
Outline

◼ Basic concepts

◼ Decision tree induction

◼ Evaluation of classifiers

◼ Naïve Bayesian classification

◼ Naïve Bayes for text classification

◼ Support vector machines

◼ Linear regression and gradient descent

◼ Neural networks

◼ K-nearest neighbor

◼ Ensemble methods

◼ Summary

1CS583, Bing Liu, UIC

Linear regression

◼ Supervised learning has two main types

❑ Classification: discrete predictive/output variable

❑ Regression: continuous predictive/output variable

◼ We first study linear regression, i.e., the predictive function h

is a linear function.

CS583, Bing Liu, UIC 2
Many slides are borrowed from Jia-Bin Huang and Matt Gormley

An example: housing price prediction

◼ Given the size of a house, predict the

price of the house.

◼ Notation:

❑ 𝑛: Number of training examples

❑ 𝑥: Input variable / feature (Size)

❑ 𝑦: Output variable / target variable (Price)

❑ (𝑥, 𝑦): One training example in general

❑ (𝑥𝑖 , 𝑦𝑖): 𝑖𝑡ℎ training example

CS583, Bing Liu, UIC 3

Size in feet^2

(x)

Price ($) in

1000’s (y)

2104 460

1416 232

1534 315

852 178

… …

Training data

Training data and linear function

CS583, Bing Liu, UIC 4

Price ($)
(in 1000’s)

500 1000 1500 2000 2500

100

200

300

400

Size
(in feet2)

Model representation

◼ This is a univariate linear regression problem as it has only

one input variable 𝑥.

◼ The linear regression model in this case is as follows

𝑦 = ℎ𝛉 𝑥 = 𝜃0 + 𝜃1𝑥

❑ There are two parameters 𝜃0 and 𝜃1.

❑ 𝛉 represents the parameter vector, i.e., (𝜃0, 𝜃1)

◼ We use the training set to learn this model by optimizing a

cost function, also called a loss function (L).

CS583, Bing Liu, UIC 5

Loss function

◼ Idea: select 𝜃0, 𝜃1 so that ℎ𝛉 𝑥 is close to 𝑦 for the

training example 𝑥, 𝑦 . This is expressed with a loss function.

◼ Loss function (L) used by linear regression:

where ℎ𝛉 𝑥𝑖 = 𝜃0 + 𝜃1𝑥
𝑖

◼ Learning goal:

CS583, Bing Liu, UIC 6

𝐿 𝛉 = 𝐿 𝜃0, 𝜃1 =
1

2𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝑥𝑖 − 𝑦𝑖
2

argmin 𝐿 𝜃0, 𝜃1
𝜃0, 𝜃1

Blue line is better

than green line

Solve the minimization problem

◼ The learning is done using a general technique called

❑ gradient descent

CS583, Bing Liu, UIC 7

Gradient descent

◼ Recall our univariate linear regression problem

❑ Loss function: 𝐿 𝜃0, 𝜃1
❑ Goal: argmin 𝐿 𝜃0, 𝜃1

Steps:

◼ Start with some initial 𝜃0, 𝜃1
◼ Keep changing 𝜃0, 𝜃1 to reduce 𝐿 𝜃0, 𝜃1

until we hopefully end up at minimum

CS583, Bing Liu, UIC 8

𝜃0, 𝜃1

An illustration

CS583, Bing Liu, UIC 9

Keep going downhill

CS583, Bing Liu, UIC 10

Learning rule: 𝜃1 ≔ 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

1 2 3

1

2

3

0

𝐿 𝜃0, 𝜃1

𝜃1

𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 > 0

𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 < 0

Gradient descent algorithm

Repeat until convergence

{

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 (for 𝑗 = 0 and 𝑗 = 1)

}

◼ 𝛼: Learning rate (step size)

◼

𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 : derivative (rate of change)

CS583, Bing Liu, UIC 11

How to update

Correct: simultaneous update

◼ temp0 ≔ 𝜃0 −𝛼
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1

◼ temp1 ≔ 𝜃1 −𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

◼ 𝜃0 ≔ temp0

◼ 𝜃1 ≔ temp1

Incorrect:

◼ temp0 ≔ 𝜃0 −𝛼
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1

◼ 𝜃0 ≔ temp0

◼ temp1 ≔ 𝜃1 −𝛼
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1

◼ 𝜃1 ≔ temp1

CS583, Bing Liu, UIC 12

Learning rate

Too big learning rate Small learning rate

CS583, Bing Liu, UIC 13

Recall: Loss function and learning goal

◼ Recall: Loss function (L) used by linear regression is:

where ℎ𝛉 𝑥𝑖 = 𝜃0 + 𝜃1𝑥
𝑖

ℎ𝛉 𝑥𝑖 is an estimate of 𝑦𝑖

◼ Learning goal:

CS583, Bing Liu, UIC 14

𝐿 𝛉 = 𝐿 𝜃0, 𝜃1 =
1

2𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝑥𝑖 − 𝑦𝑖
2

argmin 𝐿 𝜃0, 𝜃1
𝜃0, 𝜃1

Blue line is better

than green line

Computing partial derivative

◼

𝜕

𝜕𝜃𝑗
𝐿 𝜃0, 𝜃1 =

𝜕

𝜕𝜃𝑗

1

2𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

2

=
𝜕

𝜕𝜃𝑗

1

2𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

𝑖 − 𝑦𝑖
2

◼ 𝑗 = 0:
𝜕

𝜕𝜃0
𝐿 𝜃0, 𝜃1 =

1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

◼ 𝑗 = 1:
𝜕

𝜕𝜃1
𝐿 𝜃0, 𝜃1 =

1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖

CS583, Bing Liu, UIC 15

Gradient descent for linear regression

Repeat until convergence

{

𝜃0 ≔ 𝜃0 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

𝜃1 ≔ 𝜃1 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖

}

◼ Update 𝜃0 and 𝜃1 simultaneously

CS583, Bing Liu, UIC 16

Batch gradient descent

◼ Each step or update of gradient descent uses all (n) the

training examples.

❑ Sum over all n training examples for each step – slow

❑ It is also memory demanding if the training data is huge.

◼ In a normal learning process, training needs many steps

before convergence.

◼ The training process that covers all the training examples

once is called an epoch.

❑ In batch gradient descent, each step is an epoch.

CS583, Bing Liu, UIC 17

Stochastic gradient descent (SGD)

◼ SGD with one example per step: In SGD each step uses a single

training example. Before each epoch, the data should be shuffled.

❑ SGD converges faster when the dataset is large as it causes updates to

the parameters more frequently.

◼ The loss may fluctuate as only one example is used in each step.

◼ SGD with minibatch: each update/step uses a random minibatch

of m out of n examples.

❑ It is efficient, more stable, and more likely to jump out of a local minimum

◼ Batch Gradient Descent is more suitable for convex loss functions

as it can converge directly to minima.

CS583, Bing Liu, UIC 18

Convex and non-convex function

◼ A convex function has one minimum.

❑ For all 0 ≤ 𝜆 ≤ 1 and all 𝑥1, 𝑥2 in a convex set X (e.g., an interval [a, b]),

the following holds

𝑓(𝜆𝑥1 + (1 − 𝜆) 𝑥2) ≤ 𝜆𝑓(𝑥1)+(1 − 𝜆)𝑓(𝑥2)

◼ A non-convex function has local minima (valleys) that are not

global minimum.

CS583, Bing Liu, UIC 19

Convex set X: for all a and b in X, the line

segment connecting a and b is included in X.

Convex function: a real-valued function is

called convex if the line segment between any

two points on the graph of the function does not

lie below the graph between the two points.

Multivariate linear regression

◼ In our previous linear regression problem, we use only one input

variable/feature (univariate). In general, the problem can have any

number of input variables. Let the number of variables be k,

𝑥1, 𝑥2, … , 𝑥𝑘.

