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Linear regression

Supervised learning has two main types
o Classification: discrete predictive/output variable
o Regression: continuous predictive/output variable

We first study linear regression, I.e., the predictive function h
IS a linear function.

Many slides are borrowed from Jia-Bin Huang and Matt Gormley
C$583, Bing Liu, UIC 2



An example: housing price prediction

Given the size of a house, predict the Training data
price of the house.

_ Size in feet”"2 | Price ($) in
Notation: (X) 1000’s (y)
o n: Number of training examples 2104 460
o x: Input variable / feature (Size) 1416 232
o y: Output variable / target variable (Price) 1534 315
o (x, y): One training example in general 852 178

a (x4, yY): ith training example
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‘ Training data and linear function

Price ($) A
(in 1000’s)

400 =

300 —

200 =

100 =

| | | | | s

| | | | I sie
500 1000 1500 2000 2500 (i feet2)
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Model representation

This Is a univariate linear regression problem as it has only
one input variable x.

The linear regression model in this case Is as follows
y = hg(x) =6y + 0,x

o There are two parameters 8, and 6;.

o O represents the parameter vector, i.e., (6,, 9,)

We use the training set to learn this model by optimizing a
cost function, also called a loss function (L).

CS583, Bing Liu, UIC



L.oss function

ldea: select 6,, 6, so that hg(x) IS close to y for the
training example (x, y). This is expressed with a loss function.

Loss function (L) used by linear regression:

L(8) = L(6g, 6;) = — E(he(x) i)’ e

where hg(x!) = 6y + 0, x° 7

200 =

100 —

Learning goal: argmin L(6,, 6,)

Blue line is better
than green line

x-
x-
- x . - -
‘;:yit"
- X

HOa 91
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‘ Solve the minimization problem

= The learning Is done using a general technique called

n gradient descent

CS583, Bing Liu, UIC



Gradient descent

Recall our univariate linear regression problem
o Loss function: L(8,, 64)
o Goal: angmm L(6,, 0,)

Steps:
Start with some initial 6, 6,
Keep changing 6,, 0, to reduce L(8,, 0;)
until we hopefully end up at minimum

CS583, Bing Liu, UIC



An illustration
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Keep going downhill

. G,
Learningrule: 6; =0; —« PR
1

L(HO' 81)

CS583, Bing Liu, UIC
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Gradient descent algorithm

Repeat until convergence

{

0;

i =0, —a—L(HO,Hl) (forj =0andj =1)

}

a. Learning rate (step size)

0

0 L(HO, 0,): derivative (rate of change)

CS583, Bing Liu, UIC
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How to update

Correct: simultaneous update Incorrect:
] tempO = 00 —A iL(Ho, 81) O tempO = 90 — %L(Qo, 61)
0

= templ =0, —«a ﬁL(QO, 9,) m 6, = temp0
1

= templ =60, —« — L(BO, 0,)
1

m 6y = temp0 m 6, :=templ
= 0 = templ

CS583, Bing Liu, UIC



‘ Learning rate

Too big learning rate

Small learning rate

CS583, Bing Liu, UIC
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‘ Recall: LLoss function and learning goal

= Recall: Loss function (L) used by linear regression Is:

1 % L
L(®) = L(8y,0,) = %Z(he(xl) — yl)z
=1

Blue line is better

where hg(xi) = 60 + Hlxi Price ($) 4 than g:'en line
(in 1000's) .
N : ; x-
l l
he(x') is an estimate of y oo L i X _
300 - ¢ x”_ -
. & =
= Learning goal: ﬂ::’;,g‘
. 100
argmin L(6,,6;) o
90, 91 500 1000 1500 2000 2500 (Sir']zfietz)
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Computing partial derivative

797 L(00,01) = 555 S (ho(x') = ')

%% n1(90+31x —Y)

j=0: aieol:(eo; 01) :% ?=1(h9(xi) — yi)

i=1: aielL(eo, 0,) = 23 (ho(x?) — y1) x!

