a set S
(1). 3 belongs to S (i.e., $3 \in S$).
(2). for every x, y belongs to $\mathrm{S}, \mathrm{x}+\mathrm{y}$ also belongs to S .

Which of the following do not belong to S ? The answer could be more than 1 .

$$
3,9,4,27,216,1345,1788
$$

Solution: 4, 1345
3. (5 marks) What does the following algorithm compute? Give a simple formula.

$$
\text { int foo(int } n, \text { int } x)\{
$$

$$
\text { if }(\mathrm{n}==1)
$$

return x ;
else
return $\mathrm{x}+\mathrm{foo}(\mathrm{n}-1, \mathrm{x})$;
\}
Solution: \mathbf{x}^{*} n
4. (5 marks) Write the recurrence equation for the following recursive algorithm.

```
int V(int n) {
if (n<=4)
        return(1);
else
        return(2 *V(n-1));
}
```


Solution:

$$
\begin{aligned}
& T(n)=1, \text { for } n<=4 \\
& T(n)=2 * T(n-1), \text { for } n>4
\end{aligned}
$$

5. (5 marks) Which of following statements are true?
(a) $5 \mathrm{n}^{3}-2 \mathrm{n}^{2}-\mathrm{n}+2=\mathrm{O}\left(\mathrm{n}^{3}\right)$
(b) $100 \mathrm{n}^{2}+\mathrm{n}^{3}-\mathrm{n}+2=\mathrm{O}\left(\mathrm{n}^{2}\right)$
(c) $5 \mathrm{n}^{3}-1000 \mathrm{n}^{200}-2^{\mathrm{n}}+2=\mathrm{O}\left(\mathrm{n}^{200}\right)$
(d) $5 \mathrm{n}^{3}-1000 \mathrm{n}^{200}-2^{\mathrm{n}}+2=\mathrm{O}\left(2^{\mathrm{n}}\right)$
(e) $3 \mathrm{n}^{2} \log \mathrm{n}+200 \mathrm{n}+(\mathrm{n}+100)^{2}=\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
(f) $3 \mathrm{n}^{2} \log \mathrm{n}+200 \mathrm{n}+(\mathrm{n}+100)^{2}=\mathrm{O}\left((\mathrm{n}+100)^{2}\right)$

Solution: (a)(d)(e) are true, (b)(c)(f) are false.
6. (5 marks) Rank the following typical bounds in increasing order of growth rate:

$$
O(\log n), O\left(n^{3}\right), O\left(3^{n}\right), O(n), O(n \log n), O\left(n^{2}\right)
$$

Solution: $\quad O(\log n), O(n), O(n \operatorname{logn}), O\left(n^{2}\right), O\left(n^{3}\right), O\left(3^{n}\right)$
7. (20 marks) For each of the following loops, give the tightest upper bound using big O notation.
(1) for $(\operatorname{int} \mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
\{ sum ++;
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
sum ++;
\}

Solution: $\mathbf{O}\left(\boldsymbol{n}^{\mathbf{2}}\right)$

(2) for $($ int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$

$$
\begin{aligned}
& \text { for }(\text { int } \mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++) \\
& \quad \text { sum }++
\end{aligned}
$$

Solution: $\mathbf{O}\left(n^{2}\right)$

```
(3) for ( int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
    \{
        for ( \(\operatorname{int} \mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++\) )
            sum++;
        for ( int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} * \mathrm{n} ; \mathrm{j}++\) )
            sum++;
    \}
```

Solution: $\mathbf{O}\left(n^{3}\right)$
(4) for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)

$$
\begin{aligned}
& \text { for }(\text { int } \mathrm{j}=1 ; \mathrm{j}<\mathrm{n} * \mathrm{n} ; 2 * \mathrm{j}) \\
& \quad \text { sum }++;
\end{aligned}
$$

Solution: O(nlogn)

8. (15 marks) An algorithm takes 1 ms for input size $\mathrm{N}=100$. How long will it take for input size of 500 if the running time is the following?
(a). linear

Solution: $\quad \mathbf{5 0 0} / \mathbf{1 0 0} * \mathbf{1}=\mathbf{5} \mathbf{~ m s}$
(b). quadratic

Solution: $\quad(500 / 100)^{2} * 1=25 \mathrm{~ms}$
(c). cubic

Solution: $\quad(500 / 100)^{3} * 1=125 \mathrm{~ms}$