◼ Training data: 𝐷 = {𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑛

◼ Multivariate linear regression model is

𝑦 = ℎ𝛉 𝐱 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + … + 𝜃𝑘𝑥𝑘
where 𝛉 is the vector of all 𝜃𝑖 and x is the vector of all 𝑥𝑖.

CS583, Bing Liu, UIC 20

Multivariate linear regression (cont.)

◼ For convenience of notation, define 𝑥0 = 1 (𝑥0
𝑗
= 1 for all

examples j)

◼ 𝐱 =

𝑥0
𝑥1
𝑥2
⋮
𝑥𝑘

∈ 𝑅𝑘+1 𝛉 =

𝜃0
𝜃1
𝜃2
⋮
𝜃𝑘

∈ 𝑅𝑘+1

◼ 𝑦 = ℎ𝛉 𝐱 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + … + 𝜃𝑘𝑥𝑘 = 𝛉⊤𝐱

CS583, Bing Liu, UIC 21

Univariate and multivariate gradient descent

◼ Univariate (𝑘 = 1)

Repeat until convergence {

𝜃0 ≔ 𝜃0 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖

𝜃1 ≔ 𝜃1 − 𝛼
1

𝑛
σ𝑖=1
𝑛 ℎ𝛉 𝑥𝑖 − 𝑦𝑖 𝑥𝑖

}

◼ Multivariate (𝑘 > 1)

Repeat until convergence {

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
1

𝑛
෍

𝑖=1

𝑛

ℎ𝛉 𝐱𝑖 − 𝑦𝑖 𝑥𝑗
𝑖

}

Simultaneously update

𝜃𝑗 , for 𝑗 = 0, 1,⋯ , 𝑘

CS583, Bing Liu, UIC 22

Outline

◼ Basic concepts

◼ Decision tree induction

◼ Evaluation of classifiers

◼ Naïve Bayesian classification

◼ Naïve Bayes for text classification

◼ Support vector machines

◼ Linear regression and gradient descent

◼ Neural networks

◼ K-nearest neighbor

◼ Ensemble methods

◼ Summary

23CS583, Bing Liu, UIC

Some example successes of neural networks

CS583, Bing Liu, UIC 24

Resurgence of neural networks

◼ Origin: Algorithms that try to mimic the brain (1943).

◼ Was very widely used in 80s and early 90s; popularity diminished

in late 90s.

◼ Recent resurgence: State-of-the-art results in many applications.

◼ It works especially well for computer vision and natural language

processing (including speech recognition).

❑ It has revolutionized the two fields in recent years.

❑ It has spread to almost every machine learning area and application in

practice.

CS583, Bing Liu, UIC 25

A single neuron in the brain

CS583, Bing Liu, UIC 26

Input

Output

The first neural network (McCulloch & Pitts, 1943)

CS583, Bing Liu, UIC 27

Simple model of a neuron (McCulloch & Pitts, 1943)

◼ Inputs ai come from the output of node i to this node j (or from “outside”)

◼ Each input link has a weight 𝑤i,j

◼ There is an additional fixed input a0 (bias) with weight w0,j

◼ The total input is inj = i 𝑤i,j ai

◼ The output is aj = 𝜎(inj) = 𝜎(i 𝑤i,j ai) = 𝜎(𝐰.a)

CS583, Bing Liu, UIC 28

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

𝑤0,𝑗

𝑤𝑖,𝑗

aj = 𝜎(inj)

𝜎

Logistic regression in a figure

CS583, Bing Liu, UIC 29

ℎ𝐖 𝐱 =
1

1 + 𝑒−𝐰
⊤𝐱

“Bias unit”

Output



𝑥0

𝑥1

𝑥3

𝑥2

𝑦
𝑦 = ℎ𝐰 𝐱 = 𝜎 𝐰⊤𝐱 ,

where 𝜎(𝑧) =
1

1+𝑒−𝒛

𝑤0

𝑤1

𝑤2

𝑤3

input

 𝐰⊤𝐱 = z

𝐱 =

𝑥0
𝑥1
𝑥2
𝑥3

𝐰 =

𝑤0

𝑤1

𝑤2

𝑤3

“Weights”

“Parameters”

Sigmoid (logistic)

function

An artificial neuron: a logistic unit

◼ A neuron is a logistic unit

❑ 𝜎 𝐰⊤𝐱 is called activation

function.

