Outline

- Basic concepts
- Decision tree induction
- Evaluation of classifiers
- Naïve Bayesian classification
- Naïve Bayes for text classification
- Support vector machines
- Linear regression and gradient descent
- Neural networks
- K-nearest neighbor
- Ensemble methods
- Summary

Linear regression

- Supervised learning has two main types
 - Classification: discrete predictive/output variable
 - Regression: continuous predictive/output variable
- We first study linear regression, i.e., the predictive function h is a linear function.

An example: housing price prediction

Given the size of a house, predict the Training data price of the house.

	Size in feet ²	Price (\$) in
Notation:	(x)	1000's (y)
n: Number of training examples	2104	460
x: Input variable / feature (Size)	1416	232
y: Output variable / target variable (Price)	1534	315
\Box (x, y): One training example in general	852	178
\Box (x ⁱ , y ⁱ): i th training example		

Training data and linear function

Model representation

- This is a univariate linear regression problem as it has only one input variable x.
- The linear regression model in this case is as follows $y = h_{\theta}(x) = \theta_0 + \theta_1 x$
 - There are two parameters θ_0 and θ_1 .
 - \square **\theta** represents the parameter vector, i.e., (θ_0 , θ_1)
- We use the training set to learn this model by optimizing a cost function, also called a loss function (L).

Loss function

Idea: select θ₀, θ₁ so that h_θ(x) is close to y for the training example (x, y). This is expressed with a loss function.
 Loss function (L) used by linear regression:

$$L(\mathbf{\theta}) = L(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^n (h_{\mathbf{\theta}}(x^i) - y^i)^2$$
where $h_{\mathbf{\theta}}(x^i) = \theta_0 + \theta_1 x^i$
Learning goal: argmin $L(\theta_0, \theta_1)$
 θ_0, θ_1
Blue line is better than green line
$$L(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^n (h_{\mathbf{\theta}}(x^i) - y^i)^2$$

Solve the minimization problem

- The learning is done using a general technique called
 - gradient descent

Gradient descent

 Recall our univariate linear regression problem
 Loss function: L(θ₀, θ₁)
 Goal: argmin L(θ₀, θ₁) θ₀, θ₁

Steps:

- Start with some initial θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $L(\theta_0, \theta_1)$ until we hopefully end up at minimum

An illustration

Keep going downhill

Learning rule: $\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} L(\theta_0, \theta_1)$

Gradient descent algorithm

Repeat until convergence

{

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} L(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)
}

• α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_j} L(\theta_0, \theta_1): \text{ derivative (rate of change)}$$

How to update

Correct: simultaneous update

• temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} L(\theta_0, \theta_1)$$

• temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} L(\theta_0, \theta_1)$

Incorrect:

• temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} L(\theta_0, \theta_1)$$

•
$$\theta_0 \coloneqq \text{temp0}$$

• temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} L(\theta_0, \theta_1)$$

• $\theta_1 \coloneqq \text{temp1}$

•
$$\theta_0 \coloneqq \text{temp0}$$

•
$$\theta_1 \coloneqq \text{temp1}$$

Too big learning rate Small learning rate

Recall: Loss function and learning goal

Recall: Loss function (L) used by linear regression is:

$$L(\mathbf{\theta}) = L(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^n (h_{\mathbf{\theta}}(x^i) - y^i)^2$$

where $h_{\mathbf{\theta}}(x^i) = \theta_0 + \theta_1 x^i$
 $h_{\mathbf{\theta}}(x^i)$ is an estimate of y^i
Learning goal:
$$\underset{\theta_0, \theta_1}{\operatorname{argmin}} L(\theta_0, \theta_1)$$

Computing partial derivative

$$\frac{\partial}{\partial \theta_{j}} L(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{i}) - y^{i} \right)^{2}$$
$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(\theta_{0} + \theta_{1} x^{i} - y^{i} \right)^{2}$$

$$j = 0: \quad \frac{\partial}{\partial \theta_0} L(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^i) - y^i \right)$$
$$j = 1: \quad \frac{\partial}{\partial \theta_1} L(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^i) - y^i \right) x^i$$