CS583, Bing Liu, UIC
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Gradient descent for linear regression

Repeat until convergence

{

1

O = 0o — a s ¥iLi(he(x') — ')
1

0, =0, — 0‘—2?=1(h9(xi) — yi) Xi

n

Update 6, and 68, simultaneously

CS583, Bing Liu, UIC
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Batch gradient descent

Each step or update of gradient descent uses all (n) the
training examples.

o Sum over all n training examples for each step — slow

o It is also memory demanding if the training data is huge.

In a normal learning process, training needs many steps
before convergence.

The training process that covers all the training examples
once Is called an epoch.
o In batch gradient descent, each step is an epoch.

CS583, Bing Liu, UIC
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Stochastic gradient descent (SGD)

SGD with one example per step: In SGD each step uses a single

training example. Before each epoch, the data should be shuffled.

o SGD converges faster when the dataset is large as it causes updates to
the parameters more frequently.
The loss may fluctuate as only one example is used in each step.
SGD with minibatch: each update/step uses a random minibatch
of m out of n examples.

o Itis efficient, more stable, and more likely to jump out of a local minimum

Batch Gradient Descent Is more suitable for convex loss functions

as it can converge directly to minima.

CS583, Bing Liu, UIC
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COHVGX and non—convex funCtlon Convex set X: for all a and b in X, the line

segment connecting a and b is included in X.

Convex function: a real-valued function is
called convex if the line segment between any
two points on the graph of the function does not

A convex funCt|On haS one m|n|mum lie below the graph between the two points.

o Forall0 <A <1 andall xq, x, iIn a convex set X (e.g., an interval [a, b]),
the following holds

fAxg + (1 = 2) x2) < Af (x1)+(1 = A)f (x2)
A non-convex function has local minima (valleys) that are not

global minimum. Convex . Non-convex

CS583, Bing Liu, UIC 19



Multivariate linear regression

In our previous linear regression problem, we use only one input
variable/feature (univariate). In general, the problem can have any

number of input variables. Let the number of variables be Kk,
X1y X2y vee ) X

Training data: D = {x!, y‘}"-,
Multivariate linear regression model is
y =he(X) =0y + 01x1 +60,x, + ... + O
where 0 Is the vector of all 8; and x Is the vector of all x;.

CS583, Bing Liu, UIC 20



Multivariate linear regression (cont.)

For convenience of notation, define x, = 1 (xg =1 for all
examples |)

XO —90_
X1 04

X = |X2| € RF*H! 0=|60,|€R"!
Xk _Qk_

y=he(X) =0y +60;x; +0,x, + ... +Ox, =0'x

CS583, Bing Liu, UIC
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Univariate and multivariate gradient descent

Univariate (k = 1) Multivariate (k > 1)
Repeat until convergence { Repeat until convergence {
n
— 1yn i i 1 . <
O = 0o —a Tla(ho(x) ~¥') 0 =6 —a— > (ho(x) )]

1=1
01 =06, _“%Z?ﬂ(he(xi)_yi)xi }
} Simultaneously update
Hj,forj =0,1,---, k

CS583, Bing Liu, UIC 22
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‘ Some example successes of neural networks

0 i h, h, h, 0

Z . 5 i
% § e N\ “Xg{“}g{ﬁ‘ Output 1
=0 olllialle

A NPW IS
. Hurman amar min Input n / \ X

g 2011 oz

' ‘o ° e by THE ULTIMATE GO CHALLENGE
; o Ao ¥ ® GAME S OF §
f 5 ‘ 15 MARCH 2016
i i DeepMind challenge maich Lee Sedol (9p) » ‘
AlphaGo (Mar 2016) Top player of
41 past decade ‘ . o
: AlphaGo Lee Sedol I
Beats ; Y st A 00 THE ULTIMATE GO CHALLENGE
Nature match Fan Hui (2p) . N e 27 MAY 2017
AlphaGo (Oct 2015) 3-times reigning
50 Euro Champion
Beats
T AlphaGo Ke Jie
Winner of Match 3
KGS =
Crazy Stone and Zen — ?E}T‘:lﬁur RESULT B+R
ans + Res
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Resurgence of neural networks

Origin: Algorithms that try to mimic the brain (1943).

Was very widely used in 80s and early 90s; popularity diminished
In late 90s.

Recent resurgence: State-of-the-art results in many applications.
t works especially well for computer vision and natural language
orocessing (including speech recognition).

o It has revolutionized the two fields in recent years.

o It has spread to almost every machine learning area and application in
practice.

