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Linear regression

◼ Supervised learning has two main types

❑ Classification: discrete predictive/output variable

❑ Regression: continuous predictive/output variable

◼ We first study linear regression, i.e., the predictive function h

is a linear function. 
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An example: housing price prediction

◼ Given the size of a house, predict the 

price of the house.

◼ Notation:

❑ 𝑛: Number of training examples

❑ 𝑥: Input variable / feature (Size)

❑ 𝑦: Output variable / target variable (Price)

❑ (𝑥, 𝑦): One training example in general

❑ (𝑥𝑖 , 𝑦𝑖): 𝑖𝑡ℎ training example
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Size in feet^2 

(x)

Price ($) in 

1000’s (y)

2104 460

1416 232

1534 315

852 178

… …

Training data



Training data and linear function
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Model representation

◼ This is a univariate linear regression problem as it has only 

one input variable 𝑥.  

◼ The linear regression model in this case is as follows

𝑦 = ℎ𝛉 𝑥 = 𝜃0 + 𝜃1𝑥

❑ There are two parameters 𝜃0 and 𝜃1.

❑ 𝛉 represents the parameter vector, i.e., (𝜃0, 𝜃1)

◼ We use the training set to learn this model by optimizing a 

cost function, also called a loss function (L).
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Loss function

◼ Idea: select 𝜃0, 𝜃1 so that ℎ𝛉 𝑥 is close to 𝑦 for the

training example 𝑥, 𝑦 . This is expressed with a loss function. 

◼ Loss function (L) used by linear regression:

where ℎ𝛉 𝑥𝑖 = 𝜃0 + 𝜃1𝑥
𝑖

◼ Learning goal: 
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𝐿 𝛉 = 𝐿 𝜃0, 𝜃1 =
1

2𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝑥𝑖 − 𝑦𝑖
2

argmin 𝐿 𝜃0, 𝜃1
𝜃0, 𝜃1

Blue line is better 

than green line



Solve the minimization problem

◼ The learning is done using a general technique called 

❑ gradient descent
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Gradient descent

◼ Recall our univariate linear regression problem

❑ Loss function: 𝐿 𝜃0, 𝜃1
❑ Goal:  argmin 𝐿 𝜃0, 𝜃1

Steps:

◼ Start with some initial 𝜃0, 𝜃1
◼ Keep changing 𝜃0, 𝜃1 to reduce 𝐿 𝜃0, 𝜃1

until we hopefully end up at minimum
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𝜃0, 𝜃1



An illustration
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Keep going downhill
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Learning rule: 𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

1 2 3

1

2

3

0

𝐿 𝜃0, 𝜃1

𝜃1

𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 > 0

𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 < 0



Gradient descent algorithm

Repeat until convergence

{

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 (for 𝑗 = 0 and 𝑗 = 1)

}

◼ 𝛼: Learning rate (step size)

◼

𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 : derivative (rate of change)
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How to update

Correct: simultaneous update

◼ temp0 ≔ 𝜃0 −𝛼
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1

◼ temp1 ≔ 𝜃1 −𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

◼ 𝜃0 ≔ temp0

◼ 𝜃1 ≔ temp1

Incorrect:

◼ temp0 ≔ 𝜃0 −𝛼
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1

◼ 𝜃0 ≔ temp0

◼ temp1 ≔ 𝜃1 −𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

◼ 𝜃1 ≔ temp1
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Learning rate

Too big learning rate          Small learning rate
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Recall: Loss function and learning goal

◼ Recall: Loss function (L) used by linear regression is:

where ℎ𝛉 𝑥𝑖 = 𝜃0 + 𝜃1𝑥
𝑖

ℎ𝛉 𝑥𝑖 is an estimate of 𝑦𝑖

◼ Learning goal: 
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𝐿 𝛉 = 𝐿 𝜃0, 𝜃1 =
1

2𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝑥𝑖 − 𝑦𝑖
2

argmin 𝐿 𝜃0, 𝜃1
𝜃0, 𝜃1

Blue line is better 

than green line



Computing partial derivative

◼

𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 = 

𝜕

𝜕𝜃𝑗

1

2𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

2

= 
𝜕

𝜕𝜃𝑗

1

2𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

𝑖 − 𝑦𝑖
2

◼ 𝑗 = 0:   
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1 =

1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

◼ 𝑗 = 1:   
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 =

1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖
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Gradient descent for linear regression

Repeat until convergence

{

𝜃0 ≔ 𝜃0 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

𝜃1 ≔ 𝜃1 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖

}

◼ Update 𝜃0 and 𝜃1 simultaneously
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Batch gradient descent

◼ Each step or update of gradient descent uses all (n) the 

training examples.

❑ Sum over all n training examples for each step – slow 

❑ It is also memory demanding if the training data is huge. 

◼ In a normal learning process, training needs many steps 

before convergence.

◼ The training process that covers all the training examples 

once is called an epoch. 

❑ In batch gradient descent, each step is an epoch.  
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Stochastic gradient descent (SGD)

◼ SGD with one example per step: In SGD each step uses a single 

training example. Before each epoch, the data should be shuffled.

❑ SGD converges faster when the dataset is large as it causes updates to 

the parameters more frequently.

◼ The loss may fluctuate as only one example is used in each step. 

◼ SGD with minibatch: each update/step uses a random minibatch

of m out of n examples. 

❑ It is efficient, more stable, and more likely to jump out of a local minimum 

◼ Batch Gradient Descent is more suitable for convex loss functions 

as it can converge directly to minima.
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Convex and non-convex function

◼ A convex function has one minimum. 

❑ For all 0 ≤ 𝜆 ≤ 1 and all 𝑥1, 𝑥2 in a convex set X (e.g., an interval [a, b]), 

the following holds

𝑓(𝜆𝑥1 + (1 − 𝜆) 𝑥2) ≤ 𝜆𝑓(𝑥1)+(1 − 𝜆)𝑓(𝑥2)

◼ A non-convex function has local minima (valleys) that are not 

global minimum. 
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Convex set X: for all a and b in X, the line 

segment connecting a and b is included in X.

Convex function: a real-valued function is 

called convex if the line segment between any 

two points on the graph of the function does not 

lie below the graph between the two points.



Multivariate linear regression 

◼ In our previous linear regression problem, we use only one input 

variable/feature (univariate). In general, the problem can have any 

number of input variables. Let the number of variables be k, 

𝑥1, 𝑥2, … , 𝑥𝑘. 

◼ Training data: 𝐷 = {𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑛

◼ Multivariate linear regression model is

𝑦 = ℎ𝛉 𝐱 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + … + 𝜃𝑘𝑥𝑘
where 𝛉 is the vector of all 𝜃𝑖 and x is the vector of all 𝑥𝑖. 
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Multivariate linear regression (cont.)

◼ For convenience of notation, define 𝑥0 = 1 (𝑥0
𝑗
= 1 for all 

examples j)

◼ 𝐱 =

𝑥0
𝑥1
𝑥2
⋮
𝑥𝑘

∈ 𝑅𝑘+1 𝛉 =

𝜃0
𝜃1
𝜃2
⋮
𝜃𝑘

∈ 𝑅𝑘+1

◼ 𝑦 = ℎ𝛉 𝐱 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + … + 𝜃𝑘𝑥𝑘 = 𝛉⊤𝐱
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Univariate and multivariate gradient descent

◼ Univariate (𝑘 = 1)

Repeat until convergence {

𝜃0 ≔ 𝜃0 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

𝜃1 ≔ 𝜃1 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖

}

◼ Multivariate (𝑘 > 1)

Repeat until convergence {

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
1

𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝐱𝑖 − 𝑦𝑖 𝑥𝑗
𝑖

}

Simultaneously update  

𝜃𝑗 , for 𝑗 = 0, 1,⋯ , 𝑘
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Some example successes of neural networks
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Resurgence of neural networks

◼ Origin: Algorithms that try to mimic the brain (1943).

◼ Was very widely used in 80s and early 90s; popularity diminished 

in late 90s.

◼ Recent resurgence: State-of-the-art results in many applications.