Gradient descent for linear regression

Repeat until convergence

$$\{ \theta_0 \coloneqq \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x^i) - y^i) \\ \theta_1 \coloneqq \theta_1 - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x^i) - y^i) x_i \}$$

• Update θ_0 and θ_1 simultaneously

Batch gradient descent

- Each step or update of gradient descent uses all (n) the training examples.
 - □ Sum over all *n* training examples for each step slow
 - □ It is also memory demanding if the training data is huge.
- In a normal learning process, training needs many steps before convergence.
- The training process that covers all the training examples once is called an epoch.
 - In batch gradient descent, each step is an epoch.

Stochastic gradient descent (SGD)

- SGD with one example per step: In SGD each step uses a single training example. Before each epoch, the data should be shuffled.
 - SGD converges faster when the dataset is large as it causes updates to the parameters more frequently.
 - The loss may fluctuate as only one example is used in each step.
- SGD with minibatch: each update/step uses a random *minibatch* of *m* out of *n* examples.
 - □ It is efficient, more stable, and more likely to jump out of a local minimum
- Batch Gradient Descent is more suitable for convex loss functions as it can converge directly to minima.

Convex and non-convex function

Convex set *X*: for all *a* and *b* in *X*, the line segment connecting *a* and *b* is included in *X*. **Convex function:** a real-valued function is called **convex** if the line segment between any two points on the graph of the function does not lie below the graph between the two points.

- A convex function has one minimum.
 - □ For all $0 \le \lambda \le 1$ and all x_1 , x_2 in a convex set X (e.g., an interval [a, b]), the following holds

 $f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2)$

A non-convex function has local minima (valleys) that are not global minimum.

Multivariate linear regression

- In our previous linear regression problem, we use only one input variable/feature (univariate). In general, the problem can have any number of input variables. Let the number of variables be k,
 - x_1, x_2, \dots, x_k .
- Training data: $D = {\mathbf{x}^i, y^i}_{i=1}^n$
- Multivariate linear regression model is

 $y = h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$

where $\boldsymbol{\theta}$ is the vector of all θ_i and \mathbf{x} is the vector of all x_i .

Multivariate linear regression (cont.)

For convenience of notation, define x₀ = 1 (x₀^J = 1 for all examples j)

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} \in \mathbb{R}^{k+1} \qquad \mathbf{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_k \end{bmatrix} \in \mathbb{R}^{k+1}$$

•
$$y = h_{\mathbf{\theta}}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k = \mathbf{\theta}^\top \mathbf{x}$$

Univariate and multivariate gradient descent

• Univariate (k = 1)

Repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x^i) - y^i)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^i) - y^i \right) x^i$$

Multivariate (k > 1)

Repeat until convergence { $\theta_j \coloneqq \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(\mathbf{x}^i) - y^i) x_j^i$ Simultaneously update θ_i , for $j = 0, 1, \cdots, k$

Outline

- Basic concepts
- Decision tree induction
- Evaluation of classifiers
- Naïve Bayesian classification
- Naïve Bayes for text classification
- Support vector machines
- Linear regression and gradient descent
- Neural networks
- K-nearest neighbor
- Ensemble methods
- Summary

Some example successes of neural networks

Resurgence of neural networks

- Origin: Algorithms that try to mimic the brain (1943).
- Was very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art results in many applications.
- It works especially well for computer vision and natural language processing (including speech recognition).
 - It has revolutionized the two fields in recent years.
 - It has spread to almost every machine learning area and application in practice.

A single neuron in the brain

The first neural network (McCulloch & Pitts, 1943)

In 1943 American neurophysiologist and cybernetician of the University of Illinois at Chicago^{II} Warren McCulloch^{II} and self-taught logician and cognitive psychologist Walter Pitts^{II} published "A Logical Calculus of the ideas Imminent in Nervous Activity^{II}," describing the "McCulloch - Pitts neuron^{II}, "the first mathematical model of a neural network.