CS583, Bing Liu, UIC
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‘ A single neuron 1n the brain

npu

. Cell body

Axon €rminal

Node of
Ranvier

Q
| Schwann cell

Nucleus Output Myelin sheath

CS583, Bing Liu, UIC 26



The first neural network (McCulloch & Pitts, 1943)

In 1943 American neurophysiologist and
cybernetician of the University of Illinois at
Chicago” Warren McCulloch® and self-taught
logician and cognitive psychologist Walter Pitts”
published “A Logical Calculus of the ideas
Imminent in Nervous Activity”,” describing the
“McCulloch - Pitts neuron”, “the first

mathematical model of a neural network.

Building on ideas in Alan Turing’s “On
Computable Numbers”, McCulloch and Pitts's

paper provided a way to describe brain functions

& in abstract terms, and showed that simple
i elements connected in a neural network can have

immense computational power. The paper
@{i p p p p

CS583, Bing Liu, UIC
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Simple model of a neuron (McCulloch & Pitts, 1943)

1 Bias Weight
do = a. = o(in
\
Wi,j \
a,- - >
Input Input  Activation Output
Links Function Function Output Links

Inputs a; come from the output of node I to this node | (or from “outside”)

Each input link has a weight w;

There is an additional fixed input a, (bias) with weight w;
The total inputis in; = %, w;; &

The output Is a; = a(In) = o(%; w;; &) = a(W.a)

CS583, Bing Liu, UIC 28



‘ Logistic regression in a figure

X0 Wy |
Bias unit ¥ = X1 W = W1 “Weights”
X W21 “Parameters”
| X3 ] W3 |
— — T
y = hy(X) = o(w'x),
Y 1

Output ~ Where o(z) = —;

- Sigmoid (logistic)
2 W'X=2 functi
unction

Input

CS583, Bing Liu, UIC 29



An artificial neuron: a logistic unit

A neuron is a logistic unit

o o(wT'x) is called activation
function.

o Activation function does not have
to be sigmoid.

A neural network Is a

composition of many logistic

units organized Iin layers.

o It can also be seen as a logistic
regression model with one or
more hidden layers.

Layer 1 layer 2 (hidden) layer 3

CS583, Bing Liu, UIC 30



Neural network: an example

al@ = "activation” of unit i in layer j
WU) = matrix of weights controlling

function mapping from layer j to layer j + 1

sj units in layer j

2 1 1 1 " Sj+1 Units in layer j + 1
ag ) =g (Wl(o)xo + W1(1)x1 + Wl(z)xz + Wl(g)xg)

2 1 1 1 1
ag e (Wz(o)xo + Wz(l)xl + Wz(z)xz + W2(3)x3)
2 1 1 1 1
a? = o (W'xo + WiPxy + W'x, + WiPxs )
2) (2 2) (2 2) (2 2) (2
hw(x) =0 (Wl(o)a(() ) 4 Wl(l)a§ ) + Wl(z)ag ) + W1(3)a:,(3 ))

31
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Neural network: an example

“Pre-activation”

] " iz)-
2@ = |,@
- 25"
agz) =0 (Wl(é)xo + Wl(i)xl + Wl(;)xz + Wl(;)x3) = a(ziz))
agz) =0 (Wz((l))xo + Wz(i)xl + Wz(;)xz + WZ(;)X3) = a(zgz))
agz) =0 (W,D%)xo + W3(1)x1 + WB(;)xz + Wésl,)x3) = a(zgz))
hw(x) =0 (Wl(g)agz) + Wl(f)agz) + Wl(?agz) + Wl(?agz)) = o(z®)

CS583, Bing Liu, UIC
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Neural network: an example

2 2
a¥ = o(z)
2 2
ag ) = O'(Zg ))
2 2
ag ) = J(zg ))
hw(x) = 0(z®)

CS583, Bing Liu, UIC

“Pre-activation”
- 2)
Z4q

2@ = |,®

Z(z) — W(l)x — W(l)a(l) // layer 1: a(l) = X
a(z) o O'(Z(Z))

Addal? =1

,3) — WDa®

hW(X) — a(3) — g(z(?’))