◼ It works especially well for computer vision and natural language 

processing (including speech recognition). 

❑ It has revolutionized the two fields in recent years. 

❑ It has spread to almost every machine learning area and application in 

practice. 
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A single neuron in the brain
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Input

Output



The first neural network (McCulloch & Pitts, 1943)
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Simple model of a neuron (McCulloch & Pitts, 1943)

◼ Inputs ai come from the output of node i to this node j (or from “outside”)

◼ Each input link has a weight 𝑤i,j

◼ There is an additional fixed input a0 (bias) with weight w0,j

◼ The total input is inj = i 𝑤i,j ai

◼ The output is aj = 𝜎(inj) = 𝜎(i 𝑤i,j ai) = 𝜎(𝐰.a)
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Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

𝑤0,𝑗

𝑤𝑖,𝑗

aj = 𝜎(inj)

𝜎



Logistic regression in a figure
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ℎ𝐖 𝐱 =
1

1 + 𝑒−𝐰
⊤𝐱

“Bias unit”

Output



𝑥0

𝑥1

𝑥3

𝑥2

𝑦
𝑦 = ℎ𝐰 𝐱 = 𝜎 𝐰⊤𝐱 ,

where 𝜎(𝑧) =
1

1+𝑒−𝒛

𝑤0

𝑤1

𝑤2

𝑤3

input

 𝐰⊤𝐱 = z

𝐱 =

𝑥0
𝑥1
𝑥2
𝑥3

𝐰 =

𝑤0

𝑤1

𝑤2

𝑤3

“Weights” 

“Parameters”

Sigmoid (logistic)

function



An artificial neuron: a logistic unit 

◼ A neuron is a logistic unit 

❑ 𝜎 𝐰⊤𝐱 is called activation 

function. 

❑ Activation function does not have 

to be sigmoid. 

◼ A neural network is a  

composition of many logistic 

units organized in layers. 

❑ It can also be seen as a logistic 

regression model with one or 

more hidden layers. 
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𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐰 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

Layer 1    layer 2 (hidden) layer 3

output



Neural network: an example

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0
𝑎𝑖
(𝑗)

= “activation” of unit 𝑖 in layer 𝑗

𝐖 𝑗 = matrix of weights controlling 

function mapping from layer 𝑗 to layer 𝑗 + 1

𝑎1
(2)

= 𝜎 𝐖10
(1)
𝑥0 +𝐖11

(1)
𝑥1 +𝐖12

(1)
𝑥2 +𝐖13

(1)
𝑥3

𝑎2
(2)

= 𝜎 𝐖20
(1)
𝑥0 +𝐖21

(1)
𝑥1 +𝐖22

(1)
𝑥2 +𝐖23

(1)
𝑥3

𝑎3
(2)

= 𝜎 𝐖30
(1)
𝑥0 +𝐖31

(1)
𝑥1 +𝐖32

(1)
𝑥2 +𝐖33

(1)
𝑥3

ℎ𝐖(𝑥) = 𝜎 𝐖10
(2)
𝑎0
(2)

+𝐖11
(2)
𝑎1
(2)

+𝐖12
(2)
𝑎2
(2)

+𝐖13
(2)
𝑎3
(2)

𝑠𝑗 units in layer 𝑗

𝑠𝑗+1 units in layer 𝑗 + 1
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Neural network: an example
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𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝑾 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝑥 =

𝑥0
𝑥1
𝑥2
𝑥3

z(2) =

z1
(2)

z2
(2)

z3
(2)

𝑎1
(2)

= 𝜎 𝐖10
(1)
𝑥0 +𝐖11

(1)
𝑥1 +𝐖12

(1)
𝑥2 +𝐖13

(1)
𝑥3 = 𝜎(z1

(2)
)

𝑎2
(2)

= 𝜎 𝐖20
(1)
𝑥0 +𝐖21

(1)
𝑥1 +𝐖22

(1)
𝑥2 +𝐖23

(1)
𝑥3 = 𝜎(z2

(2)
)

𝑎3
(2)