❑ Activation function does not have

to be sigmoid.

◼ A neural network is a

composition of many logistic

units organized in layers.

❑ It can also be seen as a logistic

regression model with one or

more hidden layers.

CS583, Bing Liu, UIC 30

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐰 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

Layer 1 layer 2 (hidden) layer 3

output

Neural network: an example

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0
𝑎𝑖
(𝑗)

= “activation” of unit 𝑖 in layer 𝑗

𝐖 𝑗 = matrix of weights controlling

function mapping from layer 𝑗 to layer 𝑗 + 1

𝑎1
(2)

= 𝜎 𝐖10
(1)
𝑥0 +𝐖11

(1)
𝑥1 +𝐖12

(1)
𝑥2 +𝐖13

(1)
𝑥3

𝑎2
(2)

= 𝜎 𝐖20
(1)
𝑥0 +𝐖21

(1)
𝑥1 +𝐖22

(1)
𝑥2 +𝐖23

(1)
𝑥3

𝑎3
(2)

= 𝜎 𝐖30
(1)
𝑥0 +𝐖31

(1)
𝑥1 +𝐖32

(1)
𝑥2 +𝐖33

(1)
𝑥3

ℎ𝐖(𝑥) = 𝜎 𝐖10
(2)
𝑎0
(2)

+𝐖11
(2)
𝑎1
(2)

+𝐖12
(2)
𝑎2
(2)

+𝐖13
(2)
𝑎3
(2)

𝑠𝑗 units in layer 𝑗

𝑠𝑗+1 units in layer 𝑗 + 1

CS583, Bing Liu, UIC
31

Neural network: an example

CS583, Bing Liu, UIC 32

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝑾 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝑥 =

𝑥0
𝑥1
𝑥2
𝑥3

z(2) =

z1
(2)

z2
(2)

z3
(2)

𝑎1
(2)

= 𝜎 𝐖10
(1)
𝑥0 +𝐖11

(1)
𝑥1 +𝐖12

(1)
𝑥2 +𝐖13

(1)
𝑥3 = 𝜎(z1

(2)
)

𝑎2
(2)

= 𝜎 𝐖20
(1)
𝑥0 +𝐖21

(1)
𝑥1 +𝐖22

(1)
𝑥2 +𝐖23

(1)
𝑥3 = 𝜎(z2

(2)
)

𝑎3
(2)

= 𝜎 𝐖30
(1)
𝑥0 +𝐖31

(1)
𝑥1 +𝐖32

(1)
𝑥2 +𝐖33

(1)
𝑥3 = 𝜎(z3

(2)
)

ℎ𝐖 𝑥 = 𝜎 𝐖10
2
𝑎0

2
+𝐖11

2
𝑎1

2
+𝐖12

2
𝑎2

2
+𝐖13

2
𝑎3

2
= 𝜎(𝑧(3))

“Pre-activation”

Neural network: an example

CS583, Bing Liu, UIC 33

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝐱 =

𝑥0
𝑥1
𝑥2
𝑥3

𝐳(2) =

z1
(2)

z2
(2)

z3
(2)

“Pre-activation”

𝑎1
(2)

= 𝜎(z1
(2)
)

𝑎2
(2)

= 𝜎(z2
(2)
)

𝑎3
(2)

= 𝜎(z3
(2)
)

ℎ𝐖 𝐱 = 𝜎(𝑧(3))

𝐳(2) = 𝐖(1)𝐱 = 𝐖(1)𝐚(1) // layer 1: 𝐚(1) = x

𝐚(2) = 𝜎(𝐳(2))

Add 𝑎0
(2)

= 1

𝐳(3) = 𝐖(2)𝐚(2)

ℎ𝐖 𝐱 = 𝐚(3) = 𝜎(𝐳(3))

Neural network learning its own features

◼ Other machine learning

models directly use the

input features to build

models.