33



Neural network learning its own features

Other machine learning
models directly use the
Input features to build
models.

But a neural network

can learn higher level
features that consider
the interactions of the
Input features.

CS583, Bing Liu, UIC 34



‘ More layers




More layers give different levels of abstraction

Feature representation
s 55

= We don’t know the “right” ELBT R 3rd laver
levels of abstraction SR Sl “Objects”
= So let the model figure it
out! 2nd layer

o “Object parts”
= Face Recognition:

o Deep network can build up 3;'3"?
. . . es
Increasingly higher levels of .
abstraction Pixels Example from

Honglak Lee

o Lines, parts, regions
(NIPS 2010)

CS583, Bing Liu, UIC 36



‘ Multiple classes

= With multiple classes in a classification problem, we will need
multiple output units, one output unit per class.

L N L]
AT

REQ X EAY S
A 2 /7
ZaQ\N * ZiOS @28

NARE

3
S\

Layer 1 Layer 2 Layer 3  Layer4
Input layer Output layer

CS583, Bing Liu, UIC



Activation function

So far, we've assumed that the activation function is always the
sigmold/logistic function. In fact, it is not widely used any more.

1+ =

“Bias unit” —
Wo /

= Y WX 14+e72 | — | g | |

CS583, Bing Liu, UIC



‘ Two more activation functions, Tanh and Rel.u

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
11 v - 1 — . q .
a’(z) o(2) o(2)
ol 7(2) ' 05 a'(z). ¢ d'(z) |
06} 1 3
O 4
04} { 2
0.2} | 0 ' 1
0 b <ol . —— i R ) 0 4 )
5 0 5 5 0 5 5 0 5
1 ef—e~ %
o(z) = o7 o(z) = T o(z) = max(0, z)
1 z>0
! _ _ / — _ 2 ! — )
0 (z)=0(2)(1—0(2)) 0(z)=1—-0(2) o'(z) {0, otherwise

CS583, Bing Liu, UIC 39



An example: recognizing hand-written digits

Each hand-written digit is a 28x28 = 784 image

We want to build a neural network to recognize
10 digits: 0, 1, 2, 3,4,5,6,7,8,9 28

A%NNSMIWRNO
\Q%\h G‘\"‘\‘h(.nq)——g
RIS HIXPNN—D
N2 < W~ D
vl e 4 d NND
VN NALWN PO
CUNRN~T Q-0
LRI SN RONND

NN Y DO
ON~N OV e
QAN S TwN—-O
LNt WMNND
SN N RWNN-O
woWVeaRhvwWwiN~C
wsNenrelWy,—0Q
LROLEGEW -G
S ISNAOUNNG
NxwanrLN-0
N e IET W]
VY ehasyYh—-—0o

Subsequent slides are based on 4 videos starting from the following:
CS583, Bing Liu, UIC https://www.youtube.com/watch?v=aircAruvnKk 40



A network for recognizing of hand-written digits

Input 2 hidden layers output
layer (16 neurons each) layer

This is the simplest network,
called Multilayer
perceptron (MLP)

One input layer

Two hidden layers
2 I1s an arbitrary choice
Each has 16 neurons or units

One output layer with 10
units for the 10 digits

All units are fully connected.

CS583, Bing Liu, UIC 41



Fach neuron is a function, computing an
activation value based on all its inputs

These 784 neurons
form the first layer.

The value held in each
output neuron basically
tells how likely the input
Image Is each digit.

Activations of one layer ‘ Aot

28 x 28 =784

determine the
activations of the next
layer

CS583, Bing Liu, UIC 42



Intuitive 1dea of layers

The first layer just the gray scale value of each pixel in the
iImage.

The second layer may capture some low-level features, e.g.,
edges of different orientations.

The third layer may capture some high-level features such as
loops, strokes, and lines.

The final layer tells which combination of the subcomponents
corresponds to each digit.

CS583, Bing Liu, UIC 43



Let us look at a particular neuron

How does it pick up a small patten?