= 𝜎 𝐖30
(1)
𝑥0 +𝐖31

(1)
𝑥1 +𝐖32

(1)
𝑥2 +𝐖33

(1)
𝑥3 = 𝜎(z3

(2)
)

ℎ𝐖 𝑥 = 𝜎 𝐖10
2
𝑎0

2
+𝐖11

2
𝑎1

2
+𝐖12

2
𝑎2

2
+𝐖13

2
𝑎3

2
= 𝜎(𝑧(3))

“Pre-activation”



Neural network: an example
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𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝐱 =

𝑥0
𝑥1
𝑥2
𝑥3

𝐳(2) =

z1
(2)

z2
(2)

z3
(2)

“Pre-activation”

𝑎1
(2)

= 𝜎(z1
(2)
)

𝑎2
(2)

= 𝜎(z2
(2)
)

𝑎3
(2)

= 𝜎(z3
(2)
)

ℎ𝐖 𝐱 = 𝜎(𝑧(3))

𝐳(2) = 𝐖(1)𝐱 = 𝐖(1)𝐚(1) // layer 1: 𝐚(1) = x

𝐚(2) = 𝜎(𝐳(2))

Add 𝑎0
(2)

= 1

𝐳(3) = 𝐖(2)𝐚(2)

ℎ𝐖 𝐱 = 𝐚(3) = 𝜎(𝐳(3))



Neural network learning its own features

◼ Other machine learning 

models directly use the 

input features to build 

models.

◼ But a neural network 

can learn higher level 

features that consider 

the interactions of the 

input features.  

CS583, Bing Liu, UIC 34

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0



More layers
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𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝑎1
(3)

𝑎2
(3)

𝑎0
(3)



More layers give different levels of abstraction

◼ We don’t know the “right” 

levels of abstraction

◼ So let the model figure it 

out!

◼ Face Recognition:

❑ Deep network can build up 

increasingly higher levels of 

abstraction

❑ Lines, parts, regions
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Example from 

Honglak Lee 

(NIPS 2010)



Multiple classes 

◼ With multiple classes in a classification problem, we will need 

multiple output units, one output unit per class. 
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Output layerInput layer



Activation function

◼ So far, we’ve assumed that the activation function is always the 

sigmoid/logistic function. In fact, it is not widely used any more. 
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𝑧 = 𝐰⊤𝐱

𝜎(𝑧)

𝑎 = 𝜎(𝑧) =
1

1 + 𝑒−𝒛

“Bias unit”



𝑥0

𝑥1

𝑥𝑛

𝑥2

𝑤0

𝑤1

𝑤2

𝑤𝑛

𝒛 = 𝐰⊤𝐱
= σ𝑖=1

𝑛 𝑤𝑖𝑥𝒊
…



Two more activation functions, Tanh and ReLu
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𝜎(𝑧) =
1

1+𝑒−𝑧
𝜎(𝑧) =

𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
𝜎(𝑧) = max(0, 𝑧)

𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧))                        𝜎′(𝑧) = 1 − 𝜎(𝑧)2 𝜎′ 𝑧 = ቊ
1, 𝑧 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



An example: recognizing hand-written digits

◼ Each hand-written digit is a 28x28 = 784 image

◼ We want to build a neural network to recognize 

10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

CS583, Bing Liu, UIC 40

28

28

Subsequent slides are based on 4 videos starting from the following: 

https://www.youtube.com/watch?v=aircAruvnKk
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◼ This is the simplest network, 

called Multilayer 

perceptron (MLP)

◼ One input layer

◼ Two hidden layers 

◼ 2 is an arbitrary choice

◼ Each has 16 neurons or units

◼ One output layer with 10 

units for the 10 digits

◼ All units are fully connected.

Input             2 hidden layers       output
layer             (16 neurons each) layer

A network for recognizing of hand-written digits



Each neuron is a function, computing an 

activation value based on all its inputs

◼ These 784 neurons 

form the first layer.

◼ The value held in each 

output neuron basically 

tells how likely the input 

image is each digit. 