◼ But a neural network

can learn higher level

features that consider

the interactions of the

input features.

CS583, Bing Liu, UIC 34

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

More layers

CS583, Bing Liu, UIC 35

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎0
(2)

ℎ𝐖 𝐱

𝑥1

𝑥2

𝑥3

𝑥0

𝑎1
(3)

𝑎2
(3)

𝑎0
(3)

More layers give different levels of abstraction

◼ We don’t know the “right”

levels of abstraction

◼ So let the model figure it

out!

◼ Face Recognition:

❑ Deep network can build up

increasingly higher levels of

abstraction

❑ Lines, parts, regions

CS583, Bing Liu, UIC 36

Example from

Honglak Lee

(NIPS 2010)

Multiple classes

◼ With multiple classes in a classification problem, we will need

multiple output units, one output unit per class.

CS583, Bing Liu, UIC 37

Output layerInput layer

Activation function

◼ So far, we’ve assumed that the activation function is always the

sigmoid/logistic function. In fact, it is not widely used any more.

CS583, Bing Liu, UIC 38

𝑧 = 𝐰⊤𝐱

𝜎(𝑧)

𝑎 = 𝜎(𝑧) =
1

1 + 𝑒−𝒛

“Bias unit”



𝑥0

𝑥1

𝑥𝑛

𝑥2

𝑤0

𝑤1

𝑤2

𝑤𝑛

𝒛 = 𝐰⊤𝐱
= σ𝑖=1

𝑛 𝑤𝑖𝑥𝒊
…

Two more activation functions, Tanh and ReLu

CS583, Bing Liu, UIC 39

𝜎(𝑧) =
1

1+𝑒−𝑧
𝜎(𝑧) =

𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
𝜎(𝑧) = max(0, 𝑧)

𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) 𝜎′(𝑧) = 1 − 𝜎(𝑧)2 𝜎′ 𝑧 = ቊ
1, 𝑧 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

An example: recognizing hand-written digits

◼ Each hand-written digit is a 28x28 = 784 image

◼ We want to build a neural network to recognize

10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

CS583, Bing Liu, UIC 40

28

28

Subsequent slides are based on 4 videos starting from the following:

https://www.youtube.com/watch?v=aircAruvnKk

CS583, Bing Liu, UIC 41

◼ This is the simplest network,

called Multilayer

perceptron (MLP)

◼ One input layer

◼ Two hidden layers

◼ 2 is an arbitrary choice

◼ Each has 16 neurons or units

◼ One output layer with 10

units for the 10 digits

◼ All units are fully connected.

Input 2 hidden layers output
layer (16 neurons each) layer

A network for recognizing of hand-written digits

Each neuron is a function, computing an

activation value based on all its inputs

◼ These 784 neurons

form the first layer.

◼ The value held in each

output neuron basically

tells how likely the input

image is each digit.

◼ Activations of one layer

determine the

activations of the next

layer

CS583, Bing Liu, UIC 42

Intuitive idea of layers

◼ The first layer just the gray scale value of each pixel in the

image.

◼ The second layer may capture some low-level features, e.g.,

edges of different orientations.

◼ The third layer may capture some high-level features such as

loops, strokes, and lines.

◼ The final layer tells which combination of the subcomponents

corresponds to each digit.

CS583, Bing Liu, UIC 43

Let us look at a particular neuron

◼ How does it pick up a small patten?

◼ For the value of this neuron, we compute

w1a1+w2a2+ w3a3+ … +wnan+ b

❑ Which may be any value. In this case, we

want the values between 0 and 1, we use

squash function sigmoid ()

◼ 𝜎(w1a1+w2a2+ w3a3+ … +wnan + b)

CS583, Bing Liu, UIC 44

How many parameters?

◼ Each neuron in one layer is connected with every neuron in

the next layer (fully connected).

◼ We have

❑ Number of parameters (or weights): 784x16 + 16x16 + 16x10

❑ Number of biases: 16 + 16 + 10

◼ Total number of parameters: 13,002

❑ These all can be tuned and changed.