For the value of this neuron, we compute
W,a,+W,a,+ Wya,+ ... tw.a + b

2 Which may be any value. In this case, we

want the values between 0 and 1, we use
squash function sigmoid (o)

Sigmoid

og(w,a,+w,a,+ wyas+ ... tw a. + b)

CS583, Bing Liu, UIC

Weights

w1 2.07
w2 2.31
w3 3.64
Wy 1.87
Ws5:—1.51
We:—0.43
wr: 2.01
wsg: 1.07

9.@0....

/

O
O
@
O
O
O
O
O

44



How many parameters?

Each neuron in one layer is connected with every neuron in
the next layer (fully connected).

We have

o Number of parameters (or weights): 784x16 + 16x16 + 16x10
o Number of biases: 16 + 16 + 10

Total number of parameters: 13,002
o These all can be tuned and changed.

Learning: find suitable values for all these parameters to solve
the problem at hand, e.g., classifying hand-written digits.

CS583, Bing Liu, UIC 45



This network 1s a function with 13,002 parameters

Sigmoid
N
a(()l) :O.<'“'0.() aéo) + wp 1 aﬁo) + s o Wy (Lff)) +Tb())

Bias

wop,0 Wo,1 .- -

w10 W11 ---

o

CS583, Bing Liu, UIC
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Learning

Use a lot of training examples

o Images of handwritten digits with
the correct labels (what numbers
they correspond to)

to adjust those 13,002 weights

and biases to improve the

performance on training data.

o Hopefully, the resulting network
also generalizes to test data.

An algorithm is needed:

backpropagation

CS583, Bing Liu, UIC
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Training 1s an optimization problem.

Trying to find a
minima for a cost
function C(x)

At the beginning, we
just give those
weights and biases

some random values.

The cost function
basically shows how
bad the prediction is.

CS583, Bing Liu, UIC

Finding minima
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We start with a random initialization

InpUt 3 gets What’s the “cost”
nonsense NN

results at the F, 7 A\ 5 , 00

A : RO e NN g "
output layer. S A 82

difference. 7/ 8B 5P AN e 09

CS583, Bing Liu, UIC 49



Square loss (cost) function

We take the squared difference of what the system gives and

what Is correct. What’s the “cost”

0.1863 of this difference?
0.0809
0.0357

0.0138

OO0
O1
O2
@3
or!
O5
O6
Ok
O8
09

Utter trash

0.5242
0.0001
0.4079
0.7388
0.9817
0.3998

¥ —>

Tl A

L0 O A O Y

CS583, Bing Liu, UIC 50



Cost will be small 1f the classification is correct.

What’s the “cost”
of this difference?

(\V}

\V}

Q0
@)
O2
@3
O4
O5
Q6
@k
O8
Q9

[\

(\V}

<+

+
+
_|_
_|_
))2 4+
) 2—|—
L
_|_
L

(V) (\V} (\V}

[\

CS583, Bing Liu, UIC
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Cost average over all training data

The average cost
gIives an idea how Average cost of What’s the “cost”
gOOd the network i1s in Bl training data... of this difference?
classification.

Training algorithm

basically changes all Cost of
13002 those weights

and biases to get
better cost.

o How to do that?

Here we only show only one training example

-1 00 =
[\ [\

EN f—
—

(\V} V)

ot

S i T

\}

Utter trash

(\v}
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How do we OptimiZGP Let us consider only one weight w first

For a simple function For a complex function

Sometimes
infeasible
p——

dC
(E

dw

Single input \

w

Very difficult for our cost function with 13,002 variables.
o We need gradient decent.

CS583, Bing Liu, UIC 53



How 1s gradient descent used

Let us put all the 13,002 weights and biases in a single vector
and all the negative gradients of them into another vector.

We can nudge or change How to nudge all
_ _ 13,002 weights and biases weights and biases

the weights and biases

to reduce the cost and 57 045

to minimize it. : o

The algorithm doing this 0.40

! : 3.82 oV B ¥

IS backpropagation. 0.82
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Meaning of those gradient numbers

We can see wo

- . (3
o what weight should increase ws
and wW=| °
W13,000
o what should decrease w1s,001

W13,002

o what change means a lot

wo should increase somewhat
wy should increase a little
wo should decrease a lot

w13,000 should increase a lot

w13,001 should decrease somewhat
w13,002 should increase a little

CS583, Bing Liu, UIC 55



Backpropagation

The backpropagation algorithm was originally introduced in the

1970s,

but its importance wasn't fully appreciated until a famous 1986

paper by David Rumelhart, Geoffrey Hinton, anc
That paper describes several neural networks w

backpropagation works far faster than earlier ap

o making it possible to use neural nets to solve problem
previously been insoluble.