◼ Activations of one layer 

determine the 

activations of the next 

layer
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Intuitive idea of layers

◼ The first layer just the gray scale value of each pixel in the 

image. 

◼ The second layer may capture some low-level features, e.g., 

edges of different orientations. 

◼ The third layer may capture some high-level features such as 

loops, strokes, and lines. 

◼ The final layer tells which combination of the subcomponents 

corresponds to each digit. 
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Let us look at a particular neuron

◼ How does it pick up a small patten?

◼ For the value of this neuron, we compute 

w1a1+w2a2+ w3a3+ … +wnan+ b

❑ Which may be any value. In this case, we 

want the values between 0 and 1, we use 

squash function sigmoid ()

◼ 𝜎(w1a1+w2a2+ w3a3+ … +wnan + b)
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How many parameters?

◼ Each neuron in one layer is connected with every neuron in 

the next layer (fully connected). 

◼ We have

❑ Number of parameters (or weights): 784x16 + 16x16 + 16x10

❑ Number of biases: 16 + 16 + 10 

◼ Total number of parameters:  13,002

❑ These all can be tuned and changed.

◼ Learning: find suitable values for all these parameters to solve 

the problem at hand, e.g., classifying hand-written digits. 
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This network is a function with 13,002 parameters 
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Learning

◼ Use a lot of training examples

❑ Images of handwritten digits with 

the correct labels (what numbers 

they correspond to)

◼ to adjust those 13,002 weights 

and biases to improve the 

performance on training data. 

❑ Hopefully, the resulting network 

also generalizes to test data. 

◼ An algorithm is needed: 

backpropagation
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Training is an optimization problem.

◼ Trying to find a 

minima for a cost 

function C(x)

◼ At the beginning, we 

just give those 

weights and biases 

some random values. 

◼ The cost function 

basically shows how 

bad the prediction is.  
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We start with a random initialization

◼ Input 3 gets 

nonsense 

results at the 

output layer. 

◼ Use cost 

function to 

measure the 

difference. 
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Square loss (cost) function

◼ We take the squared difference of what the system gives and 

what is correct. 
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Cost will be small if the classification is correct. 
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Cost average over all training data

◼ The average cost 

gives an idea how 

good the network is in 

classification.

◼ Training algorithm 

basically changes all 

13002 those weights 

and biases to get 

better cost. 

❑ How to do that?
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Here we only show only one training example



How do we optimize? Let us consider only one weight w first

For a simple function                  For a complex function

◼ Very difficult for our cost function with 13,002 variables. 

❑ We need gradient decent. 
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How is gradient descent used

◼ Let us put all the 13,002 weights and biases in a single vector 

and all the negative gradients of them into another vector. 

◼ We can nudge or change

the weights and biases 

to reduce the cost and

to minimize it. 

◼ The algorithm doing this 

is backpropagation. 
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Meaning of those gradient numbers

◼ We can see 

❑ what weight should increase 

and 

❑ what should decrease 

❑ what change means a lot 
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Backpropagation

◼ The backpropagation algorithm was originally introduced in the 

1970s, 

◼ but its importance wasn't fully appreciated until a famous 1986 

paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams. 

◼ That paper describes several neural networks where 

backpropagation works far faster than earlier approaches, 

❑ making it possible to use neural nets to solve problems which had 

previously been insoluble. 

◼ Today, the backpropagation algorithm is the workhorse of learning 

in neural networks.
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http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
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Training: backpropagation algorithm

◼ Step 1: initialize the weights and biases.

❑ Weights in the network are initialized to random numbers from interval [-1,1]

❑ Each unit has a BIAS associated with it 

❑ Biases are similarly initialized to random numbers from the interval [-1,1]

◼ Step 2: feed the training sample

◼ Step 3: propagate the inputs forward; we compute the net input  

and output of each unit in the hidden and output layers.

◼ Step 4: back-propagate the error.

◼ Step 5: update weights and biases to reflect the propagated errors.

◼ Step 6: terminating conditions.
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Intuition of backpropagation

◼ Since in each step the cost is 

over all training examples, let 

us focus on a single example. 