◼ Learning: find suitable values for all these parameters to solve

the problem at hand, e.g., classifying hand-written digits.

CS583, Bing Liu, UIC 45

This network is a function with 13,002 parameters

CS583, Bing Liu, UIC 46

Learning

◼ Use a lot of training examples

❑ Images of handwritten digits with

the correct labels (what numbers

they correspond to)

◼ to adjust those 13,002 weights

and biases to improve the

performance on training data.

❑ Hopefully, the resulting network

also generalizes to test data.

◼ An algorithm is needed:

backpropagation

CS583, Bing Liu, UIC 47

Training is an optimization problem.

◼ Trying to find a

minima for a cost

function C(x)

◼ At the beginning, we

just give those

weights and biases

some random values.

◼ The cost function

basically shows how

bad the prediction is.

CS583, Bing Liu, UIC 48

We start with a random initialization

◼ Input 3 gets

nonsense

results at the

output layer.

◼ Use cost

function to

measure the

difference.

CS583, Bing Liu, UIC 49

Square loss (cost) function

◼ We take the squared difference of what the system gives and

what is correct.

CS583, Bing Liu, UIC 50

Cost will be small if the classification is correct.

CS583, Bing Liu, UIC 51

Cost average over all training data

◼ The average cost

gives an idea how

good the network is in

classification.

◼ Training algorithm

basically changes all

13002 those weights

and biases to get

better cost.

❑ How to do that?

CS583, Bing Liu, UIC 52

Here we only show only one training example

How do we optimize? Let us consider only one weight w first

For a simple function For a complex function

◼ Very difficult for our cost function with 13,002 variables.

❑ We need gradient decent.

CS583, Bing Liu, UIC 53

How is gradient descent used

◼ Let us put all the 13,002 weights and biases in a single vector

and all the negative gradients of them into another vector.

◼ We can nudge or change

the weights and biases

to reduce the cost and

to minimize it.

◼ The algorithm doing this

is backpropagation.

CS583, Bing Liu, UIC 54

Meaning of those gradient numbers

◼ We can see

❑ what weight should increase

and

❑ what should decrease

❑ what change means a lot

CS583, Bing Liu, UIC 55

Backpropagation

◼ The backpropagation algorithm was originally introduced in the

1970s,

◼ but its importance wasn't fully appreciated until a famous 1986

paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams.

◼ That paper describes several neural networks where

backpropagation works far faster than earlier approaches,

❑ making it possible to use neural nets to solve problems which had

previously been insoluble.

◼ Today, the backpropagation algorithm is the workhorse of learning

in neural networks.

CS583, Bing Liu, UIC 56

http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
http://en.wikipedia.org/wiki/David_Rumelhart
http://www.cs.toronto.edu/~hinton/
http://en.wikipedia.org/wiki/Ronald_J._Williams

Training: backpropagation algorithm

◼ Step 1: initialize the weights and biases.

❑ Weights in the network are initialized to random numbers from interval [-1,1]

❑ Each unit has a BIAS associated with it

❑ Biases are similarly initialized to random numbers from the interval [-1,1]

◼ Step 2: feed the training sample

◼ Step 3: propagate the inputs forward; we compute the net input

and output of each unit in the hidden and output layers.

◼ Step 4: back-propagate the error.

◼ Step 5: update weights and biases to reflect the propagated errors.

◼ Step 6: terminating conditions.

CS583, Bing Liu, UIC 57

Intuition of backpropagation

◼ Since in each step the cost is

over all training examples, let

us focus on a single example.

◼ The network isn’t well trained,

the output activations are

pretty random for the input

image of 2.

◼ So we need to adjust those

weights and biases.

CS583, Bing Liu, UIC 58

Intuition of backpropagation (cont.)

◼ We know which activation should go up and which should go down.

CS583, Bing Liu, UIC 59

◼ In this case, the target value

for 2 should 1.0 and the others

should be 0.0.

◼ We should nudge activation

value for the number ‘2’ up &

the rest down.

❑ For 7, 8, 9, the values are small.