Building on ideas in Alan Turing's "On Computable Numbers", McCulloch and Pitts's paper provided a way to describe brain functions in abstract terms, and showed that simple elements connected in a neural network can have immense computational power. The paper

Simple model of a neuron (McCulloch & Pitts, 1943)

- Inputs a_i come from the output of node i to this node j (or from "outside")
- Each input link has a weight w_{i,i}
- There is an additional fixed input a_0 (bias) with weight $w_{0,i}$
- The total input is $in_j = \sum_i w_{i,j} a_i$
- The output is $a_j = \sigma(in_j) = \sigma(\Sigma_i w_{i,j} a_j) = \sigma(\mathbf{w}.\mathbf{a})$

Logistic regression in a figure

An artificial neuron: a logistic unit

- A neuron is a logistic unit
 - $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ is called activation function.
 - Activation function does not have to be sigmoid.
- A neural network is a composition of many logistic units organized in layers.
 - It can also be seen as a logistic regression model with one or more hidden layers.

Neural network: an example

 $a_i^{(J)} =$ "activation" of unit *i* in layer *j* $a_0^{(2)}$ $\mathbf{W}^{(j)}$ = matrix of weights controlling function mapping from layer *j* to layer j + 1 $a_{2}^{(2)}$ $h_{\mathbf{W}}(\mathbf{x})$ χ_2 $a_3^{(2)}$ s_i units in layer j s_{i+1} units in layer j + 1 $a_{1}^{(2)} = \sigma \left(\mathbf{W}_{10}^{(1)} x_{0} + \mathbf{W}_{11}^{(1)} x_{1} + \mathbf{W}_{12}^{(1)} x_{2} + \mathbf{W}_{13}^{(1)} x_{3} \right)$ $a_{2}^{(2)} = \sigma \left(\mathbf{W}_{20}^{(1)} x_{0} + \mathbf{W}_{21}^{(1)} x_{1} + \mathbf{W}_{22}^{(1)} x_{2} + \mathbf{W}_{23}^{(1)} x_{3} \right)$ $a_{3}^{(2)} = \sigma \left(\mathbf{W}_{30}^{(1)} x_{0} + \mathbf{W}_{31}^{(1)} x_{1} + \mathbf{W}_{32}^{(1)} x_{2} + \mathbf{W}_{33}^{(1)} x_{3} \right)$ $h_{\mathbf{W}}(x) = \sigma \left(\mathbf{W}_{10}^{(2)} a_0^{(2)} + \mathbf{W}_{11}^{(2)} a_1^{(2)} + \mathbf{W}_{12}^{(2)} a_2^{(2)} + \mathbf{W}_{13}^{(2)} a_3^{(2)} \right)$

Neural network: an example

$$\begin{array}{c} & \overset{(2)}{x_{1}} & \overset{(2)}{a_{1}^{(2)}} & \overset{(2)}{x_{2}} &$$

CS583, Bing Liu, UIC

Neural network: an example

$$\begin{array}{c} \begin{array}{c} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{2} \\ x_{3} \end{array} \stackrel{(a_{0}^{(2)})}{=} a_{1}^{(2)} \\ x_{2} \\ x_{3} \\ x_{4}^{(2)} \\ x_{4}^{(2)$$

Neural network learning its own features

- Other machine learning models directly use the input features to build models.
- But a neural network can learn higher level features that consider the interactions of the input features.

More layers give different levels of abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!
- Face Recognition:
 - Deep network can build up increasingly higher levels of abstraction
 - □ Lines, parts, regions

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

Example from Honglak Lee (NIPS 2010)
Multiple classes

With multiple classes in a classification problem, we will need multiple output units, one output unit per class.

Activation function

So far, we've assumed that the activation function is always the sigmoid/logistic function. In fact, it is not widely used any more.

Two more activation functions, Tanh and ReLu

Sigmoid Function

Hyperbolic Tangent

Rectified Linear Unit (ReLU)

 $\sigma(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$

 $\sigma'(z) = 1 - \sigma(z)^2$

$$\sigma(z) = \max(0, z)$$

$$\sigma'(z) = \begin{cases} 1, & z > 0 \\ 0, & otherwise \end{cases}$$

An example: recognizing hand-written digits

- Each hand-written digit is a 28x28 = 784 image
- We want to build a neural network to recognize 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Subsequent slides are based on 4 videos starting from the following: https://www.youtube.com/watch?v=aircAruvnKk 40

A network for recognizing of hand-written digits

- This is the simplest network, called Multilayer perceptron (MLP)
- One input layer
- Two hidden layers
 - 2 is an arbitrary choice
 - Each has 16 neurons or units
- One output layer with 10 units for the 10 digits
- All units are fully connected.

