CS 201 - Data Structures and Discrete Mathematics I – Spring 2004

Homework 2: Linked List, Stack and Queue

General Information

Deadline: 11:59pm, Nov 10, 2004
Worth: 50 points

The purpose of this homework is to practice Queue and Stack. You are required to use Java. The homework is not a group project and everybody should work on it individually. We will run your programs with MOSS, which gives us an indication whether two programs are too close to have been written independently.

Problems

1.
(15 points) Given a sequence of numbers, write a class named my_Special_Reverse to store them in a linked list and then print them in reverse order on the screen except the three numbers in the middle. For example, given “103 23 4 13 21 18 19” as input, your program should print out “19 18 4 13 21 23 103”. The input will have an odd number of integers.
Hint:
Using the LinkedList Class, the new class should contain at least two methods: one for setting the sequence and one for printing the interior of the sequence in reverse order.
2.
(35 points) Stacks, Queues and Prefix Evaluation. A prefix expression is one in which we write the operation before the operands; consider the following examples.

	Infix
	Prefix

	4 + 5
	+ 4 5

	1 + 2 * 3
	+ 1 * 2 3

	1 + 2 + 13 + 4 + 5 + 16
	+ + + + + 1 2 13 4 5 16

	Invalid
	+ 1

	Invalid
	+ 1 2 3

This exercise is designed to let you learn to use a queue and a stack class.

· (10 points) Implement method enqueuePrefix(), which stores the characters input from the keyboard into a queue.

· (25 points) Implement method evaluatePrefix(), which takes a prefix arithmetic expression from the queue and evaluates it using a stack.

For example, for the input " + 1 * 2 0 ", your output (printed on screen) should be 1.

· To simplify this problem, you may assume that + and * are the only operators.

· Space is the separator.

· You should print out error message for an illegal prefix expression.

Hint:
1.
You can directly use the LinkedList class as a queue, or you can define a new Queue class, which inherits from LinkedList but with fewer methods.

2.
To evaluate a prefix expression, please consult the lecture notes on postfix evaluation and then design a similar evaluation algorithm for prefix expressions.

Sample Run:

Problem 1:

Enter string:
1 2 3 4 5

The reversed string:
5 2 3 4 1
Problem 2:

Enter a prefix expression:
+ 3 11
Value:
14

Enter a prefix expression:

+ + 3 11

Value:

Invalid
What to turn in

You should turn in two java files, one is named my_Special_Reverse.java, and the other is named my_prefixExpression.java. You should write main within each java file. So that after compiling, we can run each of them separately.
How to turn in
login to bert.cs.uic.edu, go to your working directory and run turnin.

"turnin -c cs201 -p project2 my_Special_Reverse.java my_prefixExpression.java "

You may run turnin as many times as you want (only the last copy is saved).

You can use “turnin -c cs201 -p project2 –v” to check whether you have turned in successfully.

For more help, you can type

turnin -h

or

man turnin

Note

1.
You MUST make sure that your program can compile using "javac" and run using “java" on bert.cs.uic.edu.

javac my_Special_Reverse.java

If no compiling error, you will see my_Special_Reverse.class created in your directory. Use

java my_Special_Reverse
to run your program.

2.
You use an IDE, such as Jbuilder, to code and to debug, but you must make sure that your code can be compiled and run on bert.cs.uic.edu without any additional packages.
3.
Remember to comment your code.