❑ The size of each nudge should

be in proportion to its target value

Let us look at neuron for 2 only

◼ We can nudge

weights, the bias and

activations.

❑ Note that we cannot

change activations,

❑ but only the weights

and biases of the

previous layers, which

affect the activations

CS583, Bing Liu, UIC 60

The effect of gradient

◼ The gradients tell us

which weight or bias

should be nudged up

or which down,

◼ but which nudge will

give us the best

effect “best bang for

the buck”.

CS583, Bing Liu, UIC 61

Considering all output neurons

◼ We have only considered

the output neuron for 2.

◼ We also need to consider

all the output neurons and

how they should be nudged

and their effect on the

second last layer.

CS583, Bing Liu, UIC 62

The idea of backpropagation

◼ Finally, we sum up all the

effects to get what should

happen to the second to the

last layer.

◼ Then we can recursively apply

the same process to the

previous layer and so on.

❑ So that their weights and biases

can be adjusted.

CS583, Bing Liu, UIC 63

Considering all training examples

◼ So far, we have only

looked at one training

example of 2.

❑ We can get how much

change should be

applied to each weight

and bias.

❑ But we need to

average over all

training data to get

their desired changes

CS583, Bing Liu, UIC 64

Stochastic gradient descent

◼ It takes too long to go though all the training data and all those

computations to calculate each nudge/change.

CS583, Bing Liu, UIC 65

◼ In practice, we use

stochastic gradient

descent.

❑ We shuffle the data & divide

them in minibatches and

❑ work on each minibatch in

each step.

Computing based on minibatches

Math of backpropagation

◼ We start with a very simple

case:

❑ one neuron in each layer

◼ Further, we will focus on the

last two layers.

❑ For a training example with

class y, the last neuron is for

the class (i.e., 1.00)

◼ We work on one training

example first.

CS583, Bing Liu, UIC 66

Model the two layers

◼ Note that we can go to

the next level too, but

we will not focus on that

CS583, Bing Liu, UIC 67

◼ Let us see the flow structure for 2 layers.

C0 is the cost of one training example

How sensitive cost is to a small change in weight?

◼ Each term is just

a numerical value

with a number

line.

◼ To get the

sensitivity, we

take partial

derivatives

❑ Chain rule

CS583, Bing Liu, UIC 68

Compute all derivatives

CS583, Bing Liu, UIC 69

Consider all training examples

◼ We have only

considered one

example and its

cost C0.

◼ To consider all

training

examples, we

average the

gradients

CS583, Bing Liu, UIC 70

Take derivative of the bias

CS583, Bing Liu, UIC 71

Take derivative of the activation (propagate back)

CS583, Bing Liu, UIC 72

Iterating the same chain rule idea backward to the

previous layer and so on

CS583, Bing Liu, UIC 73

General case: more neurons in each layer

◼ Need more indices and everything else is basically the same.

CS583, Bing Liu, UIC 74

Derivatives on weights and biases are the same

CS583, Bing Liu, UIC 75

Derivative on the activation changes

◼ Since the

neuron (𝑎𝑘
(𝐿−1)

)

influences the

cost function

through

multiple

different paths

(2 in this

case).

CS583, Bing Liu, UIC 76

With all the gradients, we apply gradient descent

◼ The expression

“or” means that at

the last layer

(which is different

from other

layers), we take

the derivative on

the cost.

◼ Note the typo:

l -> L

CS583, Bing Liu, UIC 77

Watch these YouTube videos about neural network

and backpropagation

◼ https://www.youtube.com/watch?v=aircAruvnKk

❑ There are 4 videos introducing neural networks and backpropagation.

Most of our slides are based on these videos.

◼ https://www.youtube.com/watch?v=IN2XmBhILt4https://www.yout

ube.com/watch?v=iyn2zdALii8

◼ https://www.youtube.com/watch?v=GKZoOHXGcLo

◼ A playlist:

❑ https://www.youtube.com/watch?v=CqOfi41LfDw&list=PLblh5JKOoLUIxG

DQs4LFFD--41Vzf-ME1

CS583, Bing Liu, UIC 78