Each neuron is a function, computing an activation value based on all its inputs

- These 784 neurons form the first layer.
- The value held in each output neuron basically tells how likely the input image is each digit.
- Activations of one layer determine the activations of the next layer

Intuitive idea of layers

- The first layer just the gray scale value of each pixel in the image.
- The second layer may capture some low-level features, e.g., edges of different orientations.
- The third layer may capture some high-level features such as loops, strokes, and lines.
- The final layer tells which combination of the subcomponents corresponds to each digit.

Let us look at a particular neuron

- How does it pick up a small patten?
- For the value of this neuron, we compute

 $w_1a_1 + w_2a_2 + w_3a_3 + \dots + w_na_n + b$

Which may be any value. In this case, we want the values between 0 and 1, we use squash function sigmoid (*σ*)

Each neuron in one layer is connected with every neuron in the next layer (fully connected).

We have

- Number of parameters (or weights): 784x16 + 16x16 + 16x10
- □ Number of biases: 16 + 16 + 10
- Total number of parameters: 13,002

These all can be tuned and changed.

Learning: find suitable values for all these parameters to solve the problem at hand, e.g., classifying hand-written digits.

This network is a function with 13,002 parameters

Learning

- Use a lot of training examples
 - Images of handwritten digits with the correct labels (what numbers they correspond to)
- to adjust those 13,002 weights and biases to improve the performance on training data.
 - Hopefully, the resulting network also generalizes to test data.
- An algorithm is needed: backpropagation

Training is an optimization problem.

- Trying to find a minima for a cost function C(x)
- At the beginning, we just give those weights and biases some random values.
- The cost function basically shows how bad the prediction is.

We start with a random initialization

- Input 3 gets nonsense results at the output layer.
- Use cost function to measure the difference.

Square loss (cost) function

We take the squared difference of what the system gives and what is correct.

Cost will be small if the classification is correct.

Cost average over all training data

- The average cost gives an idea how good the network is in classification.
- Training algorithm
 basically changes all
 13002 those weights
 and biases to get
 better cost.

Here we only show only one training example

□ How to do that?

How do we optimize? Let us consider only one weight *w* first

For a simple function

For a complex function

Very difficult for our cost function with 13,002 variables.
 We need gradient decent.

How is gradient descent used

- Let us put all the 13,002 weights and biases in a single vector and all the negative gradients of them into another vector.
- We can nudge or change the weights and biases to reduce the cost and to minimize it.
- The algorithm doing this is backpropagation.

Meaning of those gradient numbers

- We can see
 - what weight should increase and
 - what should decrease
 - what change means a lot

Backpropagation

- The backpropagation algorithm was originally introduced in the 1970s,
- but its importance wasn't fully appreciated until a <u>famous 1986</u> paper by <u>David Rumelhart</u>, <u>Geoffrey Hinton</u>, and <u>Ronald Williams</u>.
- That paper describes several neural networks where backpropagation works far faster than earlier approaches,
 - making it possible to use neural nets to solve problems which had previously been insoluble.
- Today, the backpropagation algorithm is the workhorse of learning in neural networks.

Training: backpropagation algorithm

- Step 1: initialize the weights and biases.
 - Weights in the network are initialized to random numbers from interval [-1,1]
 - Each unit has a BIAS associated with it
 - Biases are similarly initialized to random numbers from the interval [-1,1]
- Step 2: feed the training sample
- Step 3: propagate the inputs forward; we compute the net input and output of each unit in the hidden and output layers.
- Step 4: back-propagate the error.
- Step 5: update weights and biases to reflect the propagated errors.
- Step 6: terminating conditions.