◼ The network isn’t well trained, 

the output activations are 

pretty random for the input 

image of 2.

◼ So we need to adjust those 

weights and biases. 
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Intuition of backpropagation (cont.)

◼ We know which activation should go up and which should go down.
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◼ In this case, the target value 

for 2 should 1.0 and the others 

should be 0.0. 

◼ We should nudge activation 

value for the number ‘2’ up & 

the rest down. 

❑ For 7, 8, 9, the values are small. 

❑ The size of each nudge should 

be in proportion to its target value



Let us look at neuron for 2 only

◼ We can nudge 

weights, the bias and 

activations. 

❑ Note that we cannot 

change activations, 

❑ but only the weights 

and biases of the 

previous layers, which 

affect the activations
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The effect of gradient 

◼ The gradients tell us 

which weight or bias 

should be nudged up 

or which down,

◼ but which nudge will 

give us the best 

effect “best bang for 

the buck”. 

CS583, Bing Liu, UIC 61



Considering all output neurons

◼ We have only considered 

the output neuron for 2. 

◼ We also need to consider 

all the output neurons and 

how they should be nudged 

and their effect on the 

second last layer. 
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The idea of backpropagation

◼ Finally, we sum up all the 

effects to get what should 

happen to the second to the 

last layer.

◼ Then we can recursively apply 

the same process to the 

previous layer and so on. 

❑ So that their weights and biases 

can be adjusted. 
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Considering all training examples

◼ So far, we have only 

looked at one training 

example of 2. 

❑ We can get how much 

change should be 

applied to each weight 

and bias.

❑ But we need to 

average over all 

training data to get 

their desired changes
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Stochastic gradient descent

◼ It takes too long to go though all the training data and all those 

computations to calculate each nudge/change. 
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◼ In practice, we use 

stochastic gradient 

descent. 

❑ We shuffle the data & divide 

them in minibatches and 

❑ work on each minibatch in 

each step.  

Computing based on minibatches 



Math of backpropagation

◼ We start with a very simple 

case: 

❑ one neuron in each layer

◼ Further, we will focus on the 

last two layers.

❑ For a training example with 

class y, the last neuron is for 

the class (i.e., 1.00)

◼ We work on one training 

example first.
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Model the two layers 

◼ Note that we can go to 

the next level too, but 

we will not focus on that
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◼ Let us see the flow structure for 2 layers. 

C0 is the cost of one training example



How sensitive cost is to a small change in weight?

◼ Each term is just 

a numerical value 

with a number 

line. 

◼ To get the 

sensitivity, we 

take partial 

derivatives

❑ Chain rule
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Compute all derivatives 
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Consider all training examples

◼ We have only 

considered one 

example and its 

cost C0. 

◼ To consider all 

training 

examples, we 

average the 

gradients 
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Take derivative of the bias
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Take derivative of the activation (propagate back)
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Iterating the same chain rule idea backward to the 

previous layer and so on 
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General case: more neurons in each layer

◼ Need more indices and everything else is basically the same. 
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Derivatives on weights and biases are the same
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Derivative on the activation changes

◼ Since the 

neuron (𝑎𝑘
(𝐿−1)

) 

influences the 

cost function 

through 

multiple 

different paths 

(2 in this 

case).  
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With all the gradients, we apply gradient descent

◼ The expression 

“or” means that at 

the last layer 

(which is different 

from other 

layers), we take 

the derivative on 

the cost. 

◼ Note the typo: 

l -> L
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Watch these YouTube videos about neural network 

and backpropagation

◼ https://www.youtube.com/watch?v=aircAruvnKk

❑ There are 4 videos introducing neural networks and backpropagation. 

Most of our slides are based on these videos. 

◼ https://www.youtube.com/watch?v=IN2XmBhILt4https://www.yout

ube.com/watch?v=iyn2zdALii8

◼ https://www.youtube.com/watch?v=GKZoOHXGcLo

◼ A playlist:

❑ https://www.youtube.com/watch?v=CqOfi41LfDw&list=PLblh5JKOoLUIxG

DQs4LFFD--41Vzf-ME1
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