5. If n is an integer that is greater than 1 , then
n is prime $\quad \Leftrightarrow \quad \forall$ positive integers r and s,

$$
\text { if } n=r \cdot s \text { then } r=1 \text { or } s=1 \text {. }
$$

n is composite(not prime) $\Leftrightarrow \quad \forall$ positive integers r and s such that $n=r \cdot s$ and $\mathrm{r} \neq 1$ and $s \neq 1$.

Prove: $\quad n^{2}+3 n+2$ is not prime.

Proof by contradiction:

Let $n^{2}+3 n+2=r . s$
Assume $r=1$ and $s=1$
$n^{2}+3 n+2=r . s=1$
$n^{2}+3 n=-1$
but $n^{2}+3 n$ cannot be -1 because n is an integer greater than 1 .
This introduces a contradiction
So this proves that $r \neq 1$ and $s \neq 1$.
Thus $n^{2}+3 n+2$ holds for the composite case and is not prime.