Ronald Williams.

nere
nroaches,
s which had

Today, the backpropagation algorithm is the workhorse of learning

IN neural networks.

CS583, Bing Liu, UIC
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http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
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http://en.wikipedia.org/wiki/Ronald_J._Williams

Training: backpropagation algorithm

Step 1: initialize the weights and biases.

o Weights in the network are initialized to random numbers from interval [-1,1]
o Each unit has a BIAS associated with it
o Biases are similarly initialized to random numbers from the interval [-1,1]

Ste

Ste
ano

Ste
Ste
Ste

0 2: feed the training sample

0 3: propagate the inputs forward; we compute the net input
output of each unit in the hidden and output layers.

0 4. back-propagate the error.
0 5: update weights and biases to reflect the propagated errors.

D 6: terminating conditions.

CS583, Bing Liu, UIC 57



Intuition of backpropagation

Since In each step the cost is
over all training examples, let
us focus on a single example.

The network isn’t well trained,
the output activations are
pretty random for the input
Image of 2.

So we need to adjust those
weights and biases.

CS583, Bing Liu, UIC 58



Intuition of backpropagation (cont.)

We know which activation should go up and which should go down.
In this case, the target value
for 2 should 1.0 and the others
should be 0.0.

We should nudge activation
value for the number 2" up &
the rest down.

o For 7,8, 9, the values are small.

o The size of each nudge should
be in proportion to its target value

CS583, Bing Liu, UIC 59



Let us look at neuron tor 2 only

We can nudge
weights, the bias and @ = o(woap + wiar + -+ Wy _1an—1 + b)
activations. ‘

o Note that we cannot ey,
change activations,

o but only the weights  JslGEEECKUP
and biases of the
previous layers, which [ ENca?
affect the activations

CS583, Bing Liu, UIC 60



The effect of gradient

The gradients tell us
which weight or bias

0000DLOO

2 2
should be nudged up :
or which down, ‘ s | =
but which nudge will 5oy S

. All weights 2 e S
give us the best and biases
effect “best bang for

the bUCk” . Nudge this weight

-+
S —

C(...w,...
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Considering all output neurons

Propagate backwards

vttt

We have only considered
the output neuron for 2.

We also need to consider

all the output neurons and  EGYEEICRE IRNEIANERANE S
how they should be nudged PRasasabsatelc.
and their effect on the Increase w; o j1iiI1}1Iij‘fjf?fx.
second last layer. in proportion to a; - 11111?1‘11';:\

bttt 1 O

Change a; -~+T+l+l+1+l+1.

i+t 1 @

-+ v+ Y O/
+t+l+ i+ |+ 1 @7
T+T-|—l-|—1+T—I—lO

R ERE AR I®]

in proportion to w;.
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The 1dea of backpropagation

Finally, we sum up all the
effects to get what should
happen to the second to the

last layer.

Then we can recursively apply
the same process to the
previous layer and so on.

o So that their weights and biases
can be adjusted.

Propagate backwards

CS583, Bing Liu, UIC 63



Considering all training examples

So far, we have only
looked at one training ” epiore g
example of 2.

\

2 We can get how much
change should be | =005 | 014 | ---| —> —0.08
applied to each weight '

and bias.

o But we need to
average over all
training data to get
their desired changes
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Stochastic gradient descent

computations to calculate each nudge/change.

