5. If *n* is an integer that is greater than 1, then

n is prime \Leftrightarrow \forall positive integers *r* and *s*,

if $n = r \cdot s$ then r = 1 or s = 1.

n is composite(not prime) \Leftrightarrow \forall positive integers *r* and *s* such that *n* = *r* · *s*

and $r \neq 1$ and $s \neq 1$.

Prove: $n^2 + 3n + 2$ is not prime.

Proof by contradiction:

Let $n^2 + 3n + 2 = r.s$ Assume r = 1 and s = 1 $n^2 + 3n + 2 = r.s = 1$ $n^2 + 3n = -1$

but $n^2 + 3n$ cannot be -1 because *n* is an integer greater than 1.

This introduces a contradiction

So this proves that $r \neq 1$ and $s \neq 1$.

Thus $n^2 + 3n + 2$ holds for the composite case and is not prime.