Intuition of backpropagation

- Since in each step the cost is over all training examples, let us focus on a single example.
- The network isn't well trained, the output activations are pretty random for the input image of 2.
- So we need to adjust those weights and biases.

Intuition of backpropagation (cont.)

- We know which activation should go up and which should go down.
- In this case, the target value for 2 should 1.0 and the others should be 0.0.
- We should nudge activation value for the number '2' up & the rest down.
 - □ For 7, 8, 9, the values are small.
 - The size of each nudge should be in proportion to its target value

Let us look at neuron for 2 only

- We can nudge weights, the bias and activations.
 - Note that we cannot change activations,
 - but only the weights and biases of the previous layers, which affect the activations
 Increase w Change a_i

The effect of gradient

- The gradients tell us which weight or bias should be nudged up or which down,
- but which nudge will give us the best effect "best bang for the buck".

Considering all output neurons

- We have only considered the output neuron for 2.
- We also need to consider all the output neurons and how they should be nudged and their effect on the second last layer.

The idea of backpropagation

- Finally, we sum up all the effects to get what should happen to the second to the last layer.
- Then we can recursively apply the same process to the previous layer and so on.
 - So that their weights and biases can be adjusted.

Considering all training examples

- So far, we have only looked at one training example of 2.
 - We can get how much change should be applied to each weight and bias.
 - But we need to average over all training data to get their desired changes

Stochastic gradient descent

- It takes too long to go though all the training data and all those computations to calculate each nudge/change.
- In practice, we use stochastic gradient descent.
 - We shuffle the data & divide them in minibatches and
 - work on each minibatch in each step.

Math of backpropagation

- We start with a very simple case:
 - one neuron in each layer
- Further, we will focus on the last two layers.
 - For a training example with class y, the last neuron is for the class (i.e., 1.00)
- We work on one training example first.

Model the two layers

Let us see the flow structure for 2 layers.
 C₀ is the cost of one training example

 Note that we can go to the next level too, but we will not focus on that

How sensitive cost is to a small change in weight?

- Each term is just a numerical value with a number line.
- To get the sensitivity, we take partial derivatives
 Chain rule

Compute all derivatives

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}$$
$$\frac{\partial C_0}{\partial a^{(L)}} = 2(a^{(L)} - y)$$
$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)})$$
$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

$$C_{0} = (a^{(L)} - y)^{2}$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$$a^{(L)} = \sigma(z^{(L)})$$

$$0.48 \qquad 0.66 \qquad 1.00$$

$$f_{(L-1)} \qquad f_{a^{(L)}} \qquad y$$

Consider all training examples

- We have only considered one example and its cost C₀.
- To consider all training examples, we average the gradients

 $\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C0}{\partial a^{(L)}} = a^{(L-1)} \sigma'(z^{(L)}) 2(a^{(L)} - y)$

Average of all training examples

Derivative of full cost function

$$C_0 = (a^{(L)} - y)^2$$
$$z^{(L)} = w^{(L)} a^{(L-1)} + b^{(L)}$$

5

$$a^{(L)} = \sigma(z^{(L)})$$

Take derivative of the bias

Take derivative of the activation (propagate back)

Iterating the same chain rule idea backward to the previous layer and so on

General case: more neurons in each layer

Need more indices and everything else is basically the same.

Derivatives on weights and biases are the same

Derivative on the activation changes

Since the neuron $(a_k^{(L-1)})$ influences the cost function through multiple different paths (2 in this case).

With all the gradients, we apply gradient descent

- The expression "or" means that at the last layer (which is different from other layers), we take the derivative on the cost.
- Note the typo:
 I -> *L*

Watch these YouTube videos about neural network and backpropagation

- https://www.youtube.com/watch?v=aircAruvnKk
 - There are 4 videos introducing neural networks and backpropagation.
 Most of our slides are based on these videos.
- https://www.youtube.com/watch?v=IN2XmBhILt4https://www.youtube.com/watch?v=iyn2zdALii8
- https://www.youtube.com/watch?v=GKZoOHXGcLo
- A playlist:
 - https://www.youtube.com/watch?v=CqOfi41LfDw&list=PLblh5JKOoLUIxG DQs4LFFD--41Vzf-ME1