In practice, we use Computing based on minibatches
StOChaS“C gradlent Compute gradient descent step (using backprop)

descent

o We Shl:lfﬂe the data & divide .@DDEDTJD
h ' Inibatch d ,

0 f/vcfrr:z é)nnrzla::lhar:](:inﬁ)sa:::nh N @E
ach siep. 1243273, 67 07
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Math ot backpropagation

We start with a very simple
case:

0 one neuron in each layer
Further, we will focus on the

CY("U_,-’] , bl, w2, bQ, ws, bg)

@ O—0@ @

last two layers. Cost—>Co(...) = (@™ — )’
o For a training example with For example: (066 — 1.00)°
classy, tht_e last neuron is for ]());éi;?
the class (i.e., 1.00) i
We work on one training /4 f ’
example first. A oy
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Model the two layers

Let us see the flow structure for 2 layers.
C, Is the cost of one training example

COSJE—'PCY()(. .. ) = (CZ<L> = y>2

AL = B gL=1) 4 p(E)

Desired

(L)
output

W@ (L=1) (D) o) = (D)

CS583, Bing Liu, UIC

Note that we can go to
the next level too, but
we will not focus on that

(L= o (E=2) p(L-1) Cost—»Cp(...) = (aP) — y)?

(L—1)
“,(T.‘v
G

:(L;‘ —_— /,)a(L—l) + b(L)
Desired
output

i

all) Y

aL)

Y
Co
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How sensitive cost 1s to a small change in weight?

Each term is just

- . I f L 2
a numerical value [ e Lo o Co(--) = (@ =)
with a number Chain rule /B = w4
line. | o) = g (1) I(Zﬁigif
To get the
sensitivity, we
take partial
derivatives

o Chain rule
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Compute all derivatives

0Coy 0z 9al) OC0 Co= (CL(L) _y)2
Ow@  Owd) 9z(L) HalL)

(L) — ) o (L=1) i p(L)

0C0 2(a (L) q (L) = o(z (L))

9D y)

Ha L) 045 .

O"(Z(L)) @
AR
a(L=1) a(D) Y

oz(L) L (L—=1)
Ow (L)
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Consider all training examples

We have only oC, 0z aad) aC0 _
considered one [EHEEENCIIEARCEEINGIES
example and its

cost C,,. Average of all
To consider all training examples
tralnlng - n—1
examples, we oe _ 1 I

owl) n Ow(L)
average the o k=0
gradients Derivative of

full cost function
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Take derivative of the bias

CS583, Bing Liu, UIC
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Take dertvative of the activation (propagate back)

C 95 (L (L) v
0Cy c),f,< ) 6a 000 _ wD (2N () —

( (L)

Co= (a'™ —y)?

w) =1 (L)

\// ;,(L) — w(L)a(L_l) n b(L>

(L) a(l) — = o(z (L>)

|
\\

CS583, Bing Liu, UIC
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Iterating the same chain rule idea backward to the

previous layer and so on

ahe=H (E—2) p(E=1] dC 2L 9atl) 900

\/ / 9aL=1) ~ 8aL-1 9:(L) 9a(D)

Co= () —y)?

t/(L) — U)<L>CL(L_1) _|_ b(L>

%
A~

a(l) — a(z(U)

CS583, Bing Liu, UIC
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General case: more neurons in each layer

Need more indices and everything else Is basically the same.

L L—-1 LLl L
2 — B gED 4 BT D

L)

Wik @ —a
(L _, 6a)
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Derivatives on weights and biases are the same

oc, 924" aal™ acy, ot wial T 4

(7’(1);? ()w(}f) 9L §gtd)

J J
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Derivative on the activation changes

L)

Since the 9C
neuron (o ") Bl
Influences the Sum over layer L
cost function
through
multiple
different paths
(2 In this
case).

o (L) ' (L I —
~ 3 C)(L,,- ()(( J( = e e + LU}L )a’(ﬂ

'anl a2 f’
= 9alt7Y 919 9P
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With all the gradients, we apply gradient descent

The expression
“‘or’ means that at
the last layer
(which is different
from other S 1)y _OC
layers), we take - 7 9dY
the derivative on
the cost.

Note the typo:
| -> L
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Watch these YouTube videos about neural network
and backpropagation

https://www.youtube.com/watch?v=aircAruvnKk

o There are 4 videos introducing neural networks and backpropagation.
Most of our slides are based on these videos.

https://www.youtube.com/watch?v=IN2XmBhlILt4nhttps://www.yout
ube.com/watch?v=iyn2zdALiIi8

https://www.youtube.com/watch?v=GKZoOHXGcLo
A playlist:

o https://www.youtube.com/watch?v=CqOfi41LfDw&list=PLblh5JKO0oLUIXG
DQs4LFFD--41Vzf-ME1